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Abstract Parallel programming has been a challenging task for application pro-
grammers. Stream processing is an application domain present in several scientific,
enterprise, and financial areas that lack suitable abstractions to exploit parallelism.
Our goal is to assess the feasibility of state-of-the-art frameworks/libraries (Pthreads,
TBB, and FastFlow) and the SPar domain-specific language for real-world stream-
ing applications (Dedup, Ferret, and Bzip2) targeting multi-core architectures. SPar
was specially designed to provide high-level and productive stream parallelism
abstractions, supporting programmers with standard C++-11 annotations. For the
experiments, we implemented three streaming applications. We discussed SPar’s pro-
grammability advantages compared to the frameworks in terms of productivity and
structured parallel programming. The results demonstrate that SPar improves produc-
tivity and provides the necessary features to achieve similar performances compared
to the state-of-the-art.

Keywords High-level parallelism - Parallel programming - Stream processing -
Parallel patterns - Pipeline parallelism - Streaming applications

1 Introduction

Parallel programming has been intensively studied to provide higher-level abstractions
for both application and system programmers. The separation of these two concerns is
important since both scenarios have different requirements and perspectives. Usually
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the system programmer intends to extract the best performance from the parallel archi-
tecture, and he is therefore concerned with architecture-dependent code optimization
and flexibility. The application programmer is more focused on developing the appli-
cation and may take advantage of the parallelism provided by the target architecture.
Moreover, he is not expert in system level programming or parallelism strategies.

Parallel design patterns and algorithmic skeletons were proposed to help application
programmers in the difficult task of parallel programming [5,15,16]. Although new
tools have emerged over the years based on these approaches, there is still alack of more
suitable and friendly alternatives for the application programmer. In this context, the
design pattern methodology does not separate the concerns discussed above, requiring
application programmers to learn with manuals designed for system programmers. In
contrast, the algorithmic skeleton frameworks/libraries abstract several system details,
supporting the programmer with flexible and efficient solutions and high-level skeleton
abstractions (see for instance FastFlow [2], GrPPI [7], and TBB [19]). However, they
lack coding productivity, because the application programmer must restructure the
business logic code of these programs and be aware of several details related to the
library’s constraints.

An alternative is to provide specialized parallel programming interfaces for a spe-
cific application domain [9,22,23]. This approach aims to increase productivity as
well as provide higher-level abstractions, more friendly interface, and simpler envi-
ronments [9]. The state-of-the-art example is Streamit [23], which is a programming
language designed to express parallel data stream processing applications. It has a
unique language that is independent of the target architecture (cluster and multi-core).
The compiler can automatically transform to C or Java code based on the needs of
distinct hardware devices [21,24]. Streamlt is not considered a robust language [23],
but it is much more productive for exposing parallelism and communication than tra-
ditional C/C++ libraries. However, when dealing with legacy code written in robust
and general purpose programming languages like C/C++ and Java, the programmer
must rewrite the code into Streamlt language.

Recently, a new way to exploit stream parallelism was proposed through SPar [11],
which is an internal C++ Domain-Specific Language (DSL). It was designed to support
application programmers with friendly code annotations, which are expressed with the
standard C++-11 attributes [12]. The SPar’s compiler interprets the annotations and
performs a source-to-source transformation, producing a C++ parallel code by using
the FastFlow library. Although this idea was designed for C++, annotation mechanisms
are also present in other robust languages like Java, which makes this approach feasible
for other languages. Though it is hard to compare StreamIt and SPar’s productivity due
to their distinct design goals, they provide similar benefits. Whereas SPar preserves
the sequential C++ code structure, Streamlt provides a simpler syntax than the C/C++
language.

In this paper, the goal is to assess the programmability and performance of the SPar
DSL for robust streaming applications such as Dedup, Ferret, and Bzip2. Moreover, we
will compare it with state-of-the-art implementations to highlight the main differences
and provide new insights and analysis. Consequently, we are making the following
contributions:
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— We implement support for high-level stream parallelism in Dedup, Ferret, and
Bzip2 applications using the SPar DSL.

— We provide a comparative analysis of performance and programmability among
SPar, Pthreads, TBB, and FastFlow for Dedup, Ferret, and Bzip2 applications.

— We discuss the seamlessness of refactoring structured parallel code in these three
applications when using SPar.

This paper is organized as follows. Section 2 discusses, compares, and contrasts
this work with related works. In Sect. 3, we present the basis of the SPar DSL features.
Next, in Sect. 4 we demonstrate how these three applications were implemented with
SPar, highlighting the structured parallel programming aspects related to the high-
level stream parallelism abstractions. Section 5 provides useful insights regarding the
programmability and performance of SPar compared to other frameworks. Finally,
Sect. 6 concludes our work and presents future research.

2 Related Work

In the literature, different state-of-the-art implementations of Dedup, Ferret, and Bzip2
have been implemented and tested. The majority have concentrated on evaluating a
single parallel programming frameworks (e.g., TBB and FastFlow). The novelty of
our work is that it adds the implementation of the SPar DSL programming model and
provides a performance and programmability analysis that extends the discussions of
previous studies towards a structured parallel programming approach.

