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a b s t r a c t 

This numerical work investigates the potential of a high-order finite-difference spectral vanishing vis- 

cosity approach to simulate gravity currents at high Reynolds numbers. The method introduces targeted 

numerical dissipation at small scales through altering the discretisation of the second derivatives of the 

viscous terms in the incompressible Navier-Stokes equations to mimic the spectral vanishing viscosity 

(SVV) operator, originally designed for the regularisation of spectral element method (SEM) solutions of 

pure advection problems. Using a sixth-order accurate finite-difference scheme, the adoption of the SVV 

method is straightforward and comes with a negligible additional computational cost. In order to assess 

the ability of this high-order finite-difference spectral vanishing viscosity approach, we performed large- 

eddy simulations (LES) of a gravity current in a channelised lock-exchange set-up with our SVV model 

and with the well-known explicit static and dynamic Smagorinsky sub-grid scale (SGS) models. The ob- 

tained data are compared with a direct numerical simulation (DNS) based on more than 800 million 

mesh nodes, and with experimental measurements. A framework for the energy budget is introduced to 

investigate the behaviour of the gravity current. First, it is found that the DNS is in good agreement with 

the experimental data for the evolution of the front location and velocity field as well as for the stirring 

and mixing inside the gravity current. Secondly, the LES performed with less than 0.4% of the total num- 

ber of mesh nodes compared to the DNS, can reproduce the main features of the gravity currents, with 

the SVV model yielding slightly more accurate results. It is also found that the dynamic Smagorinsky 

model performs better than its static version. For the present study, the static and dynamic Smagorinsky 

models are 1.8 and 2.5 times more expensive than the SVV model, because the latter does not require 

the calculation of explicit SGS terms in the Navier-Stokes equations nor spatial filtering operations. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Gravity or density currents are commonly found in many phys- 

cal processes involving the mixing between two fluids of differ- 

nt densities. They are driven by the density difference between 

 heavy fluid and a lighter ambient fluid. In nature, they can 

ravel over long distances, up to hundreds of kilometres, in lakes, 

eas and oceans, with flow speeds of up to 20 m s −1 even on

early flat floors [88] . The density difference can be caused by 

emperature, salinity or solid material in suspension. Examples of 

uch flow phenomena are cold fronts, seafloor turbidity currents, 

now avalanches, riverine plumes, pyroclastic lava flows, or an- 

hropogenic like oil spills in the oceans and gas leaks in the at- 
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osphere, and debris flows in urban areas from buildings col- 

apse [1,99] . Understanding the physical mechanisms associated 

ith these currents as well as the correct prediction of their main 

eatures are of great importance for practical and theoretical pur- 

oses. Gravity currents observed in nature are complex, very vo- 

uminous and are extremely challenging and costly to study. As a 

esult, they have been mainly investigated in very simplified con- 

gurations such as the lock-exchange set-up (often in a channel 

onfiguration) where a sliding gate separates two volumes of fluid 

t rest; one volume contains a heavier fluid and the other a lighter 

ne. When the gate is removed, differences in hydrostatic pressure 

enerate a dense current moving along the bottom wall, while a 

eutrally buoyant current travels in the opposite direction along 

he top wall or free surface. Different phases of spreading have 

een identified for gravity currents in the lock-exchange set-up: (i) 

n acceleration phase where the current initially at rest reaches its 

https://doi.org/10.1016/j.compfluid.2021.104902
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2021.104902&domain=pdf
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aximum velocity, (ii) a slumping phase with a nearly constant 

ront velocity, (iii) an inertial phase for which the buoyancy driv- 

ng force is balanced by inertia and during which the current starts 

o decelerate, and (iv) a viscous phase for which the buoyancy 

riving force is balanced by viscosity [5,11,4 4,4 4] . Note that the 

ast two phases are sometimes referred to as self-similar phases 

44] , although in some set-ups (e.g. short tanks or high concentra- 

ions) the viscous phase may not be observed. Conversely, in low 

eynolds number cases (e.g. low concentration flows) the current 

ay rapidly shift to a viscous dominated phase of spreading with- 

ut experiencing an inertial phase (see [12] for details). Turbulent 

tructures have also been identified as key components of the dy- 

amics of gravity currents. Instabilities originating from the shear 

etween the current and the ambient flow, as well as the near- 

all high- and low-speed streaks, lead to well-known “lobe and 

left” structures located at the head of the current [29,42] . These 

oherent structures also enhance the exchange of mass and mo- 

entum between the ambient (lighter) and current (heavier) flu- 

ds, enabling mixing through turbulent entrainment [26,33,90,95] . 

To establish most of the existing knowledge on 

ravity currents, detailed experimental studies [8,9,21–

3,37,64,65,74,79,92,95,96,98,114] and direct numerical simula- 

ions (DNS) [10,28,34,71–73,115] have been employed, primarily, 

n simplified configurations. DNS requires the flow field to be 

esolved adequately down to the smallest turbulent scales, where 

he energy of the flow is dissipated into heat. With such resolution 

equirements and current petascale supercomputers, DNS for grav- 

ty currents are limited to moderate Reynolds numbers, typically 

e ∼ O(10 4 ) . DNS at higher Reynolds numbers are in theory pos- 

ible but require a substantial amount of computational resources. 

n the other hand, large-eddy simulation (LES) is another widely 

sed strategy to numerically study turbulent flows thanks to its 

bility to capture the main turbulent scales of the flow at a much 

ower cost than DNS, see [67,93] for an introduction. 

