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ABSTRACT In the stream processing domain, applications are represented by graphs of operators arbitrarily
connected and filled with their business logic code. The APIs of existing Stream Processing Systems (SPSs)
ease the development of transformations that recur in the streaming practice (e.g., filtering, aggregation and
joins). In contrast, their parallelism abstractions are quite limited since they provide support to stateless
operators only, or when the state is organized in a set of key-value pairs. This paper presents how the
parallel patterns methodology can be revisited for sliding-window streaming analytics. Our vision fosters
a design process of the application as composition and nesting of ready-to-use patterns provided through
a C++17 fluent interface. Our prototype implements the run-time system of the patterns in the FastFlow
parallel library expressing thread-based parallelism. The experimental analysis shows interesting outcomes.
First, our pattern-based approach allows easy prototyping of different versions of the application, and the
programmer can leverage nesting of patterns to increase performance (up to 37% in one of the two considered
test-bed cases). Second, our FastFlow implementation outperforms (three times faster) the handmade porting
of our patterns in popular JVM-based SPSs. Finally, in the concluding part of this paper, we explore the use of
a task-based run-time system, by deriving interesting insights into how to make our patterns library suitable
for multi backends.

INDEX TERMS Data stream processing, streaming analytics, sliding-window queries, parallel patterns,
multicore programming.

I. INTRODUCTION
The data deluge generated by our ever-more-connected world
raises the need of easy-to-use frameworks able to efficiently
process data streams in real-time. Such frameworks should
provide high-level user-friendly programming interfaces for
easing the developing of efficient streaming applications.
Furthermore, they should enable the efficient execution on
modern hardware, not only limited to clusters as in traditional
systems like Apache Storm [1] and Apache Flink [2], but also
on modern powerful scale-up servers equipped with tens of
cores and terabytes of memory.

Despite this second direction has gained attention in the
last years [3], [4], the first problem of programming abstrac-
tions lacks of recent research advancements. This is partic-
ularly true for what regards parallelism abstractions, which
should leave the programmer free to express parallelism
in a powerful and flexible way, by exploiting the interplay
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existing between the space of parallelism opportunities often
available in stream processing programs (e.g., pipelining, task
and data parallelism).

Parallelism in existing tools is easy to express for stateless
operators, through replication directly enabled in the API by
the user, or for keyed streams, that is when the stream is parti-
tionable in logical substreams based on a key attribute. In our
prior work [5], we proposed a set of parallel patterns tar-
geting continuous analytics based on sliding windows. Such
kind of queries are supported in the existing frameworks and
represent an essential part ofmany streaming benchmarks [6].
In the paper in [5], the patterns were introduced and pre-
liminarily evaluated through low-level experimentations for
testing their individual properties.

The present paper extends our prior work in three novel
directions. First, we study how to design a C++17 library
called WindFlow1 that exposes those patterns to the final
users through a high-level interface and facilitates their

1GitHub link: https://github.com/ParaGroup/WindFlow
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nesting to improve performance. Second, we show an imple-
mentation of this library in FastFlow [7], a C++ run-time
environment for thread-based parallelism on multicores, and
we present several pattern transformations to deal with some
of the issues deriving from the choice of this parallelism
model. Finally, in the concluding part of the paper, we discuss
the impact of a different run-time system (based on task-
based parallelism) andwe identify some important issues that
need to be addressed to obtain satisfactory performance.

More precisely, our main contributions are as follows:
• we show that our patterns can be developed in a com-
positional way by using simpler patterns to build more
complex ones. This helps code modularity and reuse,
and allows complex nested structures to be built in
a bottom-up fashion to leverage different parallelism
paradigms to improve performance (i.e. between sub-
streams, between and within windows);

• we introduce a set of transformations of the parallel
structure deriving from the patterns nesting, in order to
simplify it by removing centralization points or by col-
lapsing under-utilized entities into a single thread. Such
transformations reveal useful for mitigating some of the
issues raised by the adoption of the thread-based par-
allelism model of the FastFlow implementation, which
is similar to the design of the most popular streaming
frameworks (notably, Apache Flink and Apache Storm);

• the patterns have been emulated in Apache Flink and
some of them in Apache Storm by using a proper com-
position of the available operators. The performance
comparison in two test-based applications shows a sig-
nificant throughput improvement and latency reduction
by our C++ implementation;

• for one of the two proposed applications, we provide a
preliminary study of the impact of using the Intel TBB
library as an alternative run-time system, showing that
this parallelism approach, which has known advantages
in terms of dynamicity and load balancing, requires a
proper tuning of the task granularity to demonstrate its
full potential in terms of sustained throughput even if at
the cost of increased latency.

This paper has the following organization. Next section
presents the background. Section III introduces the building
blocks of our FastFlow implementation. Section IV describes
the API and the implementation of our patterns, with a set
of transformations shown in Section V. Experiments are
described in Section VI. Finally, Section VII reviews similar
works and Section VIII draws the conclusions.

II. BACKGROUND AND MOTIVATION
In this part, we describe the most characterizing features of
the Data Stream Processing paradigm (DSP) by focusing on
the programming abstractions provided in the existing Stream
Processing Systems (SPSs) to express parallelism. Then,
we recall the methodology of Parallel Design Patterns [8]
traditionally applied in the Parallel Computing domain, and
we discuss why a merge with the DSP paradigm is necessary

FIGURE 1. Different configurations based on the presence of overlapping
regions among consecutive windows.

to provide more powerful parallelism abstractions. Finally,
we give an overview of the different models that can be used
to design the run-time system (from now on RTS).

A. WINDOWED QUERIES
Streaming applications extract relationships from continuous
data flows in order to promptly enable decision-making activ-
ities. To deal with unbounded sequences of input items, such
applications (queries in this domain) are often applied using
a sort of stream discretization called windowing [9]. The idea
is that the computation is continuously repeated on the most
recent input items. As an example, suppose an application that
processes a stream of transactions from a financial market.
A query applied on temporal windows can be the following:
‘‘generate a trade proposal when the spread between the
average price of two stock symbols deviates by more than a
given threshold in a period of five seconds’’.

Different models have been presented in the literature [10].
The triggering semantics expresses when a window is ready
to be processed while the eviction semantics states which are
the data items that must be purged from the window after
its triggering. Common semantics use the number of items
(count-based) or a timestamp attribute in the items (time-
based). As an example, time-based windows trigger every
s > 0 time units (sliding factor) where each window spans
over the last w > 0 time units (window length).

Three common configurations can be identified, as shown
in Figure 1. Tumbling windows are fully disjoint and adja-
cent. Sliding windows are the most general case, with items
that may belong to multiple consecutive windows. Hopping
windows are again disjoint but not consecutive.

B. EXISTING STREAMING INTERFACES
SPSs are frameworks for developing and running streaming
applications. They provide a set of common transformations
like map, flatmap, filter, and windowed operators which dis-
cretize the input stream and apply a user-defined function
on each window. Window-based processing is often a time-
consuming part that demands parallel execution [11]. In this
section, we focus on how windowed operators are expressed
in modern SPSs and how they can be accelerated.

The API of Apache Flink [2] is used to build pipelines
of processing stages. It has a fluent interface written in Java
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LISTING 1. Example of usage of the Apache Flink API.

LISTING 2. Example of the Core Storm API in Java.

and Scala. Each DataStream object has methods to apply
map, filter, reduce, join and windowed queries to derive
new DataStream objects. Listing 1 exemplifies this usage.
In the example, the application partitions the input records
based on the event type attribute (keyBy), and counts the
number of items in tumbling windows of one second.

The fold() function is used to update the count.
Each computational phase has a parallelism (chosen with
setParallelism()). Each replica of the windowed stage
is executed by a different thread. In the example, Apache
Flink assigns each different event type to one of five replicas.