Dedup and Ferret applications have been mainly analyzed and studied by Navarro
etal. [17] and Reed et al. [18]. Initially, Navarro et al. [17] created an analytical model
for pipeline parallelism based on queuing theory in order to characterize performance
and efficiency. As a use case, they applied their model for Dedup and Ferret, using
Pthreads and TBB. In their experiments, they found load imbalance and I/O bottle-
necks, which were solved by collapsing stages and implementing dynamic scheduling.
Later, Reed et al. [18] provided an implementation of pipeline parallelism using dif-
ferent TBB constructs, demonstrating what successes and failures. They especially
targeted Dedup, Ferret, and x264 PARSEC applications. They concluded that it is not
possible to parallelize x264 with the default TBB constructions. Also, the TBB ver-
sion of Dedup achieved better performance than Pthreads, and for Ferret the results
were similar to Pthreads. In contrast to these works ([17] and [18]), we approach high-
level stream parallelism using SPar, analyze and compare programmability, structured
parallel programming aspects, and performance.

The study of Chasapis et al. [4] evaluated and applied task-based strategies on
10 PARSEC applications by using the OmpSs programming model. They compared
their implementation concerning performance and programmability (lines of code) to
the original POSIX threads implementation. Instead, we are concentrating only on
streaming applications such as Dedup and Ferret from PARSEC, we added Bzip2 in
our analysis and compared our approach (SPar) with others beyond the original POSIX
threads version. We also considered the Cyclomatic Complexity Number (CCN) and
structured code refactoring.
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In [14], an extension for the Cilk programming model was proposed, named Cilk-
P. They designed it to express on-the-fly pipeline parallelism through pre-processing
compiler directives. The central point of the investigations was an efficient scheduling
algorithm integrated into a work-stealing scheduler runtime. The experiments were
carried out on Dedup, Ferret, and x264 PARSEC benchmarks, compared to Pthreads
and TBB versions. In contrast, our research focuses more on the programmability
aspects and high-level parallelism abstractions than efficient runtime design. Also, our
performance analysis included the Bzip2 application and FastFlow implementation.

Recently, the research of Danelutto et al. [6] has presented a different perspective.
The goal was to introduce the idea of pre-built parallel patterns that can be easily
instantiated by the programmer. Therefore, they proposed P2 ARSEC, a benchmark
suite for parallel pattern-based frameworks consisting of five PARSEC applications
parallelized with the FastFlow library. Their work also analyzed performance and
programmability with respect to the original POSIX thread version of PARSEC. On
the other hand, we have focused on high-level stream parallelism aspects of Dedup
and Ferret, and compared their implementation to our version, which in turn is more
productive and has a better CCN. Moreover, we considered the Bzip2 implemented in
[1] in our analysis, using FastFlow in order to compare it with SPar, TBB, and Pthread
versions.

3 SPar: a DSL for High-Level and Productive Stream Parallelism

SParis an internal DSL embedded in the C++ language, capable of modeling high-level
parallelism for streaming applications [9-11]. It was implemented with the standard
C++ attribute annotation mechanism [12]. The programmer only needs to introduce
annotations in the sequential source code rather than having to actually rewrite it to
exploit the parallelism available on multi-core systems. The following sections will
describe the SPar language, skeletal library, and runtime.

3.1 SPar Language

When using SPar, the programmer will find user-friendly abstractions that are closer
to the streaming application domain’s vocabulary. All properties are represented by
language attributes in the annotated regions. An annotation is expressed by using
double brackets [ [1d-attr, aux-attr, ..]1]1, where a list of attributes can
be specified if necessary. When at least the first attribute of the annotation is specified
in the attributes’ list, it is considered a SPar annotation. We named the first attribute
identifier (ID) and the others auxiliary (AUX). The full description of SPar’s available
attributes can be found in [9]. In summary, ToStream and Stage are classified as
IDs whereas Input, Output, and Replicate are AUXs.

In Listing 1, we can appreciate SPar’s usability with the Prime Numbers algorithm.
Semantically, each ToStream must have at least one Stage annotation. In SPar, the
code between ToStream and the first Stage becomes a stream management stage,
where the programmer needs to explicitly manage the full stream, including the end
of the stream. We can easily achieve this by introducing a stop condition that breaks
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the loop. In the case of Listing 1, the end of stream is dictated by the annotated loop
in line 3. Also, this is the only piece of code inside a ToStream region that can be
left out of the Stage scope limits. Both the ID attributes can use the loop body to
define their scope as we performed the annotation in line 5. Another restriction is that
the Replicate can only be used with Stage.

I| int prime_numbers(int n){

2 int total=0;

3 [[spar::ToStream, spar::Input(n)]] for(int i=2; i<=n; i++){

4 int prime=1;

5 [[spar::Stage, spar::Input(i,prime), spar::Output(prime), spar::Replicate(workers)]] for (int j
=2; j<i; j+H)f

6 if (i%j==0){ prime=0; break; }

7 }

8 [[spar::Stage,spar::Input(prime) ,spar::Output(total)]]
9 { total=total+prime; }

ol )

11 return total;
12| }

Listing 1 Prime numbers algorithm annotated with SPar

The SPar compiler is designed to recognize our language and generate parallel
code. It was developed by using the CINCLE (A Compiler Infrastructure for New
C/C++ Language Extensions) support tools [9]. The compiler parses the code (which
is specified by a compiler flag named spar_file) and builds an AST (Abstract
Syntax Tree) to abstractly represent the C++ source code. Subsequently, all code
transformations are made directly in the AST, where calls are generated to the FastFlow
library. Once all SPar annotations are properly transformed, another C++ code is
generated, which is compiled by invoking the GCC compiler to produce a binary
output. The next section presents further details on the functioning of the runtime
parallelism.