LES has emerged recently as an appropriate tool to study the 

ain features of gravity currents [18,66] . In LES, the mesh resolu- 

ion is fine enough to capture the dynamics of most of the turbu- 

ent scales (up to a filter/mesh scale) while the contribution of the 

nresolved small scales is modelled. The traditional presentation of 

ES is based on the introduction of a low-pass filter used to sep- 

rate the large-scale, resolved part of the flow from the residual, 

nresolved part, commonly referred to as the subgrid-scale (SGS) 

omponent . To this end, LES can provide answers to more-realistic, 

nd higher-Reynolds-number problems, however, it relies on the 

dequate modelling of the subgrid-scale part as well as the energy 

ransfers between the resolved and the subgrid scales which are 

oth often parametrised through structural eddy viscosity models 

35,68,100,109] . Inherently, the selection of the SGS model and the 

orrect tuning of its parameters can dramatically affect the qual- 

ty of the solution. Moreover, the interaction of the different LES 

arametrisations with the underlying numerical errors of the dis- 

retisation schemes was shown to be an important factor for ac- 

uracy [17,36,110] . To this end, implicit LES (iLES) methodologies, 

hich utilise purely dissipative numerical schemes (e.g. upwinding 

chemes), have become viable alternative solutions in LES studies 

y combining numerical and physical parametrisations [7,39] . 

More recently, a new class of dissipation-inducing numerical 

chemes has emerged for high-order methods originating from the 

oncept of spectral vanishing viscosity (SVV) proposed by Tadmor 

102] . While the method was originally proposed for regularising 

pectral solutions of the Burger’s equations, it was later employed 

o control high-wavenumber oscillations in the context of the in- 

ompressible Navier-Stokes equations [4 8,4 9,82,83] . Unlike the pre- 

iously mentioned implicit LES schemes (which often rely on up- 

ind schemes to add numerical dissipation), SVV adds dissipation 

xclusively to smaller scales, as defined by the mesh cut-off scale. 
2 
 recent effort to employ the concept of SVV in higher-order com- 

act finite difference schemes was proposed by Lamballais et al. 

55] , in which a numerical kernel was designed to manipulate nu- 

erical errors of the viscous term in the incompressible Navier- 

tokes equations (via customised finite-difference schemes for the 

econd derivatives). The strategy was initially aimed at control- 

ing dispersive and aliasing errors at near cut-off scales. Due to its 

xcellent performance, it was later extended and successfully ap- 

lied to LES studies of isotropic turbulence (i.e. Taylor-Green vor- 

ex, [20] ) as well as more complex flows (e.g. jets, wakes, etc.) 

19,25,46] . 

For gravity currents, several LES studies have been performed in 

ecent years, mainly based on an explicit SGS model approach. A 

eview of LES of gravity currents was presented in [18] along with 

ew results based on a dynamic Smagorinsky model and a non- 

issipative viscous flow solver. This work discussed how the evo- 

ution and structure of gravity currents change when the Reynolds 

umber is increased to values relevant in nature and environ- 

ental engineering applications. LES of lock-exchange in a chan- 

el set-up for a flatbed were performed in [76] . The LES solver in

his study used a non-dissipative numerical scheme and was com- 

ined with the dynamic Smagorinsky model to account for the ef- 

ect of the SGS stresses. The authors investigated the effect of the 

eynolds number on the near-bed flow structure and the friction 

elocity distribution at the bottom of the channel, by performing 

imulations up to Re ∼ 250 , 0 0 0 . The Reynolds number dependence

n mixing for lock-exchange gravity current was investigating in 

81] using DNS and LES. Six different LES models were tested and 

t was found that all LES models provide an improvement with re- 

pect to DNS, however, it was not possible to identify a clear and 

onsistent superior LES model. 

Gravity currents past circular cylinders mounted above a wall 

ere investigated in [38] using 2D and 3D LES with a focus on 

he force load on the cylinder and the behaviour of the friction 

elocity at the bottom wall near it. Their simulations considered 

eynolds numbers in the range of 2 , 0 0 0 − 45 , 0 0 0 . LES were also

mployed by Tokyay et al. [104] and Tokyay et al. [106] to inves- 

igate the structure and evolution of a gravity current in a chan- 

elised lock-exchange set-up with a series of identical large-scale 

bstacles (dunes and square ribs) at the channel bottom. A dy- 

amic approach similar to the dynamic Smagorinsky model was 

sed for the unresolved scales (see [87] for more details). These 

tudies looked into the effect of the roughness elements shape and 

eight as well as the Reynolds number dependence on the tem- 

oral variation of the front velocity, mixing, and flow structure 

f the current. In [77,78] LES based on the dynamic Smagorinsky 

odel were performed to study mixing and entrainment in un- 

teady gravity currents down a slope with different initial den- 

ity difference and aspect ratio for the released volume. Data were 

ompared with laboratory experiments, and the results showed a 

easonable agreement. Ottolenghi et al. [80] examined the abil- 

ty of Lattice-Boltzmann Method (LBM) to reproduce the funda- 

ental features of lock-exchange gravity current by performing 

D and 3D LES at different Reynolds numbers. A peculiar modi- 

cation of the basic LBM, equivalent to the Smagorinsky model, 

as employed using an effective collision relaxation time and ob- 

ained good agreement with laboratory data for Reynolds num- 

ers up to Re = 30 , 0 0 0 . LES of gravity currents in an axisym-

etric lock-exchange set-up were performed in [45] for Reynolds 

umbers spanning several orders of magnitude. Their results re- 

orted hydraulic shocks for high Reynolds numbers which is con- 

istent with results reported of [40] where a shallow-water equa- 

ion solver was used. LES of lock-exchange gravity currents propa- 

ating over a mobile reach were presented in [52] to study the un- 

erlying mechanisms leading to sediment entrainment for different 

eynolds numbers and grain sizes. To model the unresolved scales 
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Fig. 1. 2D schematic view of a channelised lock-exchange set-up. 
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n these two studies, the authors used the dynamic Smagorin- 