Apache Storm [1] has a more verbose interface where
each stage (spout for sources, bolts for the others) extends
a proper class and overrides specific methods. Listing 2
shows the code instantiating the same toy application
where CountWinBolt is a class extending the super
class BaseWindowedBolt by overriding the method
execute() that receives a collection of the items in the
window and produces the corresponding result.

Parallelism is expressed by having more replicas of each
stage (operator), and by specifying how the input items are
distributed. The example uses a field grouping to distribute
input items with the same key attribute to the same replica.
By default, each replica is executed by a dedicated thread.

C. TOWARDS PATTERN-BASED STREAM PROCESSING
We can identify three possible parallelism paradigms suitable
to increase the throughput of windowed operators:

• inter-key parallelism: this is basically the most common
parallelization provided in the existing systems, where
replicas of the same stage process windows of different
key groups in parallel;

TABLE 1. Parallelism paradigms natively available to accelerate
windowed operators.

• inter-window parallelism: consecutive windows of
items even with the same key attribute can be assigned
and processed in parallel by distinct replicas, e.g.,
the first window to the first replica, the second to the sec-
ond replica and so forth;

• intra-window parallelism: when specific properties of
the query function are known (e.g., associativity and
commutativity), the processing of each window can be
executed in parallel as amap-reduce, i.e. by splitting the
window content and aggregating the partial results of the
partitions into a window-wise result.

Not all of these paradigms are directly supported by the
existing SPSs. For example, the third one is supported by
Spark Streaming [12] (an SPS based onmicro batching) while
it is not primitively available in Apache Storm and Apache
Flink. Table 1 summarizes which paradigms are supported in
these SPSs.

In addition to provide a programming model where these
three paradigms are immediately available to the high-level
programmer, the approach proposed in this paper is aimed
at providing a user-friendly programming model to compose
and nest such paradigms in order to jointly exploit them. To do
that, we adapt to the streaming domain the parallel design
patterns methodology [8], [13]. Analogously to the design
patterns used in object-oriented programming, a pattern is a
high-level design, including possible implementation strate-
gies and typical usages within different kinds of applications.
In the years, the abstract parallel design pattern concept has
converged into a real parallel programming methodology like
in Intel TBB [14], FastFlow [7] and Microsoft PPL [15],
where parallel patterns are directly made available to the
users as abstractions of a sequential programming language
(e.g., through objects or library calls).

Listing 3 shows an example in a generic object-oriented
syntax. The structure of the application is defined in a bottom-
up fashion, with two patterns created and nested. The pro-
grammer starts the execution of the application by running
the topmost pattern (instance of the class Pattern2) which
has two internal parallel entities which, in turn, are replicas of
another pattern (class Pattern1). During the construction
of each pattern, the user may provide to the constructors
several configuration parameters and the business logic code
(e.g., through lambda functions or functors).

Our goal is to define a new API for streaming pipelines
adopting a similar pattern-based approach.
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LISTING 3. Example of pattern instantiation and execution.

D. DESIGN OF STREAMING RUN-TIME SYSTEMS
In addition to a user-friendly API, SPSs must adopt an
efficient RTS targeting parallel hardware. Three models are
suitable to implement the RTS:
• thread-based parallelism: each node of the data-flow
graph (operator) is executed by a set of dedicated threads
(one per replica of the operator). Furthermore, threads
exchange data items through some sort of concurrent
buffers/queues shared among threads;

• actor-based parallelism: to decouple the number of
operators and their replicas from the number of threads,
actor-based programming (like in Akka [16] and
CAF [17]) can be used to design the RTS. Each replica
is implemented by an independent actor, i.e. a compu-
tational entity that, in response to a message, executes
a user-defined code and generates other messages to be
sent to other actors. A pool of threads execute actors hav-
ing at least one message ready in their input mailboxes
(work-stealing strategies are often applied to balance the
workload among threads);

• task-based parallelism: this model is widely diffused in
the domain of High-Performance Computing in libraries
such as Intel TBB [14] and its high-level interface Flow-
Graph. It shares some ideas of the actor-based pro-
gramming, since tasks are lightweight execution entities
like actors. However, here parallelism is expressed in a
further additional dimension: each node in FlowGraph
can spawn a potentially unlimited number of tasks which
depends on the speed of messages arriving at the node
and on the execution speed of its processing function.

Thread-based parallelism is the de-facto standard in exist-
ing SPSs available to the Big Data community (Apache Flink
and Apache Storm adopt this model). One of the main rea-
sons is that operators often perform blocking activities with
external services (e.g., key-value stores, publish-subscribe
and logging systems) which are not well suited for actor-
based and task-based parallelism approaches. However, such
models (notably task-based parallelism) are very powerful
to mitigate locality issues and to provide transparent load
balancing, although the task granularity must be carefully
chosen to obtain good performance.

Although our patterns and the high-level interface are
independent of the model adopted by the RTS, we present
an implementation with the building blocks available in the

FIGURE 2. Layered software architecture of the FastFlow-based
implementation of the WindFlow library.

FastFlow library, which is based on thread-based parallelism.
The software stacks of this solution are shown in Figure 2.
We will study in the future how to exploit alternative RTSs
for the implementation of our patterns, although a preliminary
study is presented in the concluding part of the paper.

III. FASTFLOW OVERVIEW
FastFlow is a library in C++ targeting multi/many-core plat-
forms [7]. Starting from version 3.0, the library offers a two-
level API. The first is used by the high-level programmer to
develop parallel programs, while the second provides a set of
low-level building blocks [18] for developing new RTSs for
domain specific languages and libraries.

The FastFlow library is realized as a modern C++ header-
only template library that allows the programmer to develop
parallel applications modeled as a directed data-flow graph
of processing nodes. Following the thread-based parallelism
model, each FastFlow node represents a sequential com-
putation component executed by a dedicated thread. Each
node can have zero, one or more input channels and zero,
one ormore output channels. The graph of concurrent/parallel
nodes is constructed by the assembly of sequential and paral-
lel building blocks. Input and output communication channels
are implemented through Single-Producer Single-Consumer
(SPSC) FIFO queues. Operations on such queues (that can
have either bounded or unbounded capacity) are based on
non-blocking lock-free synchronizations enabling fast data
processing in high-frequency streaming applications [19].

FastFlow channels do not carry plain data but references to
heap-allocated data. The semantics of sending data references
over a communication channel is that of transferring the own-
ership of the data pointed by the reference from the sender
node (producer) to the receiver node (consumer) according to
the producer-consumermodel. The data reference is de facto
a capability, i.e. a logical token that grants access to a given
data or to a portion of a larger data structure. Based on this
reference-passing semantics, the receiver is expected to have
exclusive access to the data reference received from one of
the input channels, while the producer is expected not to use
the reference anymore.
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FIGURE 3. Basic building blocks available in FastFlow version 3.0.

In the following, we briefly describe the basic building
blocks available in the FastFlow library version 3.0. The
API of each building block is sketched in Figure 3.

Node The node is the basic abstraction of the building
blocks. It defines the unit of sequential execu-
tion in the FastFlow library. A node encapsulates
either user’s code (i.e. business logic) or RTS
code. User’s code can also be wrapped by a Fast-
Flow node executing RTS code to manipulate and
filter input and output data before and after the
execution of the business logic code. Based on
the number of input/output channels it is possible
to distinguish three different kinds of sequential
nodes: standard with one input and one output
channel, multi-input with many inputs and one
output channel, and finally multi-output with one
input and many outputs. A generic node performs
a loop that: i) gets a data item (through a memory
reference to a data structure) from one of its input
queues; ii) executes a functional code working on
the data item and possibly on a state maintained
by the node itself by calling its service method
svc(); iii) puts a memory reference to the result-
ing item(s) into one or multiple output queues
selected according to a predefined or user-defined
policy.