3.2 SPar Runtime Parallelism

As aforementioned, SPar takes advantage of FastFlow to generate parallel code sup-
port. SPar mainly uses the Farm and Pipeline interfaces and customizes them to meet
particular needs. Figure 1 is a high-level representation of a given annotated code (left
hand side) with the respective runtime parallelism behavior (right hand side). Note that
the annotated code is reading stream items infinitely, which are subsequently filtered
and then written to the standard output. On the right hand side of Fig. 1, the code
between ToStream and the first Stage annotation is a single process running this
portion of code.

In SPar, the Stage that has a Replicate attribute corresponds to spawning
many threads with the same code portion (see first stage Fig. 1). The underlying run-
time system will abstractly distribute stream items (specified through the Input and
Output attributes) to these spawned threads, which have a lock-free communication
queue connected to the previous stage. If there are incorrect or unspecified parameters,
SPar will report a compiler error. By default, the items are distributed in a round-robin
fashion and input/output ordering is not preserved. This distribution is non-blocking,
which means that the scheduler will be actively trying to put items in the queues (by
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[[spar::ToStream]]
while (true){

item=read_item();
[[spar::Stage, spar::Input(item), spar::Output(item), spar::Replicate(n)]]1{
item=filter(item);

}
[[spar::Stage, spar::Input(item)]]{

write_item(item); __O_ _____________________ e
! Threads i
} : O Stream item i
} !—>» Communication !

Fig. 1 High-level representation of the SPar runtime parallelism

default the queue size is 512). The last Stage is a single thread, which has a queue
connected to the previous stage. Observe that it is up to the programmer not to replicate
the stages corresponding to stateful operators. SPar is not able to guarantee sequential
code equivalence if the programmer makes a mistake or does something wrong. SPar
also supports other options through compiler flags that can be activated when desired
(individually or combined) as follows:

— spar_ondemand: generates an on-demand stream item scheduler by setting the
queue size to one. Therefore, a new item will only be inserted in the queue when
the next stage has removed the previous one.

— spar_ordered: makes the scheduler (on-demand or round-robin) preserve the
order of the stream items. FastFlow provides us a built-in function for this purpose
so that the SPar compiler can simply generate it.

— spar_blocking: switches the runtime to behave in passive mode (default is
active) blocking the scheduler when the communication queues are full. FastFlow
offers a pre-processing directive so that the SPar compiler may easily support this
feature.

4 Streaming Applications

In this section, we describe real-world streaming applications that commonly run
on multi-core systems. We detail our challenges to introduce SPar annotations and
demonstrate the ease and productivity of our DSL for programmers.

4.1 Dedup

Dedup is a PARSEC application designed to compress data streams based on the
deduplication method. It combines local and global compression to achieve high com-
pression ratios [3]. The original Pthreads implementation is based on the pipeline
parallel pattern, using five different stages and communicating through queues with
fixed sizes. Figure 2 (left hand side) illustrates the activity graph of the original Dedup
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Fig. 2 Activity graph of the Dedup implementation versions

implementation. The first and last stage are performing a single thread input and output
operations. The three middle stages have a thread pool, where the middle one uses
lock mechanisms to avoid access conflicts in concurrent hash table entries. Each stage
can be described as follows:

Fragment Here, the data stream is read and partitioned into coarse-grain chunks

so that the rest of the stage processes them individually.

— Fragment Refine This stage receives a coarse-grain chuck and further partitions
it into finer grain chunks. Consequently, it produces smaller chunks for the next
stages.

— Deduplicate This stage analyzes if there are duplicated chunks so that they can be
eliminated and only unique chunks are stored in the hash table.

— Compress This stage compresses the unique chunks.

— Reorder This stage writes the compressed chunks into a file and also reorders the

chunks as they are received to match the original file.

Two particularities distinguish this pipeline from a traditional one: the Fragment
Refine stage receives only one input and generates several outputs and the Compress
stage is bypassed if the chunk is duplicated. Also, because the output order must
be equivalent to the input and there is no determinism in the parallel processing, a
reordering algorithm for the stream items was implemented for the Pthread version
in the Reorder stage. This algorithm reconstructs the stream order according to two
different identifier (ID) numbers attached to the chunk data structure in the two frag-
mentation stages. A search tree is used as a reordering structure for the first (Fragment)
fragmentation level and a heap-based data structure for the second (Fragment Refine).
Chunks that are received in order are promptly written, while those that are out of order
are stored in the reordering structures so that they can be removed later and/or written
in the output file [3]. This additional code is not required by the sequential version,
which will never process a new chunk without having already written the previous
one. More importantly, SPar offers a compiler flag that automatically abstracts and
guarantees the stream order (spar_ordered).

