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A B S T R A C T

Hyperpycnal flows are observed when the density of a fluid entering into a quiescent environment is greater
than that of the ambient fluid. This difference can be due to salinity, temperature, concentration, turbidity,
or a combination of them. Over a sloping bottom, the inflowing momentum decreases progressively until a
critical stage is reached where the inflow plunges underneath the ambient and flows adjacent to the bed as
an underflow density current. In the present work, a new equation is proposed in order to predict the critical
depth for plunging, i.e., the plunging criterion. It differs from previous studies since it includes the role of
the settling velocity and the bed slope. The high spatiotemporal resolution from twelve original numerical
simulations allows us to validate the initial hypotheses established, in addition to numerical and experimental
data available in the literature, and good agreement is found between them. A negative value for the mixing
coefficient was observed for the first time for the hyperpycnal flow in a tilted channel. This indicates that
if the settling velocity of the suspended material is high enough, the submerged flow may lose fluid to the
environment (detrainment), instead of incorporating it. The proposed plunging criterion may assist in the
design of future experimental or numerical works.
1. Introduction

A turbidity current entering a lighter ambient fluid is classified as
hyperpycnal, so that it is expected to propagate near the bed, below
the ambient fluid, due to buoyancy forces. Such flows are an important
instrument for the transport of fluvial, littoral and shelf sediments into
deeper waters (Garcia, 1994), causing deposition, erosion and even
material resuspension from the sea floor. Old sand deposits formed
by turbidity currents can preserve important climatic and tectonic
evidence, they can record river flood dynamics and, under the right
conditions, become hydrocarbon reservoirs (Mulder et al., 2003; Lamb
and Mohrig, 2009; Meiburg and Kneller, 2010). Turbidity currents and
their deposits are also observed in dam reservoirs, being responsible
for reducing the capacity and affecting structures such as powerhouse
intakes and bottom outlets (Chamoun et al., 2016). Additionally, tur-
bidity currents are a potential hazard to submarine telecommunication
cables, well heads, and oil and gas pipelines (Meiburg et al., 2015;
Sequeiros et al., 2019; Porcile et al., 2020) , furthermore, such flows can
strongly affect marine ecosystems near river mouths (Horner-Devine
et al., 2015).

In the case of an influx at the highest edge of an sloping bottom, the
flow momentum can be sufficient to push the lighter fluid downstream.
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However, the flow velocity decreases while the depth increases in the
streamwise direction, due to the bed slope. In this way, at sufficient
depth, buoyancy forces overcome the inertial forces, the flow collapses
and plunges. This phenomenon is noticed in natural environments
such as ocean, lakes and dam reservoirs. A schematic representation
is shown in Fig. 1, where the three main regions of the plunging of
the hyperpycnal flow are visible. The influx is characterized by its
initial depth ℎ̃0 (⋅̃ corresponds to dimensional quantities), volumetric
discharge per unit width 𝑄̃0, and a fresh water density plus an excess
due to suspended material 𝜌̃𝑤 + 𝛥𝜌̃ entering an ambient with different
density 𝜌̃𝑎. Ideally, the depth-limited plume is a homogeneous flow
region that occupies the complete channel depth, dominated by inertial
forces. It is a valid assumption for this work, however, some density
stratification may be observed in natural settings and the velocity
profile may not be homogeneous, since they depend on the boundary
conditions. At sufficient depth 𝐻̃𝑝, the flow collapses, in the so-called
plunge region. Downstream, the flow assumes the form of a turbidity
current, dominated by buoyancy forces, and new values of depth 𝐻̃𝑑 ,
discharge 𝑄̃𝑑 and density 𝜌̃𝑎 + 𝛥𝜌̃𝑑 are observed due to the continuous
mixing between ambient fluid and the underflow, which is expressed
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Nomenclature

Notation

𝛥𝑡 Time step
𝛾 Mixing coefficient
𝜈 Kinematic viscosity
𝜌 Density
𝜉 𝑟0𝑢𝑠∕𝑆
𝐶 Layer-averaged concentration
𝑐 Scalar concentration
𝑑𝑠 Grain size
𝐹𝑟 Densimetric Froude number
𝐹𝑟∗0 Maximum initial Froude number for plunging
𝑔 Gravitational acceleration
𝑔′ Reduced gravity
𝐻 Underflow depth
ℎ Channel depth
𝐻∗

𝑝 Maximum flow depth possible
𝐿𝑖 Domain size in direction 𝑖
𝐿1𝑏 Sponge zone length
𝐿2𝑏 Height of immersed boundary method layer
𝑛𝑖 Number of mesh nodes in direction 𝑖
𝑝 Pressure
𝑄 Layer-averaged flow rate
𝑅 Sediment reduced density
𝑟0 Shape factor for vertical concentration profile
𝑅𝑒 Reynolds number
𝑆 Bed slope
𝑆𝑐 Schmidt number
𝑡 Time
𝑈 Layer-averaged velocity
𝑢𝑖 Velocity vector
𝑢𝑠 Settling velocity
𝑥𝑖 Coordinate system

Subscripts

0 Initial value, at inflow
𝑎 Ambient flow
𝑑 Downstream plunging
𝑓 At front position
𝑝 At plunge position
𝑠 Sediment
𝑤 Fresh water

by the mixing coefficient

𝛾 = 𝑄̃𝑑∕𝑄̃0 − 1. (1)

n ambient counterflow is induced in the opposite direction. This
alance between inertial and buoyancy forces is a key point in the study
f the plunging flow, it can be represented by the initial densimetric
roude number

𝑟0 =
𝑄̃0

√

𝑅𝐶̃0𝑔̃ℎ̃30

, (2)

here 𝑅 = (𝜌̃𝑠 − 𝜌̃𝑤)∕𝜌̃𝑤 is the submerged specific density of sediments,
𝜌̃𝑠 is the density of the sediment, 𝐶̃0 is the volumetric concentration of
ediments at the inlet and 𝑔̃ is the gravitational acceleration.