ky with the constant evaluated using the Lagrangian procedure 

f [69] (see [2,91] for more details). The choice of the Lagrangian 

odel in these studies was motivated by the absence of directions 

f homogeneity in the development of the currents. Density cur- 

ents with a continuous release with a jet shape of dense fluid 

rom a finite source down a sloping bed were studied recently in 

15] . The authors studied the influence of the slope angle and strat- 

fication using LES based on a dynamic Smagorinsky model. Several 

pproaches based on LES SGS models, detached eddy simulation 

DES), delayed-detached eddy simulation (DDES), Launder-Reece- 

odi (LRR), and k- ε models were evaluated by Emami et al. [27] for 

ravity currents in the lock-exchange set-up. It was found that only 

ES and LES were able to capture the Kelvin-Helmholtz instability 

nd the viscous phase of spreading. More recently, [86] used 200 

ES based on the Smagorinsky model to provide a statistical anal- 

sis of a lock-exchange gravity current propagating over a 2% slope 

or a Reynolds number of 60,0 0 0, matching the experiments of 

111] . It was found that the front velocity compares very well with 

nalytical scaling laws, as well as experimental and numerical re- 

ults previously reported. Likewise, the Kelvin-Helmholtz instabili- 

ies and the lobe and cleft instabilities at the front were correctly 

redicted. The authors also discussed the mechanisms of produc- 

ion and destruction of turbulence at the front of the current. The 

ame authors investigated the influence of the mesh resolution in 

 LES context for a lock-exchange turbidity current [85] . The sim- 

lations were performed with a standard Smagorinsky model for 

 range of Reynolds numbers ranging from transitional currents to 

ully-developed ones. Spanwise two-point correlations were used 

o inform on the resolution needed to resolve the largest scales of 

he current and to check the placement of the LES filter size inside 

he inertial range. 

In the present numerical study, the potential of the high-order 

nite-difference spectral vanishing viscosity approach of [55] is in- 

estigated to accurately simulate gravity currents at high Reynolds 

umbers. The method can introduce a targeted numerical dissipa- 

ion at small scales through the discretisation of the second deriva- 

ives of the viscous term in the incompressible Navier-Stokes equa- 

ions, mimicking a conventional spectral vanishing viscosity (SVV) 

pproach. Based on sixth-order accurate finite-difference schemes, 

he method is straightforward to implement with a negligible com- 

utational extra cost by comparison to more conventional explicit 

ES models. The computational set-up and Reynolds number have 

een chosen so that they match the experimental measurements 

f [33] . In order to properly assess the potential of this SVV model, 

 large-scale DNS is also performed in order to compare quantities 

hich are not available experimentally. To the best of our knowl- 

dge, this is one of the DNS with the highest Reynolds number 

or gravity currents in a lock-exchange set-up. LES with the well- 

nown static and dynamic Smagorinsky models are also performed 

or comparison purposes. A novel framework for the energy bud- 

et is also introduced, in order to investigate the behaviour of 

he gravity current. One additional noverlty of the present study 

s that the LES are performed in the context of highly accurate 

nite-difference numerical methods. Such methods are desirable in 

 DNS context due to their ability to provide accurate results. How- 

ver, in the context of LES, the sensitivity of high-order schemes at 

mall scale can be counterproductive if there is a direct source of 

umerical errors, such as aliasing [51] at scales close to the mesh 

ize. In particular, an explicit SGS model designed to reproduce the 

issipation of the unresolved scales can be a strong source of nu- 

erical errors (the extra non-linearity introduced in the LES equa- 

ions can produce additional aliasing errors). 

The paper is organised as follows: the problem definition, the 

ifferent LES approaches and the flow solver are described in 

ection 2 . The comparison between the experiments of [33] and 
3 
ur DNS is presented in Section 3 followed by the LES results in 

ection 4 . The paper is ended by a summary and conclusion in 

ection 5 . A sensitivity study regarding the SVV approach is pre- 

ented in Appendix A . 

. Problem definition and modelling approaches 

.1. Governing equations 

To simulate gravity currents in a channelised lock-exchange set- 

p, we consider a finite volume release of a heavier fluid (density 

c ) into a horizontal channel filled with lighter and initially calm 

mbient fluid (density ρa ). Schematically, the flow configuration is 

resented in Fig. 1 . The streamwise direction is x 1 , the vertical di- 

ection is x 2 and the spanwise direction is x 3 . 

