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Abstract— Random number generators find application in many
fields, including cryptography, digital signatures and network equip-
ment testers, to cite a few. Two main classes of such generators
are usually proposed, pseudo-random number generators and true-
random number generators. The former are simple to build and
use, but cannot be employed in every application, especially in those
where randomness is meant to support security. The later can be
complicated to build, since they often must rely on hard-to-predict
events that are hard to produce in the deterministic world of digital
circuits. This work proposes a quasi-random number generator
hardware implementation, intended to provide most of the benefits of
true-random number generators with costs closer to those of pseudo-
random number generators. The quasi-random number generator
described here relies on the use of asynchronous circuit design
techniques allied to process, voltage and temperature variability to
achieve relatively high degrees of randomness. An FPGA prototype
demonstrates the feasibility of the approach.

I. INTRODUCTION TO RANDOM NUMBER GENERATORS

Given the need to use random sequences of symbols, most
often in the form of numbers, in several applications, this paper
explores the design and construction of hardware modules to
produces such sequences. Ideally, true-random generators are the
most indicated, but if repetition of results is required, they may
not be the best choice. This paper deals with the design of random
number generators that set a compromise between pseudo-random
and true-random generators.

A true-random number generator (TRNG) has equal probability
of producing any value at any given time. The probability of
generating a value is not bound by previous or future values.
Conversely, a pseudo-random number generator (PRNG) is de-
terministic, meaning that at any given moment it is bound to
generate a specific value. This makes possible to predict its output,
based on previously generated values or on the instant of the value
generation. Thus, a PRNG is not in fact random. A quasi-random
number [1] generator (QRNG) produces results with a range with
some given uncertainty. The narrower the range the more similar
its behaviour is to PRNGs. Conversely, the wider this uncertainty
range is, the more its behaviour resembles a TRNG. Figure 1
shows the typical probability distribution of values produced by
the three classes of RNGs discussed in this Section.

A. PRNGs

A PRNG is a class of number generators that produces values
in an evenly distributed, but predictable, sequence. This class
of generators is deterministic, they are useful on applications
requiring reproducible values in different executions. Common
examples of applications where PRNGs are useful include simula-
tion and application modeling. Usually, PRNGs are implemented
using linear-feedback shift registers (LFSRs), as exemplified in
Figure 2. An LFSR generates a sequence of numbers that appears
to be random. It comprises a register with a fixed number of bits

(a) Pseudo-Random (b) True-Random (c) Quasi-Random

Fig. 1: Probability distributions for PRNGs, TRNGs and QRNGs.
Assuming a specific number generation moment, (a) has probab-
ility 1 for a single value and 0 for all other values in the range; (b)
has equal probability of generating any value at any moment, and
(c) has a probability distribution between these extremes. Note:
area under the curves (b), (c) is 1.

and a set of XOR (or XNOR) gates. Every cycle the register in
shifted and its least significant bit (LSB) is set according to the
characteristic polynomial expression. The polynomial expression
defines which bits in the register are combined (XORed or
XNORed) to produce the next LSB.

Fig. 2: An example 16-bit LFSR [2].

If an LFSR of length n generates all possible 2n − 1 values
before repeating itself, it is maximum. There are multiple possible
polynomial expressions for an LFSR with a given length, not
all of which yield a maximum LFSR. Pre-computed polynomials
for maximum LFSRs can be found at [3]. Equation (1) is the
polynomial expression of the 16-bit LFSR in Figure 2.

x16 + x14 + x13 + x11 + 1 (1)

Since PRNGs produce numbers in a known sequence, they
have poor entropy. This makes PRNGs not fit for cryptography
applications, which are sensitive to entropy attacks.

B. TRNGs

Digital circuits are by design deterministic. Often, it is a
desirable feature that circuits have predictable results. However,
some applications may require unpredictable data to be useful, or
even safe.

Entropy is a measurement of chaos, or surprise. A perfectly
ordered sequence following a pattern, e.g. 0, 1, 2, 3..., may be
considered to have no entropy, since it is possible to predict
any next or previous value. Conversely, a sequence without any
detectable pattern has maximum entropy, if it is not possible
to predict any next value. Sources of high entropy are found
in nature, e.g. in patterns of background radiation. These can978-1-7281-0453-9/19/$31.00 ©2019 IEEE
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be harvested to produce uniformly distributed random numbers.
However, the nature sampling process can be complex.

Several recent works propose efficient TRNGs. For example,
Wieczorek and Golofit [4] employ the instability of a flip-flop
resolve time, added by a chaotic random source to produce a
TRNG with high quality randomness. In another effort, Liu et
al. [5] suggest using two ring oscillators as an entropy source,
added by a sampler of these, instrumented with a post-processing
digital part that produces random bitstreams.