There are two necessary conditions for the plunge to happen. First,
he inflowing turbidity current must be denser than the ambient fluid,
2

the necessary suspended particle concentration to overcome the ambi-
ent density can be written as

𝐶̃𝑐 =
1
𝑅

(

𝜌̃𝑎
𝜌̃𝑤

− 1
)

, (3)

according to Lamb et al. (2010). The equation makes evident that in the
case of freshwater ambient (𝜌̃𝑎 = 𝜌̃𝑤), any concentration is enough to
satisfy the first condition. Second, the channel needs to be deep enough
for the turbidity current to collapse. The critical depth for plunging 𝐻̃𝑝,
also called plunging criterion, can be derived from (2) and written as a
function of a constant 𝐾 (often computed empirically from numerical
and/or experimental data), initial flow rate 𝑄̃0 and reduced gravity
acceleration 𝑔̃′ = 𝑅𝐶̃0𝑔̃ (Singh and Shah, 1971; Akiyama and Stefan,
1984), as follow

𝐻̃𝑝 = 𝐾

(

𝑄̃2
0

𝑔̃′

)
1
3

, (4)

or it can be expressed in dimensionless form as

𝐻̃𝑝

ℎ̃0
= 𝐻𝑝 =

(

𝐹𝑟0
𝐹𝑟𝑝

)
2
3
, (5)

where 𝐹𝑟0 and 𝐹𝑟𝑝 are the initial densimetric Froude number and the
densimetric Froude number at the plunge location, respectively, and ℎ̃0
is the initial channel depth. Notice that both notations are equivalent
(𝐹𝑟𝑝 ≈ 𝐾−3∕2). Many experiments and numerical simulations have been
performed in the interest of investigate 𝐾 (or 𝐹𝑟𝑝) and how it is affected
by the flow parameters.

Singh and Shah (1971) investigated the plunging criterion by per-
forming a two-dimensional experimental study. The obtained depth for
plunging was compared with the initial flow discharge and reduced
gravity (4), and the results suggest that 𝐾 = 1.3, which leads to 𝐹𝑟𝑝 =
0.67. Farrell and Stefan (1986) used temperature in order to control the
density difference necessary for plunging, their methodology includes
physical experiments in addition to 2D-RANS numerical simulations,
based on the standard 𝑘 − 𝜖 model. The authors reported a mixing
coefficient of 𝛾 = 0.1, and the plunging criterion 𝐾 = 1.3 for their
experiments, confirming the previous results from Singh and Shah
(1971), and 𝐾 = 1.6 (𝐹𝑟𝑝 = 0.49) for the numerical simulations. Several
experiments were conducted by Lee and Yu (1997), including conser-
vative (saline) and not conservative (Kaolin in suspension) currents.
The study included the migration of the plunge point, in what they
called the incipient plunge location. For the stable plunge position,
𝐹𝑟𝑝 = 0.6 was reported. The authors found that the effective density
difference at the plunge point characterizes the event, and it does not
depend on the presence of the suspended particles (Kaolin) or lack
of it (saline cases). Kassem and Imran (2001) conducted a set of 2D-
RANS simulations. Their numerical model was employed to reproduce
both laboratory, based on the experiments of Singh and Shah (1971),
and field scales, using the data available in Mulder et al. (1998). Dai
et al. (2007), different from previous works, presented nine different
cases using 2D-LES, based on the Smagorinsky model. They reported
that 𝐾 = 1.8, which can be rearranged to 𝐹𝑟𝑝 = 0.41, besides an
initial mixing coefficient of 𝛾0 = 15%. Arita and Nakai (2008) presented
two-dimensional laboratory experiments for the plunging of a saline
current. According to these authors, the flow under investigation can be
categorized into one of four groups, according to the initial densimetric
Froude number 𝐹𝑟0 and bed slope 𝑆. For the Type III, that is compa-
rable with our numerical study, they found that 𝐹𝑟𝑝 ≈ 0.5. Lamb et al.
(2010) shows an experimental study of turbidity currents, presenting
seven experiments with different values for initial flow discharge 𝑄̃0
and initial volumetric concentration 𝐶̃0 of crushed silica. The results
show that 𝐹𝑟𝑝 ≈ 0.45 is a reasonable value, together with the initial
mixing coefficient 𝛾 = 0.2, and good agreement was found with the
analytical model of Parker and Toniolo (2007). Besides, they concluded
that the required fluvial sediment concentration to create a plunging
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Fig. 1. Representation of a hyperpycnal flow over sloping bottom. The mixing coefficient 𝛾 according to Eq. (1) is presented for reference.
Source: Modified from Schuch et al. (2018).
flow can be significantly higher than the concentration conventionally
used assuming density similarity by virtue of the deposition upstream of
the plunge point. Schuch et al. (2018) presented four three-dimensional
turbulence-resolved simulations (3D-LES) and the results were com-
pared with the experiments of Lamb et al. (2010) and the analytical
model of Parker and Toniolo (2007) in order to validate the new
numerical framework proposed by the author, and good agreement was
found between them, 𝐹𝑟𝑝 ≈ 0.45 was recovered. Schuch et al. (2020)
examine a different aspect of the previous numerical study (Schuch
et al., 2018) and reported 𝐹𝑟𝑝 = 0.43. Besides that, the authors
presented an original data-set that registers the entire Spatio-temporal
evolution of the plunge phenomenon and all relevant quantities.

There are theoretical works about the plunging flow as well, based
on integral equations, conservation laws and box model analysis.
Akiyama and Stefan (1984) presented a review of all previous theoreti-
cal works. They proposed a prediction of the depth at the plunge point
with regards to the core parameters that describe the event, including
the bed slope 𝑆, initial densimetric Froude number 𝐹𝑟0, total friction
coefficient 𝑓𝑡 and the initial mixing coefficient 𝛾0. Their prediction
agrees well with laboratory and field data. However, according to their
study plunging is not possible without mixing (𝛾 = 0). Parker and
Toniolo (2007) and Dai and García (2009) proposed a correction in
the previous analysis of Akiyama and Stefan (1984) and discussed that
plunging is possible without mixing, such as in a water/oil configura-
tion. According to the authors, the densimetric Froude number at the
plunge position 𝐹𝑟𝑝 and downstream plunging 𝐹𝑟𝑑 , besides the ratio
between flow depth at the plunge point 𝐻̃𝑝 and downstream plunging
𝐻̃𝑑 can be expressed as function of the mixing coefficient 𝛾 only. Notice
that there is no way to know 𝛾0 a priori, which is found by using
numerical simulations.