For our SPar implementation, we started from the sequential code version. How-
ever, we used the same Pthreads lock mechanisms that were in the auxiliary function
of the Deduplication stage to prevent problems with concurrent access to the hash
table entries. The Fragment Refine stage is a Pthreads optimization. Although it was
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implemented with SPar initially, we have opted to not include it in the final version
primarily because the results of our experiments showed that it slightly degrades per-
formance. Therefore, the alternative version we present on the right hand side of Fig. 2
has coarser-grain chunks, which is partially derived by refactoring the code.

1| while(1){

2 //Load parts of the input data file in a large memory buffer

//Break if there is nothing left to read

4 [[spar::ToStream,spar : : Input(chunk, split_data)]] while(1){

5 //Fragment the big memory buffer into coarse—grain chunks

6 //Break the loop if we can’t split the chunk anymore

7 [[spar::Stage,spar:: Input(chunk) ,spar: : Output(chunk) ,spar:: Replicate(n)]]{

8 //Deduplicate and Compress

10 [[spar::Stage,spar: : Input(chunk) ] ]{
1 //Write the final result

12 }

13 }

14] }

Listing 2 High-level representation of Dedup implementation using SPar annotations.

Another advantage of the alternative version is that we achieved sequential code
equivalence [15], which means that SPar and sequential versions produced the exact
same results. In this case, the sequential and SPar versions of the program were more
effectively compressed files. For instance, for the PARSEC’s native input, SPar and
sequential versions achieved 664.3 MB output while Pthreads and FastFlow program
versions achieved 668.2 MB. This difference is related to the Fragment Refine stage
due to the granularity change in partitioning the chunks.

The activity graph of the alternative version in Fig. 2 was produced by the code
in Listing 2. As can be observed, SPar’s annotations compose a three stage pipeline.
The first being part of the Fragment stage, the second formed by a combination of
the the Deduplicate and Compress stages, and the last by the Reorder stage. We also
added the Replicate attribute that is similar to a thread pool in the original Pthread
version. From the SPar perspective, it means replicating this annotated code portion as
many times as necessary to increase the degree of parallelism. Then, the SPar runtime
will send different chunks to each one of the replicas created. In addition, the SPar
compiler recognizes the stream items by the declaration of the Input and Output
attributes.

Note that the SPar version preserved the original sequential code version and pro-
vided high-level parallelism abstractions. Highlighted benefits include thread pool
management targeted by only specifying the Replicate attribute, communication
between stages by simply indicating input and output dependencies, stream reordering
support through a compiler flag, and structured parallel programming with minimal
source code modifications.

We must highlight that it is simple to produce different kinds of parallelism exploita-
tion versions once the stream processing region and source code annotated with SPar is
identified. Obtaining another possible version from Listing 2 would separate Dedupli-
cate and Compress into two different stages. The initial step is to add one more Stage
annotation before line 10 so that these two operations will be performed in different
stages. Moreover, as SPar does not support specific stage communications, in this
case a control variable is required. It will be updated if the chunk is duplicated in the
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Deduplicate stage and sent to the Compress stage so that it checks for bypassing when
needed. Our experiments did not reveal the need for any performance improvements
for this version, and the complexity of the implementation was increased. Hence, we
used the original unified stage for our experiments in Sect. 5.

An underlying factor in our parallelism implementation is the full execution of one
pipeline each time the program loads parts of the input data file in a large memory
buffer (line 2). For PARSEC’s native input set this occurs six times. At first glance, this
unnecessary overhead might look like a severe performance degradation. Nevertheless,
as shown in Sect. 5, good performance could be maintained, primarily because there
are few iterations. Moreover, because as previous studies have already pointed out,
Dedup’s bottleneck is the last stage of writing the results in the output file [4,6,
14]. We measure that bigger input file sizes in the Dedup application may generate
overheads. Since programmers may benefit from SPar’s simplicity, they will need to
move the ToStream annotation before the loop (line 1), and perform some code
refactoring to deal with jumps, especially known as “go to”, which are not suitable for
structured parallel programming, as [6] also mentioned. Consequently, programmers
may face complexities regarding the original source code. However, the currently best
performance-aware version is presented in Listing 2.

4.2 Ferret

Ferret is a PARSEC application intended for a content similarity search in data such as
video, audio, and images [3]. This application, originally parallelized with Pthreads,
implements the pipeline parallel pattern using six stages. The first and last stages are
in charge of input and output. Therefore, they need to execute sequentially. The four
middle stages may perform each query in parallel as the activity graph in Fig. 3 (left
hand side) demonstrates. The stages are briefly described as follows:

— Load Responsible for reading the image that is going to be consumed by the
subsequent stages.

— Segmentation Divides the image into different objects.

— Extraction Computes a 14-dimensional array for each previously detected object.
It describes features such as color, shape, and area.

— Vectorization Tries to match a set of candidate images from the database of indexed
images.

— Rank Computes and ranks the images using the EDM (Earth Mover’s Distance)
metric for each element of the database.

— Ouput Writes the results of the previous stage.