The quality of TRNGs has received attention as well. The
National Institute of Standards and Technology (NIST) publishes
a statistical test suite to verify the randomness of TRNGs and
other RNGs [6]. Proposals employ the NIST suite to verify the
quality of their implementations. Some authors have used these
to show that some TRNGs are not in fact TRNGs, see e.g. [7].

C. QRNGs
For some applications, generators with a some degree of

(un)predictability may be enough. These applications can be-
nefit from Quasi-random number generators (QRNGs). QRNGs
provide a compromise between predictability and complexity.
Quasi-random denotes that the sequence of values produced is
neither completely unpredictable nor fully deterministic. Values
generated by a QRNG fall in a range of uncertainty as in Figure 3.
The uncertainty range ∆ impacts the entropy of the produced
sequence. Infinite uncertainty would produce a maximum entropy,
as in TRNGs. Conversely, zero uncertainty produces a determin-
istic sequence, as in PRNGs.

Fig. 3: Example value distribution probability by QRNGs, assum-
ing a specific generation moment. The curve is centered at the
value generated by a equivalent LFSR circuit running at the Mean
Cycle Time. The ∆ range derives from cycle time variations.

The uncertainty range can be widened by gathering entropy
from the environment, thus producing higher quality results. This
paper proposes to use asynchronous circuits to gather entropy
from PVT variations, thus increasing the uncertainty range of
the RNG. A final remark about Figure 3 is that the normal
probability distribution it shows is just an example of possible
QRNG behavior, not a rule.

II. ASYNCHRONOUS CIRCUITS

Synchronous circuits rely on a periodic global clock signal to
provide a discrete common time reference and to synchronize
actions, guaranteeing correct circuit behavior. The frequency of
this global clock signal is defined during circuit design and is not
subject to change due to operation condition variations.

Asynchronous circuits in turn do not possess such a common
time reference. They operate on local communication, with timing

subject to PVT variations. This characteristic makes them capable
of functioning under a broader range of conditions. The variable
delays of asynchronous circuits under environmental conditions
variation provides an interesting solution to harvest entropy from
the environment. Synchronization in these circuits takes place
through the use of handshake channels [8] between commu-
nicating entities. Handshake protocols are characterized by two
distinct steps: (i) request, which announces data availability for
processing; and (ii) acknowledgement, which acknowledges the
reception of and processing data.

There are different choices of handshake protocols and different
circuit templates to achieve such protocols. Popular protocol
choices are 4-phase (level sensitive) and 2-phase (edge sensitive)
handshake protocols. 4-phase protocols take less hardware to
implement, but often present less performance than 2-phase
protocols.

Besides the handshake protocol, it is possible to organize
sequential computation is stages that employ either one of two
strategies: full-buffer and half-buffer. The first type allow that its
input and its output have different data tokens, while the second
cannot simultaneously have distinct data tokens at its input and
output, forcing one of these to contain no data token at any
moment (i.e. a spacer). half-buffers can lead to very fast circuits,
but they sub-utilize hardware resources. The contrary is true for
full-buffers.

Templates for implementing sequential hardware are often
divided in two main categories: (i) quasi-delay insensitive (QDI);
and (ii) bundled-data (BD).

QDI templates use delay-insensitive codes and special logic
components to detect computation completion. The circuitry used
to implement logic that manipulates delay-insensitive encoded
data often requires more than twice the area and often employ
custom special logic gates, e.g. Muller C-Elements. However, this
approach allows the design of very robust circuits with timing
assumptions restricted to specific places in the circuit, called
isochronic forks [9].

Conversely, BD templates use local timing assumptions to
determine when a pipeline stage computation completes. The
request signal in bundled-data circuits are delay-matched with
the propagation of the stage datapath, to guarantee that it will
not arrive prior to the stage computation completion. Bundle-
data templates eliminate the need for special data encoding and
associated excessive circuitry, yielding lower area at the expense
of a more restrictive set of timing assumptions.
A. The Mousetrap Asynchronous Template

This Section describes the Mousetrap asynchronous design
template to be used in our QRNG proposal. Singh and Nowick
proposed the Mousetrap template as an organization for building
asynchronous pipelines [10]. Mousetrap is a 2-phase BD template
that relies on conventional logic gates only. It implements a half-
buffer pipeline controlled by 4-phase handshake protocol.

A Mousetrap pipeline stage comprises a latch and a controller
that determines when the latch should be either transparent or
opaque. A Mousetrap controller includes: (i) a done bit, respons-
ible for signaling the presence or absence of data on a determined
pipeline stage latch; (ii) an XNOR gate, responsible for generating
the local enable signal controlling the stage latch(es).