The primary purpose of the current work is to present a novel
methodology for the prediction of the critical depth required for plung-
ing (or plunging criterion). Unlike previous models, the role played by
the settling velocity of the suspended material is included, since the
sedimentation occurring in the depth-limited zone (see Fig. 1) could
reduce the effective concentration in the plunging zone in an order of
magnitude in comparison with that at the inlet condition, following the
findings of Lee and Yu (1997) and Lamb et al. (2010) described above.
In addition, twelve numerical simulations are presented in order to
validate the proposed model, considering four different bed slopes and
three different settling velocities. The manuscript is organized in seven
sections: an introduction, a description of the governing equations,
computational setup, the numerical methodology for the simulations,
3

a description of the proposed equation for the prediction of the plung-
ing depth, a results section presenting the numerical data and the
validation of the new model, and a conclusion.

2. Governing equations

For the current work, the transport equation under the Boussinesq
approximation can be employed for turbidity currents or for conser-
vative currents (when settling velocity is equal to zero), in addition to
the incompressible Navier–Stokes equations. They are formulated in the
dimensionless context as
𝜕𝑢𝑗
𝜕𝑥𝑗

= 0, (6a)

𝜕𝑢𝑖
𝜕𝑡

= −𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑝
𝜕𝑥𝑖

+ 1
𝑅𝑒

𝜕2𝑢𝑖
𝜕𝑥𝑗𝜕𝑥𝑗

+ 𝑒𝑔𝑖
𝑐

𝐹 𝑟20
, (6b)

𝜕𝑐
𝜕𝑡

= −
(

𝑢𝑗 + 𝑢𝑠𝑒
𝑔
𝑗

) 𝜕𝑐
𝜕𝑥𝑗

+ 1
𝑅𝑒𝑆𝑐

𝜕2𝑐
𝜕𝑥𝑗𝜕𝑥𝑗

, (6c)

where 𝑐, 𝑝 and 𝑢𝑖 represent the scalar concentration, pressure and the
flow velocity, respectively, along with the coordinate system 𝑥𝑖, time
𝑡 and the unit vector pointing in the direction of gravity 𝑒𝑔 = [0, 1, 0]
(see Fig. 2). The settling velocity 𝑢𝑠 is associated to the grain size by
the Stokes settling velocity law (Julien, 2010) which assumes that the
foremost flow force acting on an isolated particle is the Stokes drag. The
initial densimetric Froude number is defined in Eq. (2). The Reynolds
and Schmidt numbers, and the Stokes settling velocity are specified as

𝑅𝑒 =
𝑄̃0
𝜈̃

, (7a)

𝑆𝑐 = 𝜈̃
𝐷̃
, (7b)

𝑢𝑠 =
𝑢̃𝑠ℎ̃0
𝑄̃0

=
𝑑2𝑠𝑅𝑔̃ℎ̃0
18𝜈̃𝑄̃0

, (7c)

where 𝑄̃0 is the volumetric discharge per unit width, defined as the
product of the inlet velocity 𝑈̃0 and the initial depth ℎ̃0. The kinematic
viscosity is 𝜈̃, the diffusivity of particle concentration is 𝐷̃ and the
characteristic grain size is denoted as 𝑑𝑠. All variables and parameters
are made dimensionless using the influx depth ℎ̃0, velocity 𝑈̃0 and
sediment concentration 𝐶̃0.

3. Computational setup

The computational setup, as presented in Fig. 2, is derived from the
previous study of Schuch et al. (2018), however, a few improvements
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Fig. 2. Graphic representation of the computational setup (not to scale). Spanwise coordinate 𝑥3 is perpendicular to the plane. It is divided in four sections: In gray, the tilted
bed is inserted by Immersed Boundary Method (IBM); TS represents the test section; SZ𝑎 represents the Sponge Zone upstream of TS; SZ𝑏 represents the Sponge Zone downstream
of TS.
are proposed. The test section (TS) is the region where the flow is
analyzed. The bed slope 𝑆 is included in the computational domain via
a customized immersed boundary method (IBM) (Gautier et al., 2014).

Two sponge zones are employed to mimic in the computational
domain the key aspects of the inlet (head box) and outlet (vent drain) of
experimental tanks. Firstly, SZ𝑎 is located upstream of the test section
and provides the particle-laden flow. Besides that, a recycling technique
𝑢𝑖(−𝐿1𝑎, 𝑥2, 𝑥3) = 𝑢𝑖(−𝐿1𝑎 + 𝐿∗

1𝑎, 𝑥2, 𝑥3) is used in order to ensure a
turbulent inflow condition. Secondly, SZ𝑏 applies near the outflow
boundary an intrinsic vertical profile for the streamwise velocity 𝑢1(𝑥𝑖),
in order to reduce the turbulence level to zero. This vertical profile is
obtained by means of a spanwise average and a moving average in time
in a reference position, upstream of the outflow boundary. As suggested
by Henniger et al. (2010), the numerical domain should be long enough
to promote the deposition of the entire suspended material, however,
this approach is very computationally demanding. Following Schuch
et al. (2018), an absorption coefficient is defined in order to remove
suspended concentration upstream of the outlet, significantly decreas-
ing computational costs. Note SZ𝑎 and SZ𝑏 are operative only upstream
and downstream of the test section, respectively, so that the flow and
statistics in the test section are not affected.

A nondeformable water surface is assumed for the top boundary
condition (where 𝑥2 = 0), which is described for a no-flux condition
for the particle concentration and a free-slip condition for the velocity
field, following Nasr-Azadani et al. (2013). At the solid–fluid interface
𝑥2𝑟 (bed position), a no-slip condition is used for the carrier fluid and a
convective outflow condition in the vertical direction 𝑥2 reproduces the
particle deposition (Necker et al., 2002). Notice this framework allows
deposition, but ignores erosion and does not change the bed topogra-
phy. Regular 1-D convection equations are employed at the outflow
boundary (𝑥1 = 𝐿1 + 𝐿1𝑏) for the scalar and for the velocity. Periodic
boundary conditions are assumed for concentration and velocity for
the spanwise direction 𝑥3. In a preliminary study, the use of periodic
or free-slip conditions in the spanwise direction has not shown any
significant difference regarding the quantities measured and presented
in this work. For the initial condition (when 𝑡 = 0) the domain is defined
as fresh-water (𝑐 = 0) at rest (𝑢𝑖 = 0).

For the complete mathematical description of the computational
setup, including sponge zones, boundary conditions, and initial condi-
tions, we refer the reader to the code repository (see Computer Code
Availability).