The original implementation in the PARSEC benchmark using Pthreads has a ded-
icated thread pool for each middle stage. The communication uses queues, where the
finished stage pushes the result to the next stage. Lock mechanisms are used to avoid
race conditions when pushing to the queues. On the right hand side of Fig. 3, we pro-
vide an alternative version of this application, which is the coarser-grain computation.
The Ferret program structure allows programmers to exploit parallelism in different
ways. If the operation sequence is preserved, it is possible to combine the middle
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Original Version Alternative Version
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Seg ——> Extract —> Vect —> Rank

Fig. 3 Activity graph of the Ferret implementation versions

stages. Additionally, the output is not required to be written the same way as the input
order.

Before introducing parallelism with SPar in the Ferret source code, we must orga-
nize it in a structured way, remove unnecessary jumps, and merge some functions.
Our modification does not require the programmer to have previous knowledge or
experience with parallel programming, and the final program behavior is the same
and unaltered with respect to the original version. We simply make it easier and more
structured to introduce parallelism such as the authors of [4,6,14] have done in their
codes. Listing 3 represents the Ferret parallelism implementation using the SPar anno-
tations in a high-level codification. This code will behave similarly to the activity graph
presented on the left hand side of Fig. 3, which also represents the Pthread version.
When using SPar, we only needed to find the stream region in order to annotate it
with the ToStream attribute and identify the computing stages necessary for putting
the Stage annotation and its data dependencies through the Output and Input
attributes. Moreover, we added Replicate to the middle stage to increase the degree
of parallelism.
1| [[spar::ToStream]] while(1){

2 //Load stage code
[[spar::Stage,spar::Input(image) ,spar::Output(seg_image) ,spar:: Replicate(n)]]{

4 //Segmentation stage code

s}

6 [[spar::Stage,spar::Input(seg_image) ,spar::Output(extract_data) ,spar:: Replicate(n)]]{
//Extract stage code

s )

9 [[spar::Stage,spar::Input(extract_data) ,spar::Output(vect_data) ,spar::Replicate(n)]]{
10 //Vectorization stage code

11 }

12 [[spar::Stage,spar::Input(vect_data) ,spar::QOutput(rank_data) ,spar:: Replicate(n)]]{

13 //Rank stage code

14 }

15 [[spar::Stage,spar::Input(rank_data)]]{

16 //Output stage code

7)o}

18] }

Listing 3 High-level representation of Ferret implementation using SPar annotations.

Different pipeline compositions can be created by simply adjusting the existing
SPar annotations. For instance, to target the same activity graph of Ferret’s alternative
version illustrated on the right hand side of Fig. 3, all of the 4 middle stages need to be
merged into one large sequential stage. Based on the example in Listing 3, this can be
achieved by simply commenting in lines 5, 6,7,9, 11 and 12, and adding rank_data
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Fig. 4 Activity graph of the

Pbzip2 implementation versions Comp/
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in place of seg_image for the Output () annotation in line 3. We observed that
SPar can easily support different structured parallel code in this application, by simply
moving the SPar annotations to the source code. This is an important feature for
programmers because they are able to quickly reconfigure pipeline granularity. We
identified that other input queries may generate different workloads. Thus, SPar’s
flexibility along with its simplicity make it an excellent choice for programmers who
aim to achieve customized performance-aware solutions in future generation search
engines, which also include audio and video similarity searches.

4.3 Bzip2

The parallel version of Bzip2 [20] data compressor is called Pbzip2 [8]. This applica-
tion is widely used in Linux-based distributions. It can be viewed as two independent
structures, one for decompressing and other for compressing files. Figure 4 illustrates
a generic activity graph of the original Pthreads implementation, represented as a
simple pipeline with three stages inspired by the producer/consumer model. The first
stage (Read) is responsible for partitioning the input file into independent blocks (the
default block size is 900,000 bytes) that are further consumed by the parallel Com-
press/Decompress stage. The final stage (Write) writes to the results in the output
file.

1| [[spar::ToStream,spar::Input(bytes_left, file_data)]] while(bytes_left>0){

; {gll);:tlréla;:i;;)a;‘:‘tlinput(block_dala) ,spar : : Output(compressed_block) ,spar:: Replicate(n)]]{

4 //Compress/Decompress stage code

5|

6 [[spar::Stage,spar: : Input(compressed_block) ] ]{

// Writer stage code without stream reordering
s| )

9 }

Listing 4 High-level representation of Bzip2 implementation using SPar annotations.

Although this application has two structures, they apply the same parallelism strat-
egy and its output must preserve the input order. In the Pbzip2 implementation,' the
communication among the stages is performed by using global FIFO queues pro-
tected with lock mechanisms. For the middle stage, a thread pool is created so that
they consume data blocks to compress or decompress data. The last stage only has to
retrieve data blocks from the queue, reorder them, and write the results in the output

1 http://compression.ca/pbzip2/
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file. Pbzip2 implements this control with a reordering algorithm that restructures the
data blocks appended to the queue. It uses an auxiliary vector to store the blocks that
arrive out of order. The algorithm always checks whether the arriving blocks and those
in the vector should be written. Our implementation using SPar for the compression
mode was based on the original Pzip2 code. However, it was not possible to express
the parallelism directly in Bzip2’s sequential decompression code because the Read
and Decompress stages were processed using the same library function. The same
problem is reported by Gilchrist [8]. In our case, all of Pthreads’ queue management,
lock mechanisms, and stream reordering were removed since they are all handled by
SPar at runtime and completely abstracted from the application programmer.