Combiner The combiner building block allows the user to
combine two nodes into one single sequential
node. Conceptually, the operation of combining
sequential nodes is similar to the composition
of two functions. In this case, the functions are
the service functions of the two nodes (e.g.,
the svc() method). This building block pro-
motes code reuse through fusion of already imple-
mented nodes and it can also be used to reduce
the threads used to run the data-flow network by
executing the functions of multiple nodes by a
single thread.

Pipeline The pipeline allows building blocks to be con-
nected in a linear chain. It is used both as

a container of building blocks as well as an
application topology builder. At execution time,
the pipeline building block models the data-flow
execution of its building blocks on data elements
flowing in a streamed fashion.

Farm The farm building block models functional repli-
cation of building blocks coordinated by a mas-
ter node called Emitter. The simplest form is
composed of two computing entities executed in
parallel: a multi-output master node (the Emit-
ter), and a pool of pipeline building blocks called
Workers. The Emitter node schedules the data
elements received in input to the Workers using
either a default policy (i.e. round-robin or on-
demand) or according to the algorithm imple-
mented by the user code defined in its service
method. In this second scenario, the stream ele-
ments scheduling is controlled by the user through
a custom policy.

A2A The All-to-All (briefly A2A) building block
defines two distinct sets of Workers connected as
in a full crossbar. This means that each Worker in
the first set (called L-Worker) is connected to all
the Workers in the second set (called R-Workers).
Although the topological shape is a full crossbar,
the user can implement any custom distribution in
the L-Workers (e.g., sending each data item to a
specific R-Worker, shuffling o broadcasting).

Based on these building blocks, we describe in the rest of
this paper an implementation of the RTS for our WindFlow
parallel library.

IV. WINDFLOW PARALLEL PATTERNS
Following the pattern-based vision outlined in the previ-
ous sections, in this paper we introduce WindFlow2. The
library provides four parallel patterns that can be used to
implement high-throughput and low-latency sliding-window
queries. Figure 4 depicts with an UML class diagram the
relationship among our patterns and the FastFlow building

2https://github.com/ParaGroup/WindFlow
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FIGURE 4. UML diagram of the sliding-window parallel patterns provided
by the library and their relationship with the FastFlow building blocks.

TABLE 2. Parallel paradigms provided by each pattern.

blocks. The four parallel patterns, Win_Farm, Key_Farm,
Pane_Farm and Win_MapReduce, are classes extending
either the ff_Pipe or the ff_Farm FastFlow classes.
As Table 2 shows, the patterns are used to express

parallelism among different windows, within each win-
dow or between logical substreams. Although some patterns
already exploit more than one parallelism paradigm, patterns
nesting makes it possible to combine multiple paradigms in
a general manner within a single application structure. This
feature will be discussed in Section V.

The library supports the most common windowing models
and query definitions:

• count-based and time-based windows. The window
length and sliding factor are expressed in number of
input items or in time units. All the configurations are
admissible (i.e. tumbling, sliding and hopping);

• the query logic is instantiated using either a non-
incremental or an incremental interface. In the first case,
the user-defined function is called every time a new
window is complete by providing access to the window
items through iterators. In the second case, for each new
input item the RTS calls the function several times to
update the results of the windows including the item
in their scope. The two signatures are both accepted as
input of the pattern constructor via overloading.

In the next part, we will describe for each pattern its API
and how it has been implemented in the library.

A. SEQUENTIAL PATTERN
The sequential pattern is implemented by the Win_Seq
class. During the pattern execution, windows are processed

FIGURE 5. Win_Seq supports non-keyed/ keyed streams with
non-/incremental count-/time-based windows.

sequentially and in order. Figure 5 shows the conceptual
structure of the pattern. The pattern is configured toworkwith
keyed streams where input items are grouped by their key
identifier and an output result is produced for each complete
window of items with the same key attribute.

1) IMPLEMENTATION
The pattern is implemented as a C++ template class extend-
ing the base class ff_node_t of single-input single-
output FastFlow nodes. The pattern maintains a hashmap
KeyTable (shortly, KT) indexed by the key attribute. Each
entry of the table stores two fields:

• a set of descriptors of open windows, i.e. not-complete
windows for which we have received at least one
item. Each descriptor provides an onEvent()method,
called with the current input item, which returns whether
the window is complete or not by comparing the item
identifier/timestamp with the window ending boundary.
The method returns two possible outcomes: CONTINUE
if the window is not complete, or FIRED otherwise. The
descriptor stores the window result that is filled by the
query function processing;

• an archive containing all the items belonging towindows
that are not complete yet. Such items are kept ordered for
an efficient lookup into the archive.

For each received item, the RTS executes the
processItem() function described in Algorithm 1. The
routine identifies all the windows containing the item, creates
the descriptors, and calls the onEvent() method on each
of them. If a non-incremental definition is used, the query
function is called for each window that returns the FIRED
outcome. The function has access to the window result (a
user-defined data structure allocated by the RTS) and to all
the items of the window through a custom Iterable<T>
object, with T the type of the input item. The Iterable
object provides, without any copy, a logical read-only view
of the archive limited to the items in the window. The object
can be used as a STL container.
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Algorithm 1 Processing of Input Items by Win_Seq
1: procedure processItem(t)
2: (key, id, ts)← t .getControlFields()
3: (W , archive)← KT[key]
4: archive.insert(t)
5: for each win ∈ W containing t do
6: outcome← win.onEvent(t)
7: if outcome == FIRED then
8: if NIC then
9: (first, last)← archive.findIterators(win)
10: Iterable<T> view(first, last)
11: call winFunction(win.wid, view,

win.result)
12: send win.result to the output queue
13: archive.purge(win.start, slide)
14: if outcome == CONTINUE and ¬NIC then
15: call winFunction(win.wid, t , win.result)
16: end

If the query function is provided with the incremental inter-
face, it is called for each window that produces a CONTINUE
outcome by passing the new item and the window result to be
updated as a reference. In the pseudocode, the flagNIC is true
if the query function is compliant with the non-incremental
signature. After the processing of a fired window, its descrip-
tor is removed and all the items no longer needed by any of
the open windows are purged from the archive (line 13). The
archive in case of incremental queries is optional as the access
to historical data is not needed.

2) HIGH-LEVEL API
To ease the creation of the pattern, the library provides
a builder class with a fluent interface. Using the builder,
the configuration parameters can be provided to the pattern
constructor in any order with default values if not specified.
Listing 4 shows an example of instantiation with a query that
simply counts the items in the window. The application is a
pipeline of three stages: the first is in charge of generating the
stream (by reading the items from an input file), the second
is the Win_Seq instance, and the third stage receives the
results and stores them in a file. In the code, tuple_t and
result_t are the input item and the result data types.

In the code snippet, the query is instantiated with the non-
incremental signature and created as a lambda function. The
builder’s method withCBWindow() is used to set the win-
dow length and slide parameters whilewithName() assigns
to the pattern instance a name as a string. Then, the pat-
tern object is created by invoking the build() method
of the builder. Thanks to the CTAD feature recently intro-
duced in C++17 (Class Template Argument Deduction),
the template arguments of the Win_Seq class (tuple_t
and result_t) are deduced by the compiler from the func-
tion type passed as parameter to the builder constructor.

LISTING 4. Example of instantiation of the Win_Seq pattern.

FIGURE 6. Win_Farm used with three Win_Seq internal instances. In this
example, the Win_Farm works with count-based windows with w = 4
and s = 1 items. Each Win_Seq instance has a private sliding factor of
3 · s items.