4. Numerical methodology

The numerical simulations were carried out by Xcompact3d
(Bartholomew et al., 2020), an open source tool based on a Boussi-
nesq system for incompressible fluids, designed for supercomputers
(see computer code availability). The code is based on high-order
4

finite-difference schemes and a predictor–corrector method for the
Navier–Stokes equations, which leads to the solution of a Poisson equa-
tion for the pressure. With a spectral approach using three-dimensional
Fast Fourier transforms (FFTs) and the view of modified wavenum-
bers (Lele, 1992) for this equation, the divergence-free condition is
ensured up to machine accuracy. In order to prevent spurious pressure
oscillations, the pressure mesh is staggered from the other variables
by half a mesh. More information regarding the numerical aspects
of Xcompact3d are available in Laizet and Lamballais (2009). The
computational domain is divided into several pencils, each one solved
by a different MPI-process, resulting on a highly scalable 2D domain
decomposition. A complete description concerning the parallel strategy
can be found at Laizet and Li (2011).

The governing Eqs. (6) are solved by an implicit Large-Eddy Simu-
lations approach, in with only the largest and energy-containing flow
structures are resolved. On the other hand, the small scales are not
resolved, instead, they are modeled via artificial dissipation that acts
when computing the viscous term (Sagaut, 2006; Grinstein et al., 2007).
Lamballais et al. (2011) and Dairay et al. (2017) presented a new set
of coefficients for the sixth-order compact finite-difference schemes,
configured to be over-dissipative at the highest wave numbers and to
control the aliasing errors via the viscous term. Notice that the solution
differs from the classic high-order finite-difference scheme only at
highest wave numbers, where even the latter becomes less accurate.

For the validation of the numerical framework presented here for
the problem demonstrated in Fig. 1 we refer the reader to the complete
comparison between numerical, experimental and analytical models
provided in Schuch et al. (2018).

5. Plunging condition

The role that each parameter plays with regard to the necessary
depth required for plunging is well known. Keeping everything else
constant, the plunge position moves downstream due to:

• An increase in the initial densimetric Froude number 𝐹𝑟0, as this
means increasing the ratio of inertial forces to the buoyant forces
at the channel entrance, so that a greater depth for plunging is
expected;

• An increase in the settling velocity 𝑢𝑠 of the suspended sediments,
as their sedimentation in the depth-limited zone (see Fig. 1)
reduces the effective concentration in the plunge zone, and again
a greater depth for plunging is expected; Notice this is valid only
in a moderate range of 𝑢𝑠, since other processes may occur if
the flow does not have the ability to keep coarse material in
suspension.

• Finally, by reducing the bed slope 𝑆, as the current would have
to travel a greater distance to reach the same critical depth and
plunge.
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The above parameters can be combined in order to provide an esti-
mate of the plunging condition, based on the streamwise 𝑥1 evolution
of the densimetric Froude number, that can be computed as

𝐹𝑟(𝑥1) =
𝑄̃(𝑥1)

√

𝑅𝐶̃(𝑥1)𝑔̃𝐻̃3(𝑥1)
, (8)

r the right-hand side can be written in a dimensionless form, as a
unction of the inlet Froude Number and other parameters, the resulting
quation is

𝑟(𝑥1) =
𝑄(𝑥1)

√

𝐶(𝑥1)𝐻3(𝑥1)
𝐹𝑟0. (9)

All values are considered in a layer-averaged context per unit width,
computed following Ellison and Turner (1959) according to the equa-
tions

𝑈ℎ(𝑥1) =
1
𝐿3 ∫

𝐿3

0 ∫

𝑥2𝑖

𝑥2𝑟
𝑢1(𝑥𝑖)𝑑𝑥2𝑑𝑥3, (10a)

𝑈2ℎ(𝑥1) =
1
𝐿3 ∫

𝐿3

0 ∫

𝑥2𝑖

𝑥2𝑟
𝑢21(𝑥𝑖)𝑑𝑥2𝑑𝑥3, (10b)

𝐶ℎ(𝑥1) =
1
𝐿3 ∫

𝐿3

0 ∫

𝑥2𝑖

𝑥2𝑟
𝑢1(𝑥𝑖)𝑐(𝑥𝑖)𝑑𝑥2𝑑𝑥3. (10c)

For the vertical integration, 𝑥2𝑖 represents the interface between the
underflow density current and the ambient fluid (see Fig. 1), considered
in this work as the position where 𝑢1𝑐 = 0.025. The position where
𝑢1 = 0 is often considered as the interface; however, two problems
have been identified when using it. First, it is not appropriate during
the initial phase because the incipient plunge zone moves downstream
from the inlet boundary with a velocity greater than zero (see Fig. 4).
Second, it is not convenient for the cases were the ambient fluid moves
in the same direction as the underflow (see Fig. 7c). Including the
concentration in the criterion to locate the interface solves both issues.
Finally, the layer-averaged velocity 𝑈 , flow depth 𝐻 , flow discharge 𝑄
and concentration 𝐶 are computed respectively as

𝑈 (𝑥1) = 𝑈2ℎ∕𝑈ℎ, (11a)

𝐻(𝑥1) = (𝑈ℎ)2∕𝑈2ℎ, (11b)

𝑄(𝑥1) = 𝑈ℎ, (11c)

𝐶(𝑥1) = 𝑈𝐶ℎ∕𝑈ℎ. (11d)

In order to link the Froude number at the plunge position 𝐹𝑟𝑝 with
the Froude number at the inlet 𝐹𝑟0, three assumptions are established:
first, the flow rate at the depth-limited zone (see Fig. 1) is constant,
and by definition the dimensionless value is equal to unity; second,
the layer-averaged concentration decays exponentially with 𝑥1 due to
sedimentation (Lamb et al., 2010), downstream of the entrance at the
test section. It is expressed as a function of the settling velocity 𝑢𝑠
and a shape factor 𝑟0 (the ratio between near bed concentration and
layer-averaged concentration (Parker et al., 1987)); third, distance for
plunging 𝑥𝑝 is known using geometry. They are written as

𝑄0 = 𝑄𝑝 = 1, (12a)

𝐶𝑝 = exp(−𝑢𝑠𝑟0𝑥𝑝), (12b)

𝑥𝑝 =
𝐻𝑝 − 1

𝑆
. (12c)

he equation for the plunging criterion is obtained by applying (12)
nto (9), resulting in
(