Listing 4 depicts the high-level SPar annotation layouts. In general, parallelism
annotations in this application were limited to the activity graph in Fig. 4 because the
compression/decompression functions are externally implemented. Because this is a
legacy code application, we must treat the return operations inside the function that are
used for error exception handling. This is because SPar does not allow return routines
inside a stream parallelism region (ToStream/Stage) to prevent the program from
crashing during the execution.

In this application, we again observed that SPar guides programmers to structured
parallel programming, provides high-level and productive parallelism abstractions, and
abstracts all details related to load balancing strategies and synchronization mecha-
nisms such as mutex-based implementations. Consequently, application programmers
are able to concentrate on developing smart solutions, because SPar takes care of
generating parallel code through the annotations provided in the application code. To
measure SPar’s feasibility, we performed experiments to evaluate its programmability
(Sect. 5.1) and performance (Sect. 5.2), comparing it with state-of-the-art implemen-
tations and frameworks.

5 Experiments

Our experiments aimed to assess the programmability and performance of SPar com-
pared to Pthreads, TBB, and FastFlow in the Dedup, Ferret, and Bzip2 applications.
We used (a) the Cyclomatic Complexity Number (CCN) [13], used to measure the
number of linearly independent paths in a source code, and (b) the Source Lines of
Code (SLOC) metrics, to measure the programmability. To evaluate performance, we
defined the native input set of PARSEC benchmark for Dedup and Ferret. For Bzip2,
we used also Dedup’s native input set, which is representative of a real-world workload.

The thread number parameter does not represent the actual number of threads
spawned and run in the system. For instance, streaming applications run in a pipeline
fashion and each stage may have a thread/replica pool, consequently, this number
determines their sizes. This parameter is called the degree of parallelism in the graphs.
Moreover, to obtain the execution time metric, we collected the default benchmark
time measurements and maintained the original timestamp positions in the source
code. We ran each application from 1 up to the total number of cores for the degree
of parallelism, repeating the execution of these samples 10 times to get the average
execution time. The parallelism degree 0 represents the sequential execution time. The
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Table 1 Coding productivity

and complexity of the best Version (a) Dedup (b) Ferret (c) Bzip2

performance versions SLOC CCN SLOC CCN SLOC CCN
Sequential 454 105 223 30 1278 276
SPar 471 111 274 33 1404 285
FF 974 237 369 37 1607 342
TBB - - 376 39 1483 297
Pthreads 1294 288 623 81 1917 366

standard deviation was plotted in the graphs using error bars, which is not visible in
most cases because it was negligible. In addition, we implemented Dedup and Ferret as
PARSEC plug-ins, allowing programmers to simply use SPar implementation versions
through the parsecmgt command line tool. Through this feature, we plan to release
our codes as an option in the PARSEC benchmark suite along the already supported
Pthreads and TBB versions.

The machine was equipped with 24 GB of RAM memory and two Intel(R) Xeon(R)
CPU E5-2620 v3 2.40 GHz processors (24 threads with Hyper-Threading). The oper-
ating system was an Ubuntu Server 64 bits with the kernel 4.4.0-59-generic. Other
software details are: GCC 5.4.0, libraries TBB (4.4 20151115), FastFlow (revision
13), Pbzip2 (1.1.13), and PARSEC benchmarks (3.0). Also, we compiled the pro-
grams using the -O3 flag.

5.1 Programmability

Although we implemented several versions, we picked only those with the best per-
formance to compare coding productivity (SLOC) and complexity (CCN). We also
highlight that all the evaluated codes for Ferret and Bzip2 employ the same parallelism
strategy. Dedup will be discussed later in this section. Table 1 presents the results eval-
uating and comparing the implemented versions. The first column contains the best
versions of each framework considered while the others present the absolute numbers
(SLOC and CCN) for each one of the applications. Because the TBB version of Dedup
did not work, we will also not consider it in our programmability discussions. More-
over, since the implementation of TBB and FastFlow in the streaming applications has
not been discussed previously (Sect. 4), we will describe them briefly here:

— Dedup-ff FastFlow provides a template abstraction for pipeline and farm parallel
patterns. Although it is possible to implement different skeletons for this appli-
cation such as described in [6], the best performance version was the ofarm in
our experiments. For this version, the programmer has to convert the different
stages into virtual functions of ££_node subclass and set the nodes to different
farm roles (emitter, workers and collector), producing an activity graph similar
to the alternative version of Fig. 2. The code re-refactoring is simpler than when
using Pthreads, since FastFlow’s runtime handles stage communication queues,
and thread pool management. Another advantage of FastFlow is that the reordering
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algorithm was removed because it supports the programmer with a farm template
that preserves the order of stream items.