The intuition behind Mousetrap comes from the fact that the
current pipeline stage is ready to receive a new spacer (or data)
from the previous stage after the data (or spacer) present in the
current stage has propagated to the next stage. It achieves this by

2019 IEEE 10th Latin American Symposium on Circuits & Systems (LASCAS)

138

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on November 30,2021 at 11:12:30 UTC from IEEE Xplore.  Restrictions apply. 



comparing (XNORing) the current stage done bit with the next
stage done bit. The basic structure of the Mousetrap pipeline can
be observed in the upper part of Figure 4 (showing instances of
Mousetrap controllers) combined with the latches. The done bits
are output of the 1-bit control latch attached to the data latch, all
controlled by the stage XNOR gate output.

On any stage, the done bit is latched together with the data.
This done bit acts both as an acknowledge signal to the previous
stage and as a request signal to the next stage. The request is
delayed matched with the stage datapath by the big ∆ delay line.
On our circuit, the acknowledge signal is delayed by the little ∆
delay to avoid hold timing violations.

The delayed version of the request signal arrives at a stage latch
and is captured if the latch is transparent, becoming the next stage
done bit. Once it is captured, the XNOR gate closes the latch,
holding the data (or spacer). The captured done bit is fed back
to the previous stage XNOR gate as an acknowledgement signal.
This, in turn, make the previous stage latch transparent, allowing
the reception of a new spacer (or data). This template has as an
additional advantage that it makes straightforward to convert a
synchronous circuit to an asynchronous version.

III. THE ASYNCHRONOUS QRNG ARCHITECTURE PROPOSAL

The practicality of using the Mousetrap template relies in that
it does not require special cells like Muller C-elements. The
starting point was a 128-bit PRNG design built with an LFSR
using a Fibonacci representation. LFSRs provide a simple method
to produce a broad variety of pseudo-random sequences. To
enhance variability, the LFSR employs the polynomial expression
showed in Equation (2), taken from [11], with a periodicity of
3.4028237 ∗ 1038, calculated using the expression: 2n − 1.

x128 + x126 + x101 + x99 + 1 (2)

Two different versions of the circuit were developed, both
implementing a 4-stage Mousetrap pipeline. In the first, the
combinational logic (3 2-input XOR gates or a single 4-input
XOR gate) occupies a single stage and all subsequent stages
exist for data propagation only. This type of implementation is
not optimized for maximum throughput but it is very simple
to troubleshoot the design and to tune the delays and fix hold
violations. The second architecture, depicted in Figure 4, spreads
the combinational logic across all pipeline stages (a 2-input XOR
in each pipeline stage except the first. Distributing the logic does
provide advantages, because a stage empty of combinational logic
still has a minimum delay, required to avoid timing violations.
When logic is distributed along several stages, the mentioned
minimum delays become part of the logic gates delay and delay
lines are incremented by smaller values.

Note that each stage computes part of the new data, and the
fourth cycle feeds the new data back to the first stage. After that
each new cycle produces a new random datum.

The architecture starts with a reset signal. This signal clears the
datapath, setting requests and acknowledge signals for the initial
value, loading the seed value, and making every latch initially
transparent.

Handshake stretching, or holding pipeline propagation, is a
quite difficult task to do without asynchronous specific cells,
like asymmetric C-Elements. Most of the difficulty of developing
holding mechanisms is that there are a lot of timing constraints
that need to be taken into account to avoid metastability. A

Fig. 4: The Mousetrap QRNG with combinational logic spread
across the pipeline (second architecture). Red dotted ∆ boxes
are delay lines inserted to avoid hold violations; green ∆ boxes
are delay lines matching the stage delay. Hold halts the pipeline,
stalling its operation.

solution is to use a latch in every acknowledge signal where the
transparency is set by the Hold input.

Data acquisition is a relatively simple process, easy to interface
to ordinary logic circuitry. The first step to fetch a random value
is to hold the pipeline (or as called on the previous paragraph, do
a handshake stretch). This can be done by setting the Hold signal
high. The second step is to wait for a short period of time, to
ensure that the Hold signal propagated through the latches. After
this, data is available for reading on the output bus and Hold is
set low again. This kind of data acquisition method is similar to
a clock stretching process, it simplifies circuit usage.

Data throughput depends mostly on the worst request ∆ (delay)
added with the worst latch setup and hold time. When calculating
circuit throughput it is important to notice that delays may
fluctuate along time, because of dynamic variations (due e. g.
to circuit temperature changes). The latency of the QRNG is the
summation of all ∆ values plus the setup and hold time of every
latch in the circuit, except for the first latch, since it is there where
the seed value is loaded into the datapath.