𝐹𝑟0
𝐹𝑟𝑝

)
2
3
= 𝐻𝑝 exp

(

−𝜉
𝐻𝑝 − 1

3

)

, (13)

where 𝜉 = 𝑟0𝑢𝑠∕𝑆. In this way, the depth for plunging 𝐻𝑝 can be evalu-
ated numerically (Fig. 3) as function of three characteristic parameters
(𝑢𝑠, 𝑆 and 𝐹𝑟0), besides two constants that should be estimated (𝐹𝑟𝑝
and 𝑟 ). Notice that if 𝑢 = 0, Eq. (13) is identical to Eq. (5).
5

0 𝑠
Fig. 3. Depth for plunging 𝐻𝑝 computed according to (13), solid lines indicate different
values for 𝜉 = 𝑟0𝑢𝑠∕𝑆. The dashed line indicates the limits according to (14), the lines
are presented in gray beyond the limits, for reference. The plus marks indicate the
twelve proposed simulations..

Analyzing Eq. (9), there is a compensation process for the densi-
metric Froude number while the plunge point moves downstream of
the inflow. Due to the tilted bed, the flow depth increases with 𝑥1
and lowers the local Froude number, while sedimentation reduces the
depth-averaged concentration with 𝑥1 and thereby increases the local
Froude number. As a result, depending on the ratio between settling
velocity and bed slope, or simply 𝜉, the flow may become homopycnal
and never reach the critical local Froude number to plunge if its initial
value 𝐹𝑟0 is above a certain threshold 𝐹𝑟∗0. It is possible to obtain this
key value from (13). First, the theoretical maximum flow depth possible
𝐻∗

𝑝 for a given value of 𝜉 can be found at the maximum value at the
ight-hand side of (13). Then, by substituting it back in the equation,
he maximum initial Froude number 𝐹𝑟∗0 for plunging is obtained. They

are written as

𝐻∗
𝑝 = 3

𝜉
, (14a)

(

𝐹𝑟∗0
𝐹𝑟𝑝

)
2
3

= 3
𝜉
exp

(

𝜉
3
− 1

)

, (14b)

where no plunging is expected if 𝐹𝑟∗0 < 𝐹𝑟0. These limits are presented
as the dashed line in Fig. 3, for reference.

6. Results

Twelve simulations are conducted, aiming to validate the predicted
plunge depth given by Eq. (13). Bed slopes 𝑆 of 1.25%, 2.5%, 5% and
10%, besides settling velocities 𝑢𝑠 of 0, 0.0015 and 0.003 are employed.
In order to have a appropriate comparison between the different cases,
the expected distance for plunging 𝑥𝑝 is set to 150ℎ0, however, the
depth is not the same, since it is a function of the bed slope 𝑆 (12c). The
initial densimetric Froude number for each case is computed according
to Eq. (13), setting 𝑟0 = 1 and 𝐹𝑟𝑝 = 0.45. The parameters are shown
at Table 1, while Reynolds number 𝑅𝑒 is equal to 2500 and Schmidt
number 𝑆𝑐 is equal to one for all simulations. Note the value of 𝐹𝑟0
is unique for each of the simulations, so it is impossible to analyze the
rule of a parameter individually.

All the parameters and results presented in this section are di-
mensionless. However, the experimental configuration of Lamb et al.
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Table 1
Summary of the different simulation conditions: bed slope 𝑆, settling velocity 𝑢𝑠 and initial densimetric Froude number 𝐹𝑟0. In addition, the main results: distance for plunging 𝑥𝑝,
flow depth, concentration, and densimetric Froude number at the plunge point (𝐻𝑝, 𝐶𝑝 and 𝐹𝑟𝑝, respectively) and downstream, where 𝑥1 = 250ℎ0 (𝐻𝑑 , 𝐶𝑑 and 𝐹𝑟𝑑 , respectively),
and the mixing coefficient 𝛾𝑑 . Notice the dimensionless values for initial depth ℎ0, discharge 𝑄0 and concentration 𝐶0 are equal to unity by definition.

Run 𝑆% 𝑢𝑠 × 102 𝐹𝑟0 𝑥𝑝 𝐻𝑝 𝐶𝑝 𝐹𝑟𝑝 𝐻𝑑 𝐶𝑑 𝐹𝑟𝑑 𝛾𝑑
1.25–0 1.25 0.00 2.19 150.62 2.74 0.99 0.49 1.60 0.78 1.51 0.22
1.25–15 1.25 0.15 1.96 169.69 2.85 0.74 0.47 1.43 0.56 1.68 0.09
1.25–30 1.25 0.30 1.75 130.62 2.48 0.61 0.58 1.14 0.33 2.27 −0.10
2.5–0 2.50 0.00 4.66 149.38 4.52 1.00 0.48 2.47 0.77 1.70 0.23
2.5–15 2.50 0.15 4.16 171.56 4.89 0.72 0.45 2.09 0.57 1.94 0.04
2.5–30 2.50 0.30 3.72 148.12 4.49 0.56 0.51 1.55 0.36 2.60 −0.20
5.0–0 5.00 0.00 11.15 149.69 7.63 1.00 0.53 4.62 0.73 1.70 0.28
5.0–15 5.00 0.15 9.97 158.44 7.50 0.74 0.57 3.80 0.52 2.05 0.08
5.0–30 5.00 0.30 8.90 151.56 7.47 0.60 0.53 2.24 0.39 3.15 −0.27
10.0–0 10.00 0.00 28.80 179.38 13.61 0.99 0.58 8.71 0.68 1.77 0.29
10.0–15 10.00 0.15 25.74 187.81 16.56 0.70 0.45 6.42 0.54 2.18 −0.00
10.0–30 10.00 0.30 23.00 177.19 14.95 0.56 0.47 4.15 0.39 3.02 −0.32
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Table 2
Domain height 𝐿2 +𝐿2𝑏 and mesh nodes in the vertical direction 𝑛2 as function of bed
slope 𝑆.
𝑆% 1.25 2.5 5 10

𝐿2 + 𝐿2𝑏 6.75ℎ0 10.125ℎ0 16.875ℎ0 33.75ℎ0
𝑛2 49 73 121 241

(2010) can be used to express the values in the dimensional space, as
a reference. The initial depth ℎ̃0 and the sediment reduced density 𝑅
were reported by the authors as 10 mm and 1.65, respectively. With
this data, the volumetric flow discharge per width unit at the inlet
𝑄̃0 can be computed as 0.0025 m2/s(7a), for all simulations. According
to Eq. (7c), the equivalent grain sizes 𝑑𝑠 would be 21 𝜇m and 29 𝜇m for
the setting velocities 0.0015 and 0.0030, respectively. The volumetric
particle concentration at the inlet 𝐶̃0 ranges from 0.04% to 12%, the
exact value for each case can be obtained using Eq. (2).