After the instantiation, the pattern is added as the second
stage of a FastFlow pipeline, together with the Generator
and the Consumer nodes which extend the ff_node_t
base class of FastFlow. Then, the pipeline is executed syn-
chronously with respect to the main thread until the stream
has been entirely processed.

B. WINDOWED FARM
The Win_Farm pattern enables inter-window parallelism.
It replicates an inner pattern according to the replication
degree n > 0 chosen by the user. The internal instances
work in parallel on distinct windows. The behavior is shown
in Figure 6 with the pattern having a pool of Win_Seq
instances inside, each using the same windowing model
(count- or time-based) and window length/sliding factor.

The pattern has two support entities implemented as Fast-
Flow nodes and executed by dedicated threads of the RTS.
The WF_Emitter distributes the items such that each
replica receives all the items needed to compute the assigned
windows. The WF_Collector performs the collection task
that restores the order of results.

1) IMPLEMENTATION
The Win_Farm class extends the ff_Farm class of
FastFlow by replacing the default emitter and collector
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with instances of the WF_Emitter and WF_Collector
classes. The two important points of the implementation are
related to the windows assignment and the distribution of
input items received from the stream. The assignment of
windows to the internal instances is performed in a circular
manner. The key attribute typekey_t of the input itemsmust
be hashable, i.e. std::hash<key_t>()must be defined.
Let k be the hashcode of the key value, the processing of the
i-th window of that key is assigned to the j-th internal pattern
such that:

j = [(k mod n)+ i] mod n (1)

This choice guarantees that the first internal instance of
the round-robin assignment is not the same for all the
keys.

The replicas within the pattern work in parallel on different
windows. The figure assumes that all the items have the
same key attribute to show that this pattern does not need
keyed streams. Each replica is in charge of computing a
subset of the windows: the first instance processes windows
W0,W3,W6 . . ., the second W1,W4,W7 . . ., and so forth.
To do that, each replica receives only the items belonging to
at least one of its assigned windows, while each item can be
sent to more than one replica.

The pattern needs to determine for each input which are
the windows ‘‘touched’’ by that item. The mapping is cal-
culated using the parameters (w, s) of the query and the
identifier/timestamp of the item. The distribution logic is
described in Algorithm 2 for count-based windows. The time-
based case is analogous, with the timestamp attribute involved
in the expression at line 7 and 9.

Algorithm 2 Distribution of Input Items
1: procedure distributeItem(t) F t is a new input item
2: (key, id, ts)← t .getControlFields()
3: k← std::hash<key_t>()(key)
4: if id < w then
5: first ← 0
6: else
7: first ← d(id + 1− w)/se
8: last ← d(id + 1)/se − 1
9: Ddst ← ∅

10: for i← first to last do
11: Ddst ← Ddst ∪ {((key mod n)+ i mod n}
12: for each j ∈ Ddst do
13: send t to the j-th internal instance
14: end

The pseudocode computes the range of windows
[first..last]. For sliding windows with a small sliding factor,
the same item is in general present in many consecutive
windows, by requiring a high communication overhead spent
by the emitter node. However, we point out that this is
mitigated in FastFlow, where data messaging is implemented
by exchanging memory pointers.

LISTING 5. Example of instantiation of the Win_Farm pattern.

2) HIGH-LEVEL API
The pattern has a builder class as the Win_Seq. The replica-
tion degree is configured by callingwithParallelism(),
while the behavior of the collector node, that is whether
it must order the results with the same key is set through
withOrdering(). Listing 5 shows an example of instan-
tiation using the same query of Listing 4.

C. PANED FARM
ThePane_Farm pattern is an parallelization of the approach
in [20]. The approach avoids recomputing windows from
scratch by exploiting the partial overlapping between two
consecutive windows. It is based on a two-level aggregation
that uses the notion of pane: panes are tumbling windows of
length equal to p = GCD(w, s). The length is in number of
items or in time units depending on the windowing model.
The computation consists of two phases: the Pane-level Sub-
Query (PLQ) computes a result for each pane, while in the
Window-level Sub-Query (WLQ) the results of the w/p panes
belonging to the same window are merged to produce the
corresponding window result.

The Pane_Farm pattern is a pipeline of two stages
(PLQ and WLQ), see Figure 7. The figure shows three
alternative cases, with the second stage parallel and the first
sequential, the opposite, and with both stages parallel.

1) IMPLEMENTATION
The pattern is provided as a class extending the ff_Pipe
of FastFlow. The pipeline is built with two stages that are
instances either of theWin_Seq or of theWin_Farm pattern
according to the replication degree chosen. The first stage
works with count- or time-based windows depending on the
query definition. The second stage works with count-based
windows of length w/p that slide every s/p pane results. This
pattern is a first example of a layered design, where complex
patterns are implemented as combination of other simpler
patterns.

2) HIGH-LEVEL API
The builder class of the Pane_Farm allows the user to easily
configure the pattern, the ordering behavior out of the last
stage and the replication degrees. The builder constructor
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FIGURE 7. Pane_Farm pattern working with count-based windows with
w = 4 and s = 2 items.

LISTING 6. Example of instantiation of the Pane_Farm pattern.

receives two functions, the first to compute pane results,
the second to aggregate them to producewindow-wise results.
Listing 6 shows an example of instantiation. The query counts
the occurrences of the integer 10 in the window. In the exam-
ple, the PLQ function has a non-incremental signature while
the WLQ function has an incremental definition.

D. KEYED FARM
The Key_Farm pattern expresses inter-key parallelism.
To scale with the number of replicas, the pattern needs a
keyed streamwith a large number of distinct values of the key
attribute. Figure 8 shows the pattern instantiated with count-
based windows having w = 4 and s = 1. In this example,
the input stream conveys items belonging to three logical
substreams assigned to three internal instances.

1) IMPLEMENTATION
The Key_Farm class extends ff_Farm. Each instance of
the inner pattern works with exactly the same windowing

FIGURE 8. Key_Farm pattern with count-based windows, w = 4 and
s = 1, and three substreams assigned to three Win_Seq internal
instances.

specification of the original query (in the example using
w = 4 and s = 1). The distribution and collector nodes
instantiate the KF_Emitter and KF_Collector classes.
The first uses a hash function to map the key values onto
the internal patterns. Since windows of the same substream
are processed by the same internal instance, they are pro-
duced in increasing order. Therefore, the collection task is
straightforward.

2) HIGH-LEVEL API
The API provides a builder class KeyFarm_Builder
to instantiate this pattern analogously as we did for the
Win_Farm pattern in Section IV-B. The builder provides the
same methods to specify the pattern name, the window type,
length and slide, and the replication degree.

E. WINDOWED MAP-REDUCE
The last pattern Win_MapReduce expresses intra-window
parallelism. The idea is to split each window in partitions
(subsets of items), compute partial results one per partition in
themap phase, and use them to assemblewindow-wise results
in the reduce stage.

Although the idea is similar to the one behind the
Pane_Farm pattern, this pattern uses a different and more
general notion of partition. A pane consists of items with
consecutive identifiers/timestamps and within a range of
a fixed size independent of the replication degree. In the
Win_MapReduce pattern instead, items are assigned to the
partitions in a circular manner. Figure 9 shows an exam-
ple with count-based windows with w = 6 and s = 2,
where each window is split into two partitions (in general,
the number of partitions is equal to the replication degree
of the map). In the example, the Win_MapReduce pattern
assigns three items to each partition, while the Pane_Farm
pattern would be forced to use panes of two items long.
In this way, the Win_MapReduce enables intra-window
parallelism also for queries using small sliding factors or even
when windows are tumbling or hopping, where the paned
approach does not have sense. However, consecutive win-
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FIGURE 9. Win_MapReduce pattern: example with count-based windows
with w = 6 and s = 2 items.

dows are always computed from scratch although this hap-
pens in parallel.