Latency =

3∑
n=1

∆Req(n) + Latch(n)Hold + Latch(n)Setup

A. Behavioral Simulation

Some particular care must be taken when simulating asynchron-
ous circuits with conventional logic simulators such as Modelsim,
since traditional zero-delay simulation can often break when deal-
ing with combinational loops present in almost any asynchronous
logic design. Accordingly, to simulate the proposed QRNG a
unit-model delay mode was employed to avoid problems. A unit-
model delay mode sets a minimum defined delay for every logic
component, which can even lead to pessimistic simulations.

B. FPGA Timing Simulation and Prototyping

Most of the difficulty for simulating and prototyping asyn-
chronous circuits, especially BD ones, relates to the optim-
ization and trimming of the delay lines during the synthesis
process, which can cause circuit malfunctioning. This is due
to the underlying assumptions of most synthesis tools, that are
designed primarily to support the mainstream synchronous design
paradigm. When working with FPGAs it is necessary to use an
RTL attribute called keep, assigned to every wire and component
forming delay lines, to avoid logic trimming during synthesis.
The circuit was thus prototyped on a Nexys board equipped with
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a Xilinx XC3S200 Spartan-3 FPGA, where the Hold signal was
associated to a toggle switch and values were mapped to the seven
segment displays. One of the acknowledge signals was set to an
external pin of the board, to allow the use of an oscilloscope to
measure the cycle time and variations in frequency due to external
conditions (e.g. temperature changes). The FPGA logic utilization
of the proposed QRNG appears in Table I.

TABLE I: FPGA logic utilization for the proposed QRNG.

Logic Utilization Used Available Utilization
Slice Registers 552 3840 14%
4 input LUTs 31 3840 1%

Two Nexys boards were used to prototype two instances of the
proposed QRNG and were simultaneously monitored using an
oscilloscope while both boards were kept running for 24 hours.
An interesting part of the experiment was that the cycle time
frequency was not the same on otherwise identical boards, which
is clearly due to fabrication process variations between the two
FPGAs. This divergence in cycle time endorses the assumptions
and the expected functionality. Table II shows these results.

TABLE II: FPGA mean cycle times and divergence periods.

Board 1 Board 2 ∆Period
Average Cycle Time 13.89ns 13.33ns ∼ 560ps

Considering the obtained experimental values, it is possible to
estimate an approximate period of data divergence between the
boards. For calculating this divergence Equation (3) was used:

DivergencePeriod ' Pb1Pb2

|Pb1 − Pb2|
(3)

The formula was applied to both FPGAs with the collected
experimental values. In the formula, Pbi stands for the average
period of board bi.

DivergencePeriod ' 13.89 ∗ 13.33

|13.89− 13.33|
(4)

DivergencePeriod ' 330.631ns (5)

Considering an average frequency of 75MHz on the FPGA, the
circuit would have an estimated throughput of 9.6Gigabit/s on the
data output bus.

C. VLSI Logic Synthesis and Timing Simulation

Synthesizing VLSI circuits with delay lines is not a trivial
task. With the advance on commercial frameworks for logic
and physical synthesis, several improvements help the designer
to obtain better circuits. Commercial tools improvements, on
the other hand, create a distance between the circuit and the
designer, since what the former describes is not necessarily
what is implemented in the latter. To avoid that delay lines be
interpreted as unnecessary, setting specific constraints is necessary
to guide synthesis tools.

The QRNG was synthesized using the ARM Sage-X Library
for the bulk CMOS TSMC 180nm technology node. The Cadence
commercial framework was employed. One relevant concern
when developing the circuit was latch hold and setup violations,
due to the presence of short datapaths between stages, especially
in the first architecture. The design was synthesized with com-
mands to preserve the component instances over each delay line.

To fix hold violations, small delay lines were needed on the
acknowledge signal to compensate the latch hold time as depicted
by dotted components in Figure 4. This was not needed in the
FPGA versions of the circuit. Table III displays the synthesized
circuit results. The circuit was simulated with physical synthesis
post-layout annotated delays and worked correctly.

TABLE III: VLSI logic cells utilization for the proposed QRNG
for 180nm bulk CMOS technology.

Design Area (µm²) Cell Count
QRNG 42735 1392

Request Delay Lines 1005 72
Acknowledge Delay Lines 714 24

IV. CONCLUSIONS AND FUTURE WORK

A small and simple QRNG. was designed, prototyped success-
fully in FPGAs and synthesized in one VLSI technology. This
type of circuitry can easily be used in devices that do not require
strong security. One future work is to investigate the use of QDI
design instead of a BD template, because QDI design can enhance
robustness, being useful to accommodate extreme PVT variations
on the circuit. Such extreme variations can increase the QRNG
randomness, ∆ from Figure 3. Another relevant future work is
to formalize the approach to randomness tests of the proposed
QRNG, comparing it to PRNGs and TRNGs.
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