The numerical configuration of the presented simulations is based
on the experimental channel setup of Lamb et al. (2010) and the
numerical study of Schuch et al. (2018). The test section dimensions are
(𝐿1, 𝐿3) = (250.0ℎ0, 8.0ℎ0). The horizontal extension of the sponge zones
are (𝐿1𝑎, 𝐿1𝑏) = (25.0ℎ0, 62.5ℎ0). The entire computational domain is
iscretized using (𝑛1, 𝑛3) = (1081, 32) grid points. The vertical dimension
hanges according to the bed slope 𝑆, all vertical quantities are shown
n Table 2. A time step of 𝛥𝑡 = 0.0125 is employed for a total of 3.2×105
terations, except for cases with 𝑆 = 10% that demand more runtime
nd require a total of 4.8 × 105 iterations.

.1. Transient state

The complete flow evolution is available as Supplementary Con-
ent (see Appendix A), including the spanwise-averaged concentration
ields and the depth-averaged concentration fields for all cases. The
imulations are arranged vertically according to the bed slope 𝑆 and
orizontally according to the settling velocity 𝑢𝑠. All features of the
lunging flow in a tilted bed (see Fig. 1) can be seen, including the
hree main regions: depth-limited plume, plunging zone and underflow
egion (both the head and the body of the turbidity current).

Fig. 4 exhibits the spanwise-averaged concentration 𝑐 for case 5.0–
5 (𝑆 = 5% and 𝑢𝑠 = 0.0015) for dimensionless times 125, 250, 500, 1000
nd 2000 from (a) to (e), respectively, where the colored lines indicate
he layer-averaged flow height 𝐻 . Then, the other layer-averaged quan-
ities: (f) Velocity 𝑈 , (g) concentration 𝐶 and (h) densimetric Froude
umber 𝐹𝑟, calculated by (9) and (11). The dashed black lines represent
he initial assumptions for obtaining the plunging criterion. According
o (12), since the flow rate is constant at the depth-limited zone (and
s unitary in dimensionless terms) it can be assumed that the flow
elocity is the inverse of the channel’s depth ℎ(𝑥1) = 𝑆𝑥1 + 1. The
oncentration 𝐶(𝑥1), in turn, decays exponentially with 𝑥1 due to the
6

ettling velocity 𝑢𝑠 and the shape factor of the concentration profile 𝑟0,
ssumed as unitary. Finally, the expected variation in the densimetric
roude number 𝐹𝑟(𝑥1) can be obtained by rearranging Eq. (13). The
hree quantities are then written as

𝑈 (𝑥1) = 1∕ℎ(𝑥1), (15a)

𝐶(𝑥1) = exp(−𝑢𝑠𝑟0𝑥1), (15b)

𝑟(𝑥1) = 𝐹𝑟0

(

ℎ(𝑥1) exp
[

−𝜉
ℎ(𝑥1) − 1

3

])−3∕2
, (15c)

otice they are valid just upstream plunging, at the depth-limited zone.
oncerning the time evolution of the spanwise-averaged concentration,
e notice that both the plunge zone and the underflow head are
isible early on, and both move downstream as time progresses. At
≈ 2000, the current head leaves the test section, while the plunge
osition tends to a stationary position. The coloring gradually becomes
ighter with 𝑥1, since the sedimentation reduces the concentration of
uspended material. Both current body and head present an intense
ixture between the submerged turbidity current and the ambient

luid, mainly due to the Kelvin–Helmholtz vortices and the lobe-and-
left structures present in these regions. The depth-averaged velocity

in (f) shows good agreement between the measured velocities and
15a) in the depth-limited zone, between the channel entrance and the
lunge point. Downstream plunging, the reduction in height and the
ixture between the submerged flow and the ambient fluid result in
ew values for velocity, greater than the previous ones. It is noteworthy
hat for initial times (125 and 250) the measured velocity is visibly
bove the others, this is justified by the appearance of a recirculation
ubble near the entrance while the recycling technique at the entrance
f the domain is not yet fully established. Once the turbulence in
he recycling channel is fully developed, there is reattachment of the
low to the bed, and the measured speeds approach the estimated
alues. The depth-averaged concentration 𝐶 is displayed in Fig. 4g.
e observe exponential decaying as a function of the settling speed,

n good agreement with the initial assumption (15b) upstream of the
lunge zone. Downstream of plunging, the mixing at the body and
ead of the submerged flow dilutes the layer-averaged concentration.
he curves also work as an indicator for the temporal evolution of the
ront position 𝑥𝑓 , which is obtained for the highest value of 𝑥1 where
he concentration is non-zero. The densimetric Froude number 𝐹𝑟 is
resented in Fig. 4h. It is remarkable how the evolution of 𝐹𝑟 with