— Ferret-ff As for Dedup, FastFlow is able to support the implementation of different
parallel patterns for Ferret, which is easier than using Pthreads [6]. According to
our experiments, the version that achieved the best results was pipeof farms,
which produces an activity graph equivalent to Pthreads (illustrated on the left hand
side picture in Fig. 3). To parallelize with FastFlow, all stages must be implemented
inside a virtual function of £f_node subclass. While for each one of the middle
stage a farm pattern is instantiated, the first and last stages are sequential. Finally,
there is a pipeline function with a series of farm stages instantiated along with the
first and last stages, which are sequential code wrappers.

— Ferret-tbb TBB also provides a pipeline template in addition to other parallel
patterns. Similar to FastFlow, the TBB pipeline construct transforms abstract stages
into virtual functions of TBB filter subclasses. Each filter is built with a parameter
given by the programmer, which can be serial_in_order to maintain the
stream order, or parallel to extend the degree of parallelism of the stage. The
programmer cannot specifically set the number of active threads for each stage,
instead, a maximal number of active tokens is given on-the-fly. Then, the TBB’s
runtime will automatically manage the thread distribution between the available
CPUs. The only control the programmer has over the threads is the maximal
number of active threads the scheduler can have at the same time. TBB’s Ferret
implementation [18] generates an equivalent activity graph shown on the left hand
side of Fig. 3. The maximal number of tokens on-the-fly is set to 1024, and the
task scheduler is set to a maximal number, which is equivalent to the degree of
parallelism used in the other Ferret framework versions.

— Bzip2-ff The original FastFlow implementation [1] was built based on the Pthread
version, with essentially the same stages. The only difference is that they removed
the stage communication queues. The activity graph generated is equivalent to the
one depicted in Fig. 4. In addition, we tried to implement an ordered farm (ofarm)
version by removing the original reordering algorithm. However, our experiments
showed that this made the performance slightly worse.

— Bzip2-tbb Bzip2 TBB was implemented by us based on the Pthread version. Again,
to implement parallelism the stages have to be implemented inside a virtual func-
tion of a TBB filter subclass. The resulting activity graph is equivalent to the one
previously presented in 4. The number of tokens for TBB’s task scheduler was
configured so that it will always be equal to ten times the total number of the
threads’ parameter. Another important detail was to set up the first and last filters
with serial_in_order to guarantee that the output file is fine when the middle
filter is parallel.

The results for each one of the tested benchmark versions, that are shown in Table 1
were collected from only the source code files that have effectively implemented
parallelism, although most of the applications instantiated external libraries. For the
sequential version, only the main file was considered. The Dedup application had
substantial SLOC and CCN differences, as can be seen in Fig. 5. SPar achieved its
exemplary programmability results mainly due to the fact that the sequential code
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Fig. 5 Coding productivity and complexity increasing w.r.t. sequential version. a SLOC. b CCN

structure was almost unchanged. In contrast, FastFlow and Pthreads versions imple-
mented a new chunk partitioning stage and the complete implementation of a circular
queue structure to hold data during stage communication. Also, Pthreads increased the
complexity by adding thread management and stream reordering. In comparision to
Pthread, we highlight that the equivalent SPar implementation achieved 543 SLOC and
121 CCN. When compared to the SPar version presented in Table 1, we can observe
that the Pthread equivalent implementation has a 15 and 9% higher SLOC and CCN
respectively. This is explained by the addition of the extra chunk partitioning stage.

The Ferret source code was not sufficiently well structured to be simply annotated
with SPar. It therefore required some code refactoring to express a direct pipeline
structure. This same modification was also required by TBB. The unexpected increase
in code and complexity in SPar is due to the first stage having to be restructured so that
it can be used along with the other stages. Again, SPar still provides a more productive
solution, which is proven by the SLOC and CCN metrics. TBB and FastFlow are
similar, and present good results when compared to Pthreads because Pthreads requires
thread management and queue implementations for stage communications.

In the Bzip2 application, we implemented the parallelism for compress and decom-
press functions. We can observe in Table 1 that all parallel versions have considerably
increased the total amount of code needed. This was previously discussed in 4.3,
where another decompression function was needed instead of the original sequential
Bzip2 application. Additionally, extra parallelism helper features were implemented
in Pbzip2 (the Pthreads version) to simplify the program interactions that were con-
sidered in all other versions, too. Once more, SPar achieved the best results with a
lower percentage increase for CCN and SLOC with respect to the sequential version.
FastFlow had the second worst result because it reused most of the Pthreads struc-
ture, which is not productive. On the other hand, TBB achieved better productivity
compared to Pthreads and FastFlow.

Finally, we observed that it could be possible to improve the SLOC and CCN
numbers in the Bzip2 and Dedup FastFlow implementations. For Bzip2, the default
FastFlow library support for stream reordering can be used to completely remove
the Pthreads reordering algorithm. In addition to that, in both of these applications,
most Pthreads lock mechanisms could be remove. Indeed, TBB and FastFlow also
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Fig. 6 Dedup and Ferret performance results. a Dedup execution time. b Ferret execution time

have the support for implementing filters with lambda functions that could improve
productivity in Ferret and Bzip2 applications, although the simplicity is questionable
because of the tricky syntax and code rewriting required. Even so, SPar would still
be more productive, simpler, and less intrusive as we observed for other streaming
applications in [9, 1 1].