The heavier fluid is enclosed in a sub-domain of size L 1 ,b ×
 2 ,b × L 3 in the computational domain of size L 1 × L 2 × L 3 . At the

nitial time t = 0 , the heavier fluid is released and the flow is

riven purely by gravitational effects. To describe the dynamics of 

he gravity current mathematically, we make use of the unsteady 

ncompressible Navier-Stokes equations coupled with a density 

ransport equation. The coupling is achieved through a Boussinesq 

pproximation of the gravitational term (ρc − ρa ) /ρa ge 
g 
i 

where g

s the gravity acceleration and e 
g 
i 

= (0 , −1 , 0) represents the unity

ector acting in the direction of gravity. In the most generic, non- 

imensional and unified (to accommodate both DNS and the vari- 

us LES approaches) form, the governing equations can be written 

s 

∂u i 

∂x i 
= 0 , (1a) 

∂u i 

∂t 
= −1 

2 

(
u j 

∂u i 

∂x j 
+ 

∂u i u j 

∂x j 

)
− ∂ p 

∂x i 
+ 

1 

Re 
D + e g 

i 
Riρ, (1b) 

∂ρ

∂t 
= −u j 

∂ρ

∂x j 
+ 

1 

Re · Sc 
Q (1c) 

here u i is the velocity vector field, p the pressure field and ρ
s the density field. No reference to any filter is explicitly writ- 

en in the equations. In a LES context, the unknowns u i , ρ and 

p should be interpreted as the large-scale component of velocity, 

ensity and pressure. 

The momentum diffusion term D can be expressed as 

 = 

∂ 2 u i 
∂ x j ∂ x j 

for DNS (see section 2.2) , 

 = 

∂ 

∂x j 

[
(1 + Re · νt ) 

(
∂u i 
∂x j 

+ 

∂u j 

∂x i 

)]
for explicit LES (see section 2.3), 

 = 

∂ 2 u i 
∂ x j ∂ x j 

+ 

∂ 

∂x j 

(
Q c � 

∂u i 
∂x j 

)
for SVV model (see section 2.4). 

νt is the eddy viscosity computed by an explicit LES model. 

 c is a hyperviscous kernel used to construct the SVV operator 
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1 Freely available at github.com/xcompact3d/ 
hrough a convolution operation (� ) , as explained in Section 2.4 . 

t will be shown that the hyperviscous kernel, although conceptu- 

lised purely in the spectral (wavenumber) domain, is meant for 

nd applied only to the physical domain. The non-linear term of 

he momentum equation is computed in the skew-symmetric form 

or increased stability and to reduce aliasing errors [51] , while the 

on-linear transport term is evaluated in its non-conservative form 

ue to the use of different types of boundary conditions for the 

ensity field and velocity fields. The density diffusion term Q is 

efined in a similar fashion to the momentum diffusion term D
the operators for the derivatives in Q are the same as the opera- 

ors in D). Nonetheless, irrespective of the viscous/density diffusion 

perators formulation the non-dimensional governing equations 

re both expressed in terms of the Reynolds ( Re ) and Richardson 

 Ri ) numbers. Their magnitude will ultimately change the physi- 

al characteristics of turbulence and therefore should be defined 

nd computed with respect to the problems physical parameters. 

hus, based on the initial density difference between the heavier 

nd ambient fluid as well as the initial height L 2 ,b of the heavy 

uid column we apply an energy balance, 

1 

2 

ρc U 

2 
b = 

1 

L 2 ,b 

∫ L 2 ,b 

0 

g(ρc − ρa ) x 2 d x 2 , (3) 

o obtain a characteristic (or buoyancy) velocity scale U b = 

√ 

g ′ L 2 ,b , 
here g ′ = g(ρc − ρa ) /ρa . Here we also assume for the energy bal- 

nce that the entire dynamic energy of the initial set-up is con- 

erted to kinetic energy without any losses. This assumption al- 

hough not valid (due to viscous effects), allows us to define global 

haracteristic scales for the velocity and time variables. With this 

efinition, the characteristic global Reynolds number can be ex- 

ressed as 

e = 

U b L 2 ,b 
ν

, (4) 

here ν is the kinematic viscosity assumed to be the same for the 

wo fluids. Similarly, the overall (bulk) Richardson number is given 

y 

i = 

g ′ L 2 ,b 
U 

2 
b 

. (5) 

ote that the choice of L 2 ,b as characteristic length scale leads 

o Ri = 1 . Additionally, we may define a dimensionless time scale 

= L 2 ,b /U b which can be used to scale the time evolution of the 

ravity current. Finally, for the density transport the Schmidt (or 

randtl in the case of temperature) number Sc = ν/κ is defined 

ased on a (constant) molecular diffusivity coefficient of the strat- 

fying agent κ and is set to unity to avoid the use of finer meshes.

t has been shown in [6] that the Schmidt number only weakly 

nfluences the structure and dynamics of gravity currents if the 

eynolds number of the flow is large, O (10 4 ) or more. On the con-

rary, gravity currents at low to moderate Reynolds numbers are 

ependant on the Schmidt number as the structure of the mixing 

egion and the front velocities can be modified by diffusion effects. 