time remains close to the prediction (15c) upstream of plunging, even
during the initial flow development. It is observed that once the front
of the turbidity current reaches a fully developed state (𝑡 = 1000), the
densimetric Froude number in the region is close to unity, which is
consistent with the experimental results of Sequeiros et al. (2009) and
Sequeiros et al. (2018). After this, the head leaves the test section and
the underflow tends to a quasi-stationary state (𝑡 = 2000), a Froude
number around 2.0 is observed downstream plunging (where 𝑥1 = 250).
𝐹𝑟 is also used as a marker for obtaining the temporal evolution of the
plunge position 𝑥𝑝, since it is observed at Froude’s absolute minimum
position.
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Fig. 4. Spanwise-averaged concentration field 𝑐 for case 5.0–15 for times 125, 250, 500, 1000 and 2000 from (a) to (e), in addition to layer-averaged flow height 𝐻 . The other
depth-averaged quantities: (f) Velocity 𝑈 , (g) concentration 𝐶 and (h) densimetric Froude number 𝐹𝑟. The black dashed lines correspond to Eq. (15). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
The spatio-temporal data (𝑥𝑖 and 𝑡) are reduced to 2D (𝑥1 and 𝑡)
by means of spanwise and layer averages, computed according to (11).
Then the variables are used to track in time the two main features of
the plunging flow: first, the front position 𝑥𝑓 is obtained where the
layer-averaged concentration 𝐶 is equal to zero; second, the plunging
position 𝑥𝑝 occurs at the minimum value for the densimetric Froude
number 𝐹𝑟. The front velocity is defined as 𝑢𝑓 = 𝑑𝑥𝑓∕𝑑𝑡, and a moving
average in time is applied in order to reduce the noise in these curves.
The corresponding channel depth ℎ𝑝 and densimetric Froude number
𝐹𝑟𝑝 are obtained where 𝑥1 = 𝑥𝑝. All curves are presented in Fig. 5.
The maximum front velocity 𝑢𝑓 occurs right at the beginning of the
simulations (Fig. 5b), then the front faces a period of deceleration
and reaches a state of constant velocity. Subsequently the front leaves
the test section. The relation between settling velocity 𝑢𝑠 and initial
Froude number 𝐹𝑟0 provided by (13) produced an interesting effect;
the effective Froude numbers at the incipient plunging position (Fig. 5e,
for 𝑡 < 1000) are relatively close for a given bed slope 𝑆 and, as a
consequence, the initial development for the plunge point (Fig. 5b)
as well as for the front (Fig. 5a) depends only on 𝑆 for this set
of simulations. The cases with 𝑆 = 10% demand more run-time in
order to get a stable plunge position, as shown in Fig. 5b. Fig. 5c
presents the time evolution for the plunging position. Remember that
the parameters were computed according to (13), and all simulations
7

are expected to stabilize at 𝑥𝑝 = 150. In fact, this happened for the
five cases. On the other hand, the stable plunge position is downstream
of the expected value for the cases with 𝑢𝑠 = 0.0015 and cases with
𝑆 = 10%, and the plunging is upstream of the expected value for case
𝑆 = 1.25%; 𝑢𝑠 = 0.003. For the cases with small slope 𝑆 = 1.25%, this
movement of the stable plunging position presents less impact for depth
at plunging zone, as shown in Fig. 5c. More vigorous initial mixing is
expected in the plunging zone for larger slopes, and as a consequence
the Froude number at plunging is low, as shown in the model of Parker
and Toniolo (2007). That is why the plunging for cases 𝑆 = 10% occurs
downstream of our prediction.

6.2. Steady state

In this section, the spatio-temporal data (𝑥𝑖 and 𝑡) are reduced to
1D (𝑥1), so all variables can be analyzed as function of the stream-
wise direction only. Toward this end, a time average is employed for
2000 ≤ 𝑡 ≤ 4000, except for cases with 𝑆 = 10%, where the period is
4000 ≤ 𝑡 ≤ 6000. Then, the spanwise and layer averages are computed
according to (11). This data is used for the values presented in Table 1,
for reference, with respect to measurements at the plunge point and
downstream at the underflow. It presents distance for plunging 𝑥𝑝,
depth, concentration and densimetric Froude number at the plunge
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Fig. 5. Time evolution of (a) front position 𝑥𝑓 , (b) front velocity 𝑢𝑓 , (c) distance for
plunge location 𝑥𝑝, (d) channel depth at the plunging position ℎ𝑝 and (e) densimetric
Froude number at plunge point 𝐹𝑟𝑝, 𝐹𝑟𝑝 = 0.45 is shown for reference.

point (𝐻𝑝, 𝐶𝑝 and 𝐹𝑟𝑝, respectively) and downstream, at the end of
the test section (𝐻𝑑 , 𝐶𝑑 and 𝐹𝑟𝑑 , respectively), besides the mixing
coefficient 𝛾𝑑 = 𝑄𝑑∕𝑄0 − 1. The complete spatial variation of the
variables in the steady-state can be observed in Fig. 6.

The flow rate is constant in the depth-limited plume (see Fig. 1).
Therefore, the velocity 𝑈 (Fig. 6a) in this zone decays with 𝑥1, while the
flow depth 𝐻 (Fig. 6b) increases and the mixing coefficient 𝛾 (Fig. 6e)
is zero upstream of the plunge point. The concentration 𝐶 (Fig. 6c)
decays due the settling of the suspended material (when 𝑢𝑠 ≠ 0), which
reduces the effective concentration at the plunge point. The densimetric
Froude number (Fig. 6d), computed according to (9), has a maximum
8

a

Fig. 6. Steady-state time averaged spatial evolution of layer averaged: (a) velocity 𝑈 ,
(b) flow depth 𝐻 and (c) concentration 𝐶, computed according to (11). Besides, the
d) corresponding densimetric Froude number (𝐹𝑟𝑝 = 0.45 and 𝐹𝑟𝑑 = 1.1 are shown for
eference), computed according to Eq. (9), and (e) mixing coefficient 𝛾.

t the beginning of the channel, due to the tilted bed, the flow depth
ncreasing with 𝑥1 reduces the local Froude number, on the other hand,
he sedimentation decreases the depth-averaged concentration with
1, increasing the local Froude number. In the plunge zone, the flow
eaches its maximum depth 𝐻 , besides minimum values for velocity

and densimetric Froude number 𝐹𝑟. At this point, the reduction in
low depth and the conversion from vertical to streamwise velocity
roduce an acceleration over a very short distance (Fig. 6 a and b).
n the underflow density current, the velocity 𝑈 and depth 𝐻 are
lmost constant, while the concentration keeps decaying due to the
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Fig. 7. Time and spanwise averaged concentration and velocity field, represented
by color scheme and arrows, respectively. Red lines indicate the interface between
the ambient fluid and the underflow density current, considered in this work where
𝑢1𝑐 = 0.025. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

mixing with the ambient fluid and settling, once the numerical model
does not allow entrainment from bed sediment. The densimetric Froude
number in the plunge zone increases from 𝐹𝑟𝑝 ≈ 0.45 to 𝐹𝑟𝑑 ≈ 1.1 just
downstream, which is in agreement with previous studies in the same
configuration (Schuch et al., 2018; Lamb et al., 2010), and it keeps
increasing further downstream, in the developed underflow zone. All
simulated cases are supercritical (e.g., 𝐹𝑟𝑑 > 1), which is expected
when the bed slope is steeper than 1%, notice the value for 𝐹𝑟𝑑 depends
mostly on the bed slope, and secondary on bed roughness and settling
velocity, as explained in Sequeiros (2012).