1) IMPLEMENTATION
The pattern is implemented as a pipeline of a Key_Farm
instance followed by a Win_Farm instance (or a Win_Seq
if the reduce phase is sequential). The RTS uses the
Key_Farm pattern to implement the map phase by passing
a proper routing function to its constructor. While in the
standard case the pattern expects a hash function that uniquely
maps key attributes onto the internal replicas, the RTS builds
this Key_Farm instance by passing a function that dis-
tributes the items in a circular manner regardless their key
attribute. Although in general this is not the correct use of the
Key_Farm pattern, this implements the map behavior: each
window materializes in all the internal replicas, each actually
receiving a subset of the expected items.

In Figure 9, we assume to have two Win_Seq instances
in the Key_Farm: items 0, 2, 4 are distributed to the first
Win_Seq instance while 1, 3, 5 are directed to the second
one. The triggering semantics is based on the comparison
between the items’ identifier (or timestamp) and the ending
boundary of the windows. In this example, as soon as the
Win_Seq instances receive the first item with identifier
greater than 5, the corresponding partition of the first window
is closed and its partial result produced to the reduce stage.
This happens at the arrival of item 6 in the first Win_Seq
instance, while the second one considers its partition of the
first window complete after the arrival of item 7.

The second phase applies the reduce function to the results
of the partitions produced by the map stage. Each window
has a fixed number of partitions and the reduce phase can
be modeled as a tumbling-window computation with w =
s = n, where n > 0 is the replication degree used in the map
stage. If the reduce phase is lightweight, it can be executed by
a Win_Seq instance as depicted in Figure 9(a). Otherwise,
it can be parallelized by a Win_Farm as in Figure 9(b).

2) HIGH-LEVEL API
The builder of this pattern (WinMapReduce_Builder)
has the same identical usage of the Pane_Farm’s one. Also

FIGURE 10. Example of a complex nested structure: a Pane_Farm
instance is replicated two times inside a Win_Farm pattern.

in this case, the map and reduce functions can be provided
using either the non-incremental/incremental signatures.

V. NESTING OF PATTERNS AND TRANSFORMATIONS
In this section we study two important features of the library:
i) the possibility to build complex nested structures of patterns
following the idea sketched in Listing 3; ii) the library pro-
vides different transformations that reshape the pattern imple-
mentation by merging/replicating specific functionalities to
improve performance or increase efficiency.

A. COMPLEX NESTING OF PATTERNS
In their default usage, the Win_Farm and Key_Farm pat-
terns have internal instances that replicate the Win_Seq pat-
tern. A powerful feature is to allow the replication of parallel
patterns, notably the Pane_Farm and Win_MapReduce.
Figure 10 shows an example of such an idea. The
Pane_Farm pattern is instantiated using a replication degree
of 2 and 3 in the PLQ andWLQ stages respectively, while the
whole Pane_Farm instance is replicated two times within a
topmost Win_Farm pattern.

Table 3 summarizes for each admissible complex nested
structure why it could be effective from the performance
viewpoint. In particular:

• increase the pane length: when the Pane_Farm can
be applied, it represents an effective choice because it
avoids recomputing each window from scratch. How-
ever, if the panes are too small such advantage is
sharply reduced. In the Win_Farm pattern, each inter-
nal instance uses a private sliding factor n−times greater
than the original one (as in Figure 6), with n > 0 the
replication degree. Therefore, the nesting of Win_Farm
with a Pane_Farm can be used to take advantage of
using larger panes;

• alleviate the emitter overhead: the emitter of the
Win_Farm may multicast each item to a large set of
destinations. Although only a memory pointer is for-
warded in FastFlow, such distribution overhead may be
significant with many replicas. By replicating a parallel
pattern within the Win_Farm instance, we reduce its
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TABLE 3. Reasons for using complex nested structures.

LISTING 7. Example of instantiation of the complex nested structure
shown in Figure 10.

replication degree and thus the communication overhead
spent by its emitter functionality;

• shortage of distinct keys: when the stream conveys
items with a key attribute assuming few distinct values,
the parallelism exploitable by the Key_Farm pattern is
limited as well as its scalability. This can be mitigated
by using parallel patterns expressing inter-/intra-window
parallelism within the Key_Farm.

Such nested structures are developed in a bottom-up fash-
ion in the library. This is shown in Listing 7 where the
Win_Farm pattern is built by passing to the constructor
of its builder the instance of the pattern to be replicated
(a Pane_Farm instance in the example).

The definition of the WinFarm_Builder constructor is
overloaded. Instead of the query function to be used by the
Win_Seq instances, the pattern to be replicated is provided.
The library builds the streaming graph of Figure 10 where
each internal instance is configured to use the same window
length of the topmost pattern with a sliding factor that is
n-times the original one.

B. TRANSFORMATIONS
Complex structures like the one in Figure 10 should be mod-
ified before being executed. In particular, in the thread-based
parallelism model adopted by the FastFlow RTS the replica-
tion of patterns and their composition leads to the presence
of several distribution and collection entities implemented by
dedicated threads. When such functionalities along a pipeline
are underloaded, it may be useful to merge them to save

FIGURE 11. Example of transformation of the FastFlow graph previously
shown in Fig. 10.

communication overhead. This concept is an application of
the operator fusion or chaining technique [21].

The library provides an approach to restructure the graph
obtained by nesting patterns. The pattern construction is
enhanced with an additional parameter called transformation
level. We introduce three levels with different effects on
the whole structure. As an example, Figure 11 represents a
reshaped version of the structure in Figure 10, where the
Pane_Farm pattern is created with a transformation level
equal to LEVEL2, which has the following consequences:
• the PLQ stage consists of a set of identical FastFlow
nodes, each one obtained as a sequential composition
(see Sect. III) of the original Win_Seq instance of the
PLQ stage of Figure 10 combined with a copy of the
emitter of the WLQ stage. In this way, each instance is
in charge of receiving input items, computing the results
of the assigned panes which are directly transmitted to
the WLQ stage;

• the WLQ stage in turn has a set of identical FastFlow
nodes, each is a sequential composition of a collector
functionality of the PLQ and the original Win_Seq
instance of the WLQ stage in Figure 10. Each collector
buffers the received pane results by restoring their order.
Then, the Win_Seq instances in the WLQ are in charge
of aggregating pane results of the same windows to
produce window results.

By referring to FastFlow (Sect. III), the structure within each
each Pane_Farm is now a ff_a2a building block.
Once created with that transformation level, the

Pane_Farm object is used to build the outermost
Win_Farm instance. Again, the transformations are
applied in a bottom-up fashion by passing to the
WinFarm_Builder a new transformation level used by
the topmost pattern. In the example, we use a level equal
to LEVEL1 which corresponds to removing the collec-
tor nodes of the WLQ stages by doing the whole order-
ing in the last Win_Farm collector node. The code to
build the structure is shown in Listing 8, and uses the
withTransformation() method of the builder.
Figure 12 shows all the transformations available for build-

ing the Pane_Farm and the Win_MapReduce patterns.
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LISTING 8. Instantiation of the complex nested structure with
transformations (highlighted in the code).

FIGURE 12. Complete set of transformations supported for the
Pane_Farm and the Win_MapReduce patterns.

The rows are the transformation levels and the columns cor-
respond to specific configurations according to the replica-
tion degree used for the first stage (PLQ or MAP) and for
the second stage (WLQ or REDUCE). The notation seq
means sequential, while parmeans parallel. The term pipe
denotes the pipeline.