Regarding boundary conditions and initial conditions, a no-slip 

oundary condition is applied for the velocity for x 2 = 0 while 

ree-slip boundary conditions for x 1 = 0 , x 1 = L 1 and x 2 = L 2 and

eriodic boundaries in the spanwise direction are imposed. For the 

ensity, a zero-flux ( ∂ ρ/∂ x i = 0 ) boundary condition is applied ev-

rywhere ( x 1 = 0 , x 1 = L 1 , x 2 = 0 , x 2 = L 2 ), except in the spanwise

irection where periodic boundary conditions are imposed. For the 

nitial condition, the density concentration is prescribed by 

(x 1 , x 2 , x 3 , t = 0) = 0 . 5 − 0 . 5 tanh 

[
δb (x 1 − L 1 ,b ) 

]
. (6)

n this work, the value δb = 20 was found sufficient to avoid dis- 

ontinuities in the derivatives while having a sharp enough pro- 

le to reproduce a virtual gate, even for the coarse mesh of the 
4 
ES. Furthermore, the initial spatially-averaged velocity field is zero 

verywhere in the domain with white noise (corresponding to an 

nitial kinetic energy of 1%) superposed to all velocity components 

t the gate position ( x = L 1 ,b ) in order to trigger flow instabilities

similar to the removal of the gate in an experiment). 

.2. Flow solver 

The simulations in this study are carried out within the 

pen-source, turbulence simulation framework Xcompact3D 1 , 
esigned for DNS and LES of incompressible and low-Mach 

umber flows using a Cartesian mesh and high-order finite- 

ifference schemes [3,53,54] . The incompressible flow solver 

ithin Xcompact3D is called Incompact3d and is based on 

ixth-order compact finite-difference schemes [53] for the spatial- 

iscretisation and a fractional-step method using a third-order ex- 

licit Adams-Bashforth method for the temporal integration (other 

ime schemes are available, depending on the flow configuration). 

ithin the fractional-step method, the incompressibility condition 

s dealt with by directly solving a Poisson equation in spectral 

pace using 3D Fast Fourier Transforms and the concept of the 

odified wavenumber [56] . The velocity-pressure mesh arrange- 

ent is half-staggered to avoid spurious pressure perturbations 

53] . 

The simplicity of the mesh allows an easy implementation of 

 2D domain decomposition based on pencils [54] . The compu- 

ational domain is split into a number of sub-domains (pencils) 

hich are each assigned to an MPI-process. The derivatives and 

nterpolations in the x-direction (y-direction, z-direction) are per- 

ormed in X-pencils (Y-pencils, Z-pencils), respectively. The 3D FFTs 

equired by the Poisson solver are also broken down as a series 

f 1D FFTs computed in one direction at a time. Global transpo- 

itions to switch from one pencil to another are performed with 

he MPI command MPI_ALLTOALL(V) . The flow solvers within 

compact3D can scale well with up to hundreds of thousands 

f MPI-processes for simulations with several billion mesh nodes 

54] . The Xcompact3D framework has been used recently to per- 

orm DNS of Boussinesq gravity currents in various set-up and for 

 wide range of Reynolds numbers [28,29,34,62] and DNS of non- 

oussinesq gravity currents [4] . Finally, further validation and veri- 

cation studies of the code for the SVV model and the explicit LES 

odels can be found in: [19,20,24,25,46,94] . 

.3. Explicit SGS modelling 

In this study, two reference explicit SGS models have been 

ested for comparison with the present SVV approach. Explicit LES 

elies on the direct modelling of the velocity and density subgrid- 

cale (SGS) stresses which appear in the momentum and density 

ransport equations. To this end, the eddy viscosity νt and diffusiv- 

ty κt variables are defined to approximate the subgrid-scale (SGS) 

tresses under the Boussinesq hypothesis, 

i j = −2 νt S i j (7a) 

 j = −κt 
∂ρ

∂x j 
(7b) 

here S i j = 0 . 5( 
∂u i 
∂x j 

+ 

∂u j 

∂x i 
) is the strain rate tensor. The eddy vis-

osity νt and eddy diffusivity κt are connected through the tur- 

ulent Schmidt number, κt = νt /Sc t . In our simulations the turbu- 

ent Schmidt number is set to unity as in the vast majority of nu- 

http://www.github.com/xcompact3d/
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erical studies of gravity currents. Alternatively, an empirical re- 

ationship to scale Sc t as function of the coupling term can be 

ought (see [63,108] ). The eddy viscosity can be modelled using 

 functional approach such as the ones afforded by the standard 

r dynamic Smagorinsky models [35,100] . Starting with the stan- 

ard Smagorisnky model (SSM), the eddy viscosity is assumed to 

e proportional to the magnitude of the strain rate | S | as well as 

 length scale l S = C S 
 which is proportional to the mesh scale 

= 

3 
√ 


x 1 
x 2 
x 3 and an empirical coefficient C S , 

t = C 2 S 

2 | S | . (8) 

he empirical coefficient C S = 0 . 15 is chosen for the simulations 

hich is close to the theoretical value proposed by Lilly [59] for 

sotropic and homogeneous turbulence (a preliminary study con- 

rmed that this value was the optimal value for the present set- 

p). The SSM has enjoyed popularity over the years thanks to its 

imple implementation, however, it has been found to behave over- 

issipatively near walls and/or within turbulence-transition regions 

67] . To this end, an alternative calculation of the eddy viscos- 

ty was proposed by Germano et al. [35] to adjust the Smagorin- 

ky coefficient C S in both space and time through a purely dy- 

amic procedure. The model is based on Germano’s algebraic iden- 

ity [35] which relates subgrid/filter-scale stresses computed at two 

ifferent levels, 

 i j = T i j − ˜ τi j = 

˜ u i u j − ˜ u i ̃  u j (9) 

here T i j = 

˜ u i u j − ˜ u i ̃  u j are the test filter level scale stresses, and 

˜ τi j 

re the subgrid-scale stresses filtered at the test filter scale. Note 

hat ˜ ( . . . ) denotes the test filter level operation with 

˜ 
 = 2
. By 

ssuming an eddy viscosity model such as the standard Smagorin- 

ky just described in the previous paragraph and using Lilly’s least- 

quares normalisation technique [60] we may obtain an expression 

or the DS eddy viscosity, 

t = 

1 

2 

〈 M i j L i j 

M kl M kl 

〉 
x 3 


2 | S | , (10) 

here 

 i j = 2
2 ˜ | S| S i j − 2 ̃

 
2 | ̃  S | ̃  S i j . (11) 

〉 x 3 corresponds to an average in the spanwise direction (homo- 

eneous direction of the current). The eddy viscosity and diffusiv- 

ty are subsequently used in the momentum and density diffusion 

erms for their calculations as discussed in sub- Section 2.1 . 