5.2 Performance

Figures 6 and 7 present the graphs of the performance results of Dedup, Ferret, and
Bzip2. The execution times collected were plotted in the graphs with the respective
standard deviations, which were negligible in almost all of the tests, except for the
Pthreads version on Dedup application as shown in Fig. 6a. Also, this application is
the only one where Pthreads achieved the worst performance. During the experiments,
it was observed that maintaining the original activity graph with more stages generates
an extra overhead in communication. Therefore, as in FastFlow, for SPar we merged
the middle stages into a single stage. We credit the better performance achieved in the
lower degree of parallelism (up to 10) with respect to FastFlow due to the removal of
the Fragment Refine stage. Consequently, FastFlow outperforms SPar with a greater
degree of parallelism, which is a results of maintaining the Fragment Refine stage.

Before discussing the results of Ferret in Fig. 6b, we must highlight that the alter-
native version of Ferret presented on the right hand side of Fig. 3 and implemented
with SPar achieved 10% worse performance. We did not expected this result, because
in theory, reducing the number of stages would subsequently reduce the possibilities
of overheads. However, this was not the case in the Ferret application. The results
of Fig. 6b show that SPar provides equivalent performance with respect to Pthreads
and TBB. As FastFlow’s version implemented by the authors of Danelutto et al. [6]
had lower performance. We concluded that the SPar compiler is able to generate an
optimized FastFlow parallel code with respect to the hand-tuned code.

Because Bzip2 has two different streaming operations, we performed isolated exper-
iments. The graph in Fig. 7a presents the results for the file compression, which is
the most costly phase. We can observe that SPar achieved equivalent performance
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Table 2 The best Speed-ups (S) for the application versions implemented

Version (a) Dedup (b) Ferret (c) Bzip2 (Com.) (c) Bzip2 (Deco.)
Size S Size S Size S Size S
SPar 10 6.59 23 12.24 23 9.80 23 9.76
SPar_ 10 391 20 6.19 23 9.48 23 9.60
FF 21 7.35 21 10.84 23 9.74 22 10.04
TBB - - 24 12.85 22 9.98 23 10.09
Pthreads 7 5.30 24 12.62 24 9.91 24 10.31

with respect to the original Pthreads implementation from [8], hand-tuned FastFlow
from [1], and our TBB implementation. In Fig. 7b, the results of the file decompression
followed a similar trend with respect to the file compression results.

The speed-ups of the applications in our experiments achieved a similar trend com-
pared to the related works running on different multi-core architecture machines [1,4,
6,14,17,18]. We summarized the best speed-ups for each one of the applications and
evaluated frameworks in Table 2, where for each version we present the size (degree
of parallelism in which it achieved the best speed-up), and the speed-up number. We
present two different versions of the SPar implementations: SPar and SPar_ (they
are in the first and the second row of Table 2). For Ferret, SPar achieved a supe-
rior performance when compared to SPar_ by adding the spar_ondemand and
spar_blocking compilation directives. In addition to the compilation directives,
SPar’s Bzip2 and Dedup were improved by using a customized reordering algorithm
instead of the default FastFlow ordering generated by SPar with the spar_ordering
flag. The FastFlow implementation also uses an ordering algorithm extracted from the
Pthreads implementation in place of its own default ordering. These results further
demonstrate SPar’s good performance, which is close to the state-of-the-art frame-
work/library implementations. Compared to Pthreads for the best speed-ups, SPar is
10% lower, in the worst cases, regarding the degree of parallelism tested. For TBB
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implementations, SPar achieved a 1.83% worse speed-up in Bzip2 compression and
4.74% in Ferret. Conclusively, SPar provided only a small performance degradation
compared to FastFlow and TBB, in the worst cases it was less than 11%. Therefore,
these are very encouraging results for the SPar compiler and its abstraction layer.

6 Conclusion

This paper approached high-level and productive stream parallelism for representa-
tive real-world streaming applications (Dedup, Ferret, and Bzip2). We achieved the
goal by implementing these applications using the SPar DSL, discussing relevant
aspects concerning structured parallel programming, coding productivity, flexibility,
and code refactoring. Also, state-of-the-art implementations and frameworks/libraries
were selected to perform a fair comparison, and provide reliable results in our exper-
iments. The findings demonstrated that SPar offers great improvements for coding
productivity (increasing the SLOC by less than 23% and CCN by less than 10%
w.r.t. sequential version in the worst cases) and high-level parallelism abstractions
for the streaming application domain without significant performance degradations
(less than 10% w.r.t. Pthreads in the worst case). Lastly, the small performance dif-
ference between SPar and FastFlow (11% lower than FastFlow in the worst case),
highlights the negligible overhead of SPar’s code generation and programming inter-
face’s abstraction layer.

Currently, we are working on the Dedup application implemented in PARSEC with
TBB so that it can be included in our discussions. As future work, we aim to compare
this paper’s results with other state-of-the-art implementations such as [4] and [14] to
assess productivity and performance as have done here in regards to SPar, FastFlow,
TBB, and Pthreads implementations. Furthermore, we intend to implement high-level
and productive stream parallelism using SPar in other real-world applications.
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