Figure 13 shows instead the effect of the transformation
levels on the topmost pattern (Win_Farm or Key_Farm).
Besides the first level discussed before, which removes addi-
tional collector nodes, the second transformation level has
effects when the first stage of the internal instances (i.e. the
PLQ or MAP stage) is parallel. In that case, the emitter func-
tionalities are combined into a single custom node performing
the hierarchical distribution.

We point out that such transformations are necessary to
deal with the choice of mapping one node onto a dedicated
thread. Although this solution is also common to the other
existing SPSs, the RTS could be developed with other paral-
lelismmodels in mind, preventing such issues but introducing
other aspects to take care of. This aspect will be recalled in
the last part of the paper.

VI. EXPERIMENTS
In this section, we propose a detailed experimental evaluation.
The goal is twofold: first to assess the effectiveness of the pat-
terned abstractions and of their complex composition/nesting

FIGURE 13. Transformations of the Win_Farm and Key_Farm patterns
when they replicate internal complex instances (i.e. Pane_Farm and
Win_MapReduce).

to increase performance; second to evaluate the efficiency
of our RTS based on FastFlow and targeting shared-memory
systems compared with existing JVM-based SPSs.

All the experiments have been developed using the Wind-
Flow library (version 1.2) and FastFlow (version 3.0) on an
Intel Phi Knights Landing (KNL) architecture equipped with
64 cores working at 1.3 GHz supporting four logical thread
contexts per core. The machine is configured with 96 GB of
DDR4 RAM and run Linux 3.10.0 × 86_64 shipped with
Centos 7.2. The compiler used is gcc version 7.3 with the
−O3 optimization flag.

A. DESIGN SPACE EXPLORATION
Among the possible compositions, there is in general a small
set of candidates that are suitable for the query parallelization.
This depends on the properties of the function (i.e. whether it
allows a decomposable computation) and on the windowing
parameters, in particular how long is the sliding factor and its
proportion with the window length. A Design Space Explo-
ration (DSE) procedure is shown in Figure 14. Conceptually,
it should be keep in mind by any programmer. It consists in a
set of alternative choices:

• does the stream convey items belonging to independent
groups (keys)? A positive answer justifies the use of the
Key_Farm pattern and of its compositions with other
patterns. The answer depends on the number of keys and
their frequency and distribution skewness;

• is the query decomposable? This depends on how the
window results are computed from the input data. While
Key_Farm andWin_Farm are totally generic patterns,
Pane_Farm and Win_MapReduce need that each
result can be computed by aggregating results of window
partitions, which is not always possible;

• is the windowing model a sliding one? The choice of the
Pane_Farm pattern, which avoids recomputing con-
secutive windows from scratch, is constrained by the use
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FIGURE 14. Design space exploration phase to use the parallel patterns
provided in the library.

of overlapping windows, whereas it does not have sense
for hopping and tumbling windows or it is ineffective
when the pane length is too small.

B. FIRST CASE STUDY: SPATIAL QUERY
In the first part of the evaluation, we use an application
belonging to the broad class of spatial queries. The input
stream is produced by an operator in charge of receiving
directly packets from a network device and doing frequency
feature extraction from their payload. Six different attributes
are produced, each one reporting the frequency of a specific
dictionary item in the payload useful for malware detection.
Such input tuples fed a windowed operator configured in
order to use temporal windows of one second with a slide
of 10 milliseconds.

The operator computes the skyline query [22]. Each input is
interpreted as a 6-dimensional point, and the query returns the
tuples that are not dominated by any other tuples in the same
window. We say that tuple t dominates tuple t ′ when it is no
worse than t ′ in the values of all the dimensions and better
in at least one dimension. We use the skyline computation
implemented with the BSkyTree algorithm [23], available
in the SkyBench library downloadable from GitHub.3

In our implementation, the call to the BSkyTree algo-
rithm has been encapsulated in a lambda function doing the
data-layout conversion needed to interface the SkyBench
implementation. Furthermore, we generate the timestamps
with a high input rate (of 300K tuples per second) in order to
be able to study the scalability without being limited by the
input pressure. The best results for this query are obtained
by mapping at most one thread per physical core without
using the additional hyper-threading contexts. For this reason,
the number of threads will not exceed 64.

1) PROTOTYPING A FIRST SOLUTION
In the application, input records are not grouped by any key
attribute. Therefore, we cannot apply the Key_Farm pattern
to increase throughput. The first solution is to perform the
SkyBench algorithm in parallel on different windows by

3Downloadable form https://github.com/sean-chester/SkyBench.

FIGURE 15. Throughput and scalability of the Win_Farm and of its
emulation in Apache Flink.

leveraging the Win_Farm pattern. We report in Figure 15
the results of a set of experiments where we tested various
replication degrees (we denote this version as WF(n), that is
the Win_Farm with n > 0 Win_Seq replicas). Since two
threads are used for generating the stream and for absorbing
window results, while two threads are used for the emitter and
collector nodes, the use of 60 replicas allows us to use all the
physical cores of the machine.

The WindFlow implementation is able to process about
650 tuples/sec with parallelism one, and the peak throughput
grows steadily by increasing the number of replicas reaching
about 33,000 tuples/sec with WF(60), see Figure 15(left).
The maximum scalability (i.e. ratio between the throughput
with n ≥ 1 replicas and the one with n = 1) is up to 52× and,
as shown in Figure 15(right), it is roughly ideal and slightly
deteriorates with more than 30 replicas.

We emulate the behavior of the Win_Farm pattern in
Apache Flink, a popular SPS which is generally considered
efficient also for single-machine execution [24]. The win-
dowed operator is configured with several replicas each one
using a sliding parameter that is n-times greater than the
original one. Furthermore, a flatmap operator is in charge
of performing the complex distribution shown in Algorithm 2
by delivering each tuple to all the replicas of the windowed
operator assigned to windows containing that specific tuple.
To be sure that copies of the same tuple are delivered to
the right replicas, we fill a special tag attribute of the
tuple which is used to emulate the distribution with a key-
based scheduling. Furthermore, the replicas of the flatmap
operator are chained with the ones of the windowed operator
(i.e. they are executed by the same threads).

The performance of the Apache Flink emulation with one
replica is one order of magnitude lower than WindFlow.
Furthermore, the maximum scalability is 30× with 45 repli-
cas and stops increasing with higher parallelism because the
flatmap operator, though parallel, becomes a bottleneck.

2) EXPLOITING WINDOWS OVERLAPPING
The transitivity property holds [22], that is if t1 dominates t2
and t2 dominates t3, then t1 dominates t3. This property can
be exploited to split the skyline computation into independent
computations of sub-skylines on window partitions, and a
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FIGURE 16. Throughput and scalability of the Pane_Farm and of its
emulation in Apache Flink.

final computation produces the window-wise skyline. This
allows the Pane_Farm pattern to be instantiated for the
query, with the PLQ stage in charge of computing the sub-
skylines of panes spanning 10 milliseconds of length.

The Pane_Farm pattern is executed with a sequential
PLQ stage (sufficient to process 10-ms panes without being
a bottleneck) and a parallel WLQ stage. The Pane_Farm is
used with the transformation level LEVEL1, thus merging the
Win_Seq instance in the PLQ stage with the emitter node of
the WLQ. We refer to this solution as PF(1,m).
This solution reduces the number of comparisons. The

PLQ stage processes 10-ms panes that contain approximately
3000 tuples each. Among those inputs, only 4% on average
are included in the resulting sub-skyline, thus making the
PLQ an aggressive filter of dominated tuples. This alleviates
the computational burden in theWLQ stage, where 100 panes
per window are processed by comparing only a small frac-
tion of the original tuples. As shown in Figure 16(left),
the throughput of PF(1,60) is up to 5 times greater than
the one achieved by WF(60), see Figure 15(left). Also the
scalability in Figure 16(right) is always close to the ideal.