.4. Spectral vanishing viscosity 

Spectral vanishing viscosity (SVV) used as a LES model has 

ts roots in the concepts of spectral and hyper eddy viscosity 

14,43,50] . The key idea of spectral eddy viscosity as discussed by 

raichnan [50] is that if one closely examines how eddy viscosity 

cts upon different wavenumber modes, then it can be shown that 

ddy viscosity must be allowed to depend upon the wavenum- 

er magnitude. With this development, wavenumber dependent or 

imply spectral eddy viscosity (SEV) models were devised and ap- 

lied in the spectral domain by Chollet and Lesieur [16] , Lesieur 

nd Rogallo [58] , Métais and Lesieur [70] . For more information on 

EV models, the reader is referred to the review of [57] . On the

ther hand, [43] undertook high-Reynolds number turbulence sim- 

lation by using the concept of hyperviscosity ( ν∇ 

6 u instead of 

∇ 

2 u ) and observed no significant differences as far as the iner- 

ial region or the bottleneck phenomenon [30] of the energy spec- 

ra is concerned, while significantly reducing their mesh resolution. 

pectral vanishing viscosity combines the two models by concep- 

ualising eddy viscosity in the spectral domain but applying it in 

he physical domain in a form similar to hyperviscosity. The SVV 

perator is implemented by multiplying the Fourier coefficients of 
5 
he velocity field, u i , with the Fourier coefficients of a smooth SVV 

ernel Q c , 

0 
∂ 

∂x j 

[ 
Q c � 

∂u i 

∂x j 

] 
= −ν0 

∑ 

k 0 ≤| k |≤k c 

k 2 ̂ Q c ̂  u k e 
ikx k (12) 

here ν0 is the magnitude of SVV, � denotes a convolution oper- 

tor and k n and k 0 are the cut-off wavenumber (defined by the 

esh size) and the wavenumber above which SVV is activated, re- 

pectively. The Fourier coefficients of the smooth kernel, may be 

xpressed via an exponential function following [48] 

̂ 

 c (k ) = exp 

[ 
−

(
k − k c 

γ k c − k 

)2 ] 
, for k ≥ γ k c . (13) 

his kernel is different from the original Heaviside function pro- 

osed by Tadmor [102] and it can be argued that it exhibits a num- 

er of advantages. It should be noted that one may easily change 

he shape of the kernel by changing the value of γ . With increas- 

ng γ the SVV kernel becomes steeper and thus affects only the 

maller length-scales. On the other hand, as γ becomes smaller, 

he range of the scales affected by eddy viscosity is broadened, 

hich better resembles the behaviour of a spectral eddy viscosity 

odel. For our study, a value γ = 0 . 3 is chosen as it is the value

hich gives the closest match with the exponential model of [48] . 

he effect of parameter γ is shown in Fig. 2 where the wavenum- 

er range in which the SVV viscosity is applied (and its respective 

mplitude) appears to decrease with increasing γ . The implemen- 

ation of the discrete SVV kernel in the framework of high-order 

ompact finite-differences is discussed in sub- Section 2.5 . 

Compared to the hyperviscosity model, e.g. [43] , spectral van- 

shing viscosity differs in that the amount of dissipation added 

o the solution is active only after a particular wavenumber and 

herefore does not affect large energetic scales (triad interaction 

etween the resolved scales). Finally, regarding determining the 

agnitude of eddy viscosity ν0 , most previous studies have re- 

ied on a “trial-and-error” approach, and an optimum value is of- 

en selected based on a better agreement with the reference data. 

n recent work, however, [20] determined the magnitude of SVV in 

he context of isotropic turbulence using Pao’s equilibrium energy 

pectrum. This approach will be considered here together with 

everal other values for ν0 . An alternative approach is that of using 

he dynamic SVV model [25,49] in which the spectral eddy viscos- 

ty is scaled locally by the magnitude of the strain-rate tensor. Such 

n approach for gravity currents was tested in a preliminary study 

nd did not provide an improvement in the quality of the solution 

hen compared to the approach used in the present work. 
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.5. Implementation of the SVV and filtering operators using 

igh-order finite-difference schemes 

The high-order strategy considered in this study for accuracy 

s based on finite-difference schemes implemented on a Cartesian 

esh. The main advantages of this specific numerical configura- 

ion being its simplicity and efficiency [53,56] . The second order 

erivatives in the momentum diffusion term D and density dif- 

usion term Q are based on a compact (implicit) finite-difference 

cheme, with a 3–9 node stencil: 

f ′′ i −1 + f ′′ i + α f ′′ i +1 = a 
f i +1 − 2 f i + f i −1 


x 2 
+ b 

f i +2 − 2 f i + f i −2 

4
x 2 

+ c 
f i +3 − 2 f i + f i −3 

9
x 2 
+ d 

f i +4 − 2 f i + f i −4 

16
x 2 
, (14) 