The mixing between the ambient fluid and the underflow density
current starts downstream of plunging, as shown in Fig. 6e. For most
cases, a positive value indicates that the flow rate continuously grows
due to the incorporation of the ambient fluid into the underflow. How-
ever, the opposite is observed for the cases with high settling velocity
𝑢𝑠 = 0.003, the negative value for the mixing coefficient indicates that
the underflow is losing fluid to the ambient. As a consequence, the
ambient flow, which usually points in the opposite direction of the
current, is flowing in the same direction as the underflow for those
cases. This phenomenon, exemplified in Fig. 7 for the cases with 𝑆 =
10%, is explained by the thin fresh-water layer formed near the top
due to the settling of suspended material, in both depth-limited and
underflow zones. The density in this layer is lower than the current,
so the underflow loses its volume to the ambient, in a detrainment
process. The difference at the interface between the ambient and the
underflow in the plunge zone is also noticeable. It is observed as a sharp
9

Fig. 8. (a) Flow depth at plunge point versus flow depth at plunge point predicted
by Eq. (13). (b) Same results, in terms of the relative error. In both figures, the dashed
line indicates the 1:1 correlation, gray and blue region indicates the area covered by
the standard deviation for the error of the entire data and only the cases from this
work, respectively. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

edge when 𝑢𝑠 = 0 (Fig. 7a), on the other hand, a smooth transition
is observed when the settling speed increases (Fig. 7 b and c). Notice
that the plunge position 𝑥𝑝 is nearly the same for the three cases, even
considering the opposite dynamics in the ambient flow.

6.3. Plunging criteria

In this section, the depths at the plunge points measured from the
twelve numerical simulations are compared with the predicted values
computed from Eq. (13), proposed in this work. Note that the depth at
plunge point ℎ𝑝 = 𝑥𝑝𝑆 + 1 is not necessarily the same value obtained
for the layer-averaged depth 𝐻𝑝 (11b), nevertheless, just data for the
first is available in the literature and so it is used in this section for
comparison. The results are presented in Fig. 8 with the experimental
data of Arita and Nakai (2008) and Lamb et al. (2010), besides the
earlier numerical work of Schuch et al. (2018), considering 𝐹𝑟𝑝 = 0.45
and 𝑟0 = 1.5 as initial estimates, both values reported by Lamb et al.
(2010) for a similar set-up. The results in Fig. 8a show good agreement
between the values, for an absolute averaged difference of 0.32 ± 0.94
for the entire data (gray region) and −0.46 ± 1.29 only for the cases
of this study (blue region). The relative error is more relevant in this
comparison, the results presented in Fig. 8b show some scattering for
the experimental data, for a relative error of 18.79 ± 21.76. This can be
explained by a series of effects that are not taken into account by the
presented numerical framework, for instance, the free surface at the top
boundary, variations at the bed position, bed friction due to bedforms,
and others. On the other hand, since the proposed equation does not
take these effects into account either, the relative error is reduced to
−0.13 ± 11.04 if just the twelve cases of this study are considered.
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An improvement to the prediction would be possible with regard to
the initial estimates for the values of the densimetric Froude number at
the plunge point 𝐹𝑟𝑝 and the shape factor for the concentration vertical
rofile 𝑟0. The results presented at Table 1 indicate 𝐹𝑟𝑝 = 0.51 ± 0.047

and 𝑟0 = 1.22 ± 0.073, computed from Eq. (12b). There is no reason
o define these parameters as constant, since their values may be a
unction of some of the flow aspects, for instance, the bed slope angle,
he mixing rate, and the total friction coefficient. However, there is
o visual correlation between the values of 𝐹𝑟𝑝, 𝑟0 and the different

parameters considered in this study (initial densimetric Froude number
𝐹𝑟0, bed slope 𝑆 and particle settling velocity 𝑢𝑠).

7. Conclusions

A new equation for the plunging criterion was developed; it differs
from previous studies by including the role that the settling velocity
and the bed slope (or the ratio between both) have on the necessary
depth for plunging. The study establishes a parallel between the initial
densimetric Froude densimetric 𝐹𝑟0 and its correspondent value at the
plunge point 𝐹𝑟𝑝, by means of three assumptions that describe the
streamwise variation for the volumetric flow discharge, concentration
and flow height. The proposed equation has no analytical solution,
however, it can be solved numerically as a function of three char-
acteristic flow parameters: settling velocity 𝑢𝑠, bed slope 𝑆 and the
initial densimetric Froude number 𝐹𝑟0. In addition, there are two
constants that need to be estimated: densimetric Froude number at the
plunge point 𝐹𝑟𝑝 and the shape factor of the vertical concentration
profile 𝑟0. Here, the turbulence-resolving three-dimensional simulations
performed a fundamental role, since they provide information on the
flow for any position in time and space, by allowing to verify the
initial hypotheses established for the proposed plunging criterion. For
this purpose, twelve numerical simulations were designed, combining
four values for bed slope and three different settling velocities, in
addition to the experimental data available in the literature, and good
agreement was found between them. Once the validation of the initial
premises for the streamwise variation of the main flow quantities was
successful, it is highlighted that they can be applied as models for
future studies. A negative mixing coefficient was observed for the
first time for the hyperpycnal flow in a tilted channel. This indicates
that if the settling velocity of the suspended material is high enough,
the submerged flow may lose fluid to the environment (detrainment),
instead of incorporating fluid. Once this occurs, the ambient flows in
the same direction as the submerged flow, and the plunge point is no
longer a stagnation point (see Fig. 7c), as reported by several other
studies. The proposed plunging criterion may assist in the design of
future experimental or numerical works, mainly in the context of Direct
Numerical Simulation (DNS), which have a high computational cost.
DNS may be a future step for the study of the plunging flow tilted
channel, once the computational resources are available to do so.

Computer code availability

This work is based on the open-source Navier–Stokes solver Xcom-
pact3d. The code is available since 2006, written in Fortran-90, OS
independent (Fortran-90 and MPI compilers are required), licensed
under the GNU General Public License v3.0, more information can be
found at its repository github.com/xcompact3d/Incompact3d. A forked
version from the original code was developed for this work in order
to simulate the plunging flow, it is available at github.com/fschuch/
incompact3d_plunging_criterion.
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