The emulation inApache Flink uses the previous emulation
of the Win_Farm pattern for each stage. Due to the overhead
of the JVM compared with running a native code, we need
five replicas in the PLQ stage to prevent it from being a bot-
tleneck. Figure 16(left) reports the throughput measured by
varying the parallelism in theWLQ stage and Figure 16(right)
the scalability. Although the performance is superior to the
one achieved by the Win_Farm emulation, the scalability
is limited by 20× due to the distribution overhead. Also in
this case, our C++ implementation outperforms the Apache
Flink one both in terms of absolute performance and in
scalability.

3) LEVERAGING NESTED SOLUTIONS
To further increase throughput, the user could try to nest
Pane_Farm instances within an outermost Win_Farm pat-
tern. This idea cannot be easily implemented in Apache Flink.
Therefore, we report the results for our library only.

The nesting changes the pane length. As an example,
with two replicas the pane length becomes 20 ms instead
of 10 ms. Figure 17(left) shows what happens by increas-
ing the pane length in terms of the number of tuples

FIGURE 17. Average size of the sub-skyline with different pane
lengths (left), and peak throughput of WF(PF(1,1),n) compared
with PF(1,n) (right).

selected in the sub-skylines of the panes. Although the
sub-skyline cardinality increases, this happens quite slowly
(e.g., 20-ms panes have sub-skylines only 25% larger than
the ones of 10-ms panes). This reduces the comparisons done
in the WLQ stage where there are fewer panes per window.

To use larger panes, we have to increase the outer-
most replication degree as much as possible. We replicate
a PF(1,1) instance where both the PLQ and the WLQ
stages are sequential. Furthermore, to minimize the num-
ber of threads, we enable transformation level LEVEL1
that combines the two stages sequentially by a single Fast-
Flow node (see Figure 12). This solution is referred as
WF(PF(1,1),n), where PF(1,1) is replicated n > 0
times within the Win_Farm. Although the structure is sim-
ilar to the one of WF(n), the internal sequential instances
reuse results of previously calculated panes to produce win-
dow results, so they provide a more efficient window process-
ing. This is reflected with a higher peak throughput sustained
by this solution with a number of replicas less than 30,
then the throughput drops quickly with more parallelism,
see Figure 17(right). The reason is that the emitter of the
Win_Farm pattern starts to be a bottleneck. Indeed, accord-
ing to the (w, s) query parameters, each tuple belongs to about
100 consecutive windows thus forcing the emitter to do a
large broadcast of each tuple each time. We observe that this
problem was hidden in the WF(n) and PF(1,m) versions.
In the first case, because the inner replicas were slower and
this problem did not arise up. In the second case, because the
PLQ stage greatly reduced the number of tuples reaching the
WLQ stage, making the input pressure to the emitter of the
WLQ stage substantially lower.

To balance the advantage of using larger panes with the
distribution overhead, we study the use of other complex
nested solutions. If the Pane_Farm replicas within the
Win_Farm are made more parallel, we would need a smaller
number of replicas by reducing the distribution overhead
in the emitter, although panes are now smaller. Figure 18
summarizes the peak throughput obtained by some of such
nested configurations. We chose the replication degrees in
order to use as many cores as possible of the machine, except
for WF(PF(1,1),n) in which we consider the replica-
tion degree of the Win_Farm achieving the best throughput
in Figure 17(right) (that is around 25 replicas).
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FIGURE 18. Peak throughput achieved by different nested structures of
Win_Farm and Pane_Farm patterns.

We report above each bar the number of cores used by
each configuration. Usingmore threads than cores (i.e. hyper-
threading) is detrimental in this application. The internal
Pane_Farm replicas are configured with transformation
level LEVEL2, while the outermost Win_Farm has only one
collector node (merging emitter nodes impairs performance
for this application). As we can see in the Figure 18, some
nested structures are not able to use all the cores of the
machine although they reach a similar peak throughput than
the Pane_Farm on all the cores. Instead, the configurations
WF(PF(2,3),10) and WF(PF(2,4),8) are particularly
effective; they use almost all the cores and the peak through-
put is about 35% greater than using the Pane_Farm alone,
which gives a practical justification of the effectiveness of the
complex nested structures allowed by the library. We observe
that without and automatic tuning support it might be difficult
by the user to find a nested configuration exploiting all the
cores (if it exists). In this sense, we will study in our future
research how to exploit the potential of task-based parallelism
in the RTS, since the decoupling between tasks and threads
can help to solve this issue.

C. SECOND CASE STUDY: YSB
We study the achieved performance on the popular Yahoo!
Streaming Benchmark [25] (briefly, YSB). The original
benchmark emulates a simple advertisement application,
where tuples are consumed from Kafka (a publish-subscribe
system) and results are committed into Redis (a key-value
store). To avoid external services becoming a bottleneck lim-
iting the overall performance, we have used the implemen-
tation adopted in prior work [4], [11] where the interactions
with Kafka and Redis have been removed and data gener-
ation and processing is performed locally.

The application structure is depicted in Figure 19. The filter
applies a predicate to drop all the tuples with type not equal to
‘‘view’’, while the flatmap joins each received tuple with the
value of the corresponding entry in an in-memory hash table
populated before starting the processing. For the WindFlow
version, we implemented the operators using raw FastFlow
nodes, while the sliding-window aggregate is implemented
by instantiating the Key_Farm pattern with the incremental

FIGURE 19. Yahoo! streaming benchmark.

interface. The aggregate is a count applied on tumbling win-
dows of 10 seconds. To build windows, tuple are grouped by
the identifier (key) of the advertisement campaign (100 dis-
tinct keys are present in the original code).

Figure 21 shows a comparison where the peak throughput
obtained by WindFlow is compared with the one achieved
using Apache Flink and Apache Storm. The experiments
were run on the Intel KNL. Since hyperthreading provides
some performance benefits in this application, we consider
the maximum number of threads equal to the number of
hyper-threading contexts (256).

Our library provides higher throughput, more than 3×
higher thanApache Flink, while Apache Storm is not efficient
on single servers as already proved in prior works [24]. The
higher performance obtained by WindFlow derives from the
RTS of our library. Our implementation is more lightweight,
since it avoids data serialization into single machines and
makes use of efficient lock-free queues for data forwarding
(see Section III).

We have also collected the latency measurements obtained
by running our patterns against Apache Flink and Apache
Storm. The latency of a result is the elapsed time from
when the last tuple of a window has been generated by the
source, to when the aggregate of the corresponding window is
received by the sink. Since the source generates at full speed,
the latency is also affected by the enqueueing of tuples in the
intermediate operators and in the backpressure mechanism
adopted by the SPS. The results are shown in Figure 20.
The latency with WindFlow is of few milliseconds while it is
hundreds of milliseconds or event thousands of milliseconds
in Apache Flink and Apache Storm. The variability of the
latency increases with more parallelism in the RTS.

As an additional experiment, we modified the YSB in
order to generate events all belonging to the same campaign.
In this single-keyed scenario, Apache Flink and Apache
Storm are both unable to natively support parallelism for
the window aggregate operator, since replicas work in par-
allel only on distinct key groups. With our library the pro-
grammer can use other patterns to circumvent the prob-
lem. The Win_Farm and Pane_Farm patterns are inef-
fective because the benchmark utilizes non-overlapping win-
dows. So, following the design space exploration in Fig. 14,
we selected the Win_MapReduce pattern as the best fit-
ting solution for the problem, still able to compute the
window aggregates in parallel. The results are summarized
in Figure 22. In the two JVM-based SPSs and in WindFlow
with the Key_Farm pattern, the throughput stops increasing
with low parallelism because the aggregate operator becomes
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FIGURE 20. Measured latencies (YSB): We report in each bar the maximum and minimum measures, the 75-th, 50-th and 25-th percentile. We point
out the different timescales on the y-axis.