here f i = f (x i ) and f ′′ 
i 

= f ′′ (x i ) represent discrete approximations

f the function f (x ) and its second derivative f ′′ (x ) at nodes x i =
i − 1)
x where 
x is the uniform mesh spacing. Such schemes 

ave a so-called quasi-spectral behaviour [56] due to their capabil- 

ties to represent accurately a wide range of scales. A Fourier anal- 

sis for such schemes, for which f (x ) and f ′′ (x ) are decomposed

nd analysed in the Fourier space ( ˆ f ′′ l = −k 2 ˆ f l , where ˆ f l and 

ˆ f ′′ l 
re Fourier coefficients and k 2 are the associated wavenumbers), 

an provide an effective way to quantify their resolution character- 

stics [56] . A Fourier analysis of the above scheme yields a modi- 

ed wavenumber, 

 

′′ ( k ) = 

2 a [ 1 −cos ( k 
x ) ] + b 2 [ 1 −cos ( 2 k 
x ) ] + 2 c 9 [ 1 −cos ( 3 k 
x ) ] + d 8 [ 1 −cos ( 4 k 
x ) ] 


x 2 [ 1+2 α cos ( k 
x ) ] 
. 

(15) 

hich depends on coefficients (α, a, b, c, d) . These coefficients are 

etermined based on a desired formal accuracy of the second 

erivative (e.g fourth- or sixth-order accuracy) by satisfying the 

ollowing equations in an accumulating order, 

 + b + c + d = 1 + 2 α (second order) (16a) 

 + 2 

2 b + 3 

2 c + 4 

2 d = 

4! 

2! 
α (fourth order) (16b) 

 + 2 

4 b + 3 

4 c + 4 

4 d = 

6! 

4! 
α (sixth order) (16c) 

 + 2 

6 b + 3 

6 c + 4 

6 d = 

8! 

6! 
α (eight order) (16d) 

 + 2 

8 b + 3 

8 c + 4 

8 d = 

10! 

8! 
α (tenth order). (16e) 

For example, by satisfying all equations up to (16c) the coeffi- 

ients are calculated to be equal to α = 2 / 11 , a = 12 / 11 , b = 3 / 11

nd c = d = 0 and the approximation is sixth-order accurate [56] .

he rationale here is to obtain the desired accuracy with the small- 

st possible stencil while keeping the implicit character of the 

cheme, hence the choice of c = d = 0 . Following however [55] a

iscrete SVV operator may be constructed by allowing k ′′ to mimic 

he behaviour of the analytical model of [48] for which the extra 

umerical viscosity can be expressed as 

νSV V (k, k c ) 

ν0 

= 

{ 

0 if k < 0 . 3 k c 

exp 

[ 
−

(
k c −k 

0 . 3 k c −k 

)2 ] 
if 0 . 3 k c ≤ k ≤ k c , 

(17) 

here k c = π/ 
x is the mesh cut-off wavenumber. It is possible 

o customise the finite-difference scheme (14) to mimic this SVV 

perator while maintaining a sixth-order accuracy by satisfying all 

quations up to (16c) . However two more constrains need to be 
6 
dded to the system of equations at k = k m 

= 2 / 3 k c and k = k c so

hat 

 

′′ (k c ) = 

(
1 + 

ν0 

ν

)
k 2 c , (18a) 

 

′′ (k m 

) = 

(
1 + 0 . 437 

ν0 

ν

)
k 2 m 

. (18b) 

here ν0 /ν is set to be the desired ratio between the 

VV magnitude ν0 and the background kinematic viscosity ν . 

quations (18a) and (18b) are determined by requiring −νk ′′ (k ) = 

[ ν + νSV V (k )] k 2 at both k = k c and k = k m 

= 2 / 3 k c . With these

wo constraints and to keep a sixth-order accuracy, the set of co- 

fficients for the scheme (14) can be expressed as, 

= 

1 

2 

− 320 k ′′ m 


x 2 − 1296 

405 k ′′ c 
x 2 − 640 k ′′ m 


x 2 + 144 

(19a) 

 = −4329 k ′′ c 
x 2 / 8 − 32 k ′′ m 


x 2 − 140 k ′′ c 
x 2 + 286 

405 k ′′ c 
x 2 − 640 k ′′ m 


x 2 + 144 

(19b) 

 = 

2115 k ′′ c 
x 2 − 1792 k ′′ m 


x 2 − 280 k ′′ c 
x 2 + 1328 

405 k ′′ c 
x 2 − 640 k ′′ m 


x 2 + 144 

(19c) 

 = −7695 k ′′ c 
x 2 / 8 + 288 k ′′ m 


x 2 − 180 k ′′ c 
x 2 − 2574 

405 k ′′ c 
x 2 − 640 k ′′ m 


x 2 + 144 

(19d) 

 = 

198 k ′′ c 
x 2 + 128 k ′′ m 


x 2 − 40 k ′′ c 
x 2 − 736 

405 k ′′ c 
x 2 − 640 k ′′ m 


x 2 + 144 

, (19e) 

here k ′′ c is the expected value of k ′′ at the mesh cut-off

avenumber and k ′′ m 

is the expected value of k ′′ at 2 / 3 of the mesh

ut-off wavenumber. 