FIGURE 21. Throughput (YSB with 100 keys).

FIGURE 22. Throughput comparison (YSB one key).

a bottleneck. Our solution that replaces the Key_Farm pat-
tern with a Win_MapReduce instance in our library allows
the throughput to steadily increase with higher parallelism,
reaching values (about 30M tuples/sec) close to the ones
measured in Figure 21.

1) EXPERIENCE WITH OTHER RTS MODELS
In this part, we propose an experiment to assess the suitability
of other models (see Section II-D) to implement the RTS.
We have implemented the YSB in Intel TBB (version 2019,
update 6) with the FlowGraph interface. The sliding-window
logic has been emulated for the specific purpose of the
YSB. The source node (in a parametric number of replicas)
has been implemented with the source_node class while
for the other operators we used the function_node and

FIGURE 23. Throughput comparison between the FastFlow and the Intel
TBB implementation of YSB.

multifunction_node classes. For some nodes (i.e. filter
and flatmap) we chose an unlimited concurrency limit
(i.e. number of tasks spawnable per node), while for the
aggregate we used one node for each existing key (100).

Figure 23 reports the throughput with the Intel TBB
implementation (TBB(FG) no-batch) against our origi-
nal implementation (WindFlow no-batch). We vary the
number of threads (for Intel TBB this is the size of the thread
pool). Furthermore, we enabled the use of the Intel TBB allo-
cator by properly setting the LD_PRELOAD environmental
variable. As we can observe, the throughput of the Intel TBB
version is very low (up to 3M tuples/second). The reason
is that all the nodes in the YSB are very fine-grained (less
than one microsecond) and the overhead of task scheduling
prevents to achieve good performance (this is also obtained
by enabling the lightweight policy to avoid spawning a
new task for each message).

Two options can be followed to increase the task grain. The
first is to merge different nodes, which is not an effective
alternative for the YSB since there are few operators, and
all of them are very fine-grained. The second is to lever-
age the micro-batching technique: i.e. each task, instead of
processing one input at a time, executes the processing on
b > 0 successive inputs and forwards the corresponding
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FIGURE 24. Latency comparison between the FastFlow and the Intel TBB
implementation of YSB.

outputs to the next node as a single message. By tuning
the parameter b, we can increase the grain size. As shown
in Figure 23, a small batch of few hundreds of inputs is
sufficient to achieve ideal scalability by the TBB(FG) imple-
mentation and higher throughput measurements (more than
40M tuples/sec). Of course, even if the batch size is small,
it has some negative implications on the latency, which
increases with greater values of b because each input can-
not be immediately processed upon its generation (we must
wait the filling of the batch). Figure 24 shows the latency
between TBB(FG) b=100 and WindFlow no-batch
with 64 threads, two configurations having similar through-
put (however, the TBB(FG) latency is higher for all tested
values of b). Because of the batching, the latency is one
order of magnitude higher than the one with WindFlow
no-batch, and this suggests that the task-grain size should
be adjusted dynamically to provide a good tradeoff between
throughput and latency so to maintain the latter as small
as possible. This can be a promising direction to follow to
incorporate a task-based RTS as an alternative backend, and
to enable a comprehensive study of its potential in terms of
load balancing that we will target in our future research.

Finally, we remark that themicro-batching technique could
also be applied in the FastFlow implementation to further
increase its throughput even if at the price of higher latency.
Since, this feature is not yet transparently offered to theWind-
Flow user (the user should implement the micro batching
within the business logic of the nodes), we decided not to
study this case leaving this analysis as future research.

VII. RELATED WORK
SPSs traditionally target distributed systems of multicore-
based nodes. Recently, this vision has been criticized because
existing SPSs do not efficiently exploit modern scale-up
servers equipped with tens of cores and terabytes of memory.
The limits of existing systems have been clearly highlighted
in [24], where the behavior of SPSs has been precisely
analyzed in terms of cache misses, NUMA effects, and the
intrinsic overhead of the JVM and of its Garbage Collector.

In [11] the authors have investigated how SPSs can be
configured in order to exploit at best the features of modern
machines. They have derived a similar conclusion that SPSs
are not capable of fully exploiting the current affordable hard-

ware and high-speed networks. One of the reasons is in the
not efficient data forwarding mechanism implemented by the
JVM-based SPSs, which are based on concurrent queues with
conventional conditional variables that are far from being
efficient in case of a high stream pressure.

SPSs optimized for scale-up scenarios have been proposed
in the recent years. Saber [3] is based on a hybrid execution
model supporting CPU+GPU. Streambox [4] is written in
C++ and have a peculiar utilization of the memory based on
NUMA regions. Both the solutions are still prototypes and
have a yet incomplete interface providing support to a set of
built-in operators (e.g., the ones from traditional streaming
algebra) and not supporting a completely general business
logic code like in Apache Flink and Apache Storm.

Orthogonal to the aforementioned issues, no serious
advancement in programming abstractions has been devel-
oped in the last years for SPSs. For stateful operators the only
native solution is to rely on a partitionable state and a hash
distribution of input items to replicas working on different
key groups. Attempts to produce more powerful abstractions,
ready-to-use by the programmer, have been made in few past
works. In [26] a DSL for streaming applications has been
developed using the C++11 attributes to annotate the code
by introducing parallel patterns (pipelines and functional
replication). GrPPi [27] is a high-level C++11 interface for
writing parallel programs featuring a pattern-based approach
similar to the one proposed in this paper. However, the pat-
terns are general and not tailored for the specific needs of
streaming analytics. PiCo [28] is aimed at providing batch
and stream processing with a unified C++ interface. It also
embraces the pattern-based methodology, although patterns
do not support complex nested structures.

Further attempts to provide parallel processing support
have been made in topics closely related to DSP. A relevant
example is the work done in the Complex Event Processing
field (CEP), where input streams must be efficiently pro-
cessed to detect complex events in real time. As stated in [29],
CEP systems require parallel methods that are essentially
different than the ones proposed in the DSP domain. For
this reason, the authors of [29] propose a parallel processing
approach that splits the input stream into substreams that can
be processed in parallel (as in the Key_Farm pattern in the
present paper). However, such splitting is not simply based
on the existence of a key attribute, but it is based on advanced
heuristics able to balance the workload by still providing
accurate detection of complex events in parallel. Extending
the idea of our composable and nestable patterns to the CEP
domain, starting from this existing experience, is a further
promising direction to follow.

VIII. CONCLUSION AND FUTURE WORK
Parallelism abstractions provided as parallel patterns are exe-
cutable components that the user can instantiate with the
business logic code and that have a clear parallel semantics.
This paper tried to bring this idea into the DSP domain.
Parallel patterns for sliding-window streaming analytics have
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been provided through a C++ fluent interface, and can be
built in a modular way to express nested structures modeling
a complex parallelism exploitation pattern. Our approach
has been prototyped with the WindFlow library based on
FastFlow and its thread-based parallelism model, showing
significant performance improvements compared with the
emulation of the patterns in existing JVM-based SPSs.

The last part of the paper provided a preliminary study
which is influential for our future research. The implemen-
tation of the YSB in Intel TBB showed that the task-based
parallelism, popular in the High-Performance Computing
community, can be profitably used to obtain good perfor-
mance in streaming analytics applications. However, this
requires careful and possibly dynamic use of micro-batching
techniques to reach the required task granularity to scale well
on shared-memory machines without blowing up the latency.
Investigating this issue, and how to make WindFlow a multi
backend library, is a priority in our future work.
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