The resulting discrete “hyper-viscous” operator contains both 

he SVV and viscous parts. Thus, the actual behaviour of the dis- 

rete SVV operator in the wavenumber space can be found only 

fter we separate the viscous part ( −νk 2 ), from the hyper-viscous 

art −νk ′′ , and obtain the actual discrete spectral vanishing vis- 

osity ν ′′ (k ) via 

ν ′′ (k ) k 2 = −ν(k ′′ − k 2 ) . (20) 

 plot of the final discrete SVV operator is shown in Fig. 3 to-

ether with the analytical function of [48] . The theoretical “modi- 

ed” wavenumber kernel is equal to k ′′ = (1 + ν ′′ (k ) /ν) k 2 . 

The discrete SVV kernel is found to be a satisfactory approxima- 

ion of the analytical operator of [48] for the whole wavenumber 

ange with only small deviations at the near cut-off 0 . 75 k c < k < k c 
nd half cut-off 0 . 4 k c < k < 0 . 6 k c wavenumbers where only small

ifferences in the relative magnitude are observed ( ∼ 10 − 20% ). 

hese differences are not expected to alter either the quality of our 

esults or our conclusions. 

Regarding the filtering operator required by the dynamic 

magorinsky model, a discrete test filter is constructed using com- 

act finite differences. The filtered fluid property ˆ f i is computed 

ith a 3 − 9 node stencil, 

ˆ f i −1 + 

ˆ f i + α ˆ f i +1 = a f i + 

b 

2 

( f i +1 + f i −1 ) + 

c 

2 

( f i +2 (21) 

+ f i −2 ) + 

d 

2 

( f i +3 + f i −3 ) , 

here the coefficients α, a, b, c, d are set to satisfy sixth-order 

ccuracy which is consistent with the truncation error of all 

ther spatial discrete operators. Hence, the discrete filter co- 

fficients are found to be equal to a = 0 . 0625(11 + 10 α) , b =
 . 0312532(15 + 34 α) , c = −0 . 0625(3 − 6 α) , d = 0 . 03125(1 − 2 α) ,

here α ∈ [ −0 . 5 , 0 . 5] is a free user-defined parameter. In our study
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Fig. 3. Modified wavenumber k ′′ and the spectral vanishing viscosity (SVV) kernel for the analytical operator of [48] and the proposed operator normalised by the SVV 

magnitude ν0 . 
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e have chosen to use α = 0 to approximate a Gaussian filter in 

he wavenumber space, aiming at an effective filter size equal to 
˜ ≈ 2
. Finally, it is noteworthy that for non-periodic boundaries 

nd for stability reasons, filtering at the first mesh node is avoided. 

.6. Energy budget framework 

A complete energy budget for gravity currents in the lock- 

xchange set-up can be extracted from the governing equations 

nd density transport equation, see [73] and [28] . The energy bud- 

et can be used to better understand gravity currents by investigat- 

ng the temporal evolution of the potential energy, kinetic energy 

nd associated energy transfer mechanisms. In the present study, 

he conceptual framework of [112] , based on available and back- 

round potential energy [61] , is adapted to lock-exchange gravity 

urrents. Such a framework, which has been widely used for strat- 

fied flows [31,33,75,77,84] , can distinguish the stirring (a large- 

cale reversible process) and mixing (a small-scale irreversible pro- 

ess) features of a gravity current. As explained in the experimen- 

al reference study of [33] , this approach can explicitly capture 

he changes in potential energy due to adiabatic processes, which 

ransport fluid elements without molecular mass or heat transfer 

stirring), from changes due to diabatic processes (mixing). The en- 

rgy budget will be used for comparison with the experimental 

ork of [33] and to assess the performance of the LES models. 

Overall, the total energy T for the gravity current is equal to 

 (t) = P a (t) + P b (t) + K(t) + I(t) , (22)

here P a is the available energy, P b is the background energy, K
s the total kinetic energy and I is the internal energy. The total 

otential energy P is defined as 

(t) = 

∫ 
V 

[ ρ(x 1 , x 2 , x 3 , t) x 2 ]d V, (23)

here the integral is taken over the full computational domain. 

he background potential energy P b is defined as the minimum 

otential energy attainable through an adiabatic redistribution of 

he density field. It can be expressed as a function of time as 

 b (t) = 

∫ 
V 

ρ∗(x 1 , x 2 , x 3 , t) x 2 d V. (24)

∗(x 1 , x 2 , x 3 , t) is the density field redistributed in the minimal en-

rgy state (see as an example Fig. 2 of [33] ). In our simulations,

 b is approximated from the 3D density snapshots with the pdf 

ethod, sampled with a computationally inexpensive empirical cu- 

ulative distribution function (e.c.d.f.), following an approach in- 

roduced by Oezgoekmen et al. [75] , Tseng and Ferziger [107] . The 

vailable potential energy P a is defined as the difference between 
7 
he total potential energy P and the background potential energy 

 b 

 a (t) = P(t) − P b (t) , . (25) 

wo routes are available for the conversion of available potential 

nergy P a to background potential energy P b . The first route is as- 

ociated with stirring. The total kinetic energy K, defined as 

(t) = 

1 

2 

∫ 
V 

[
u 

2 
1 (x 1 , x 2 , x 3 , t) + u 

2 
2 (x 1 , x 2 , x 3 , t) + u 

2 
3 (x 1 , x 2 , x 3 , t) 

]
d V.

(26) 

an be modified via reversible vertical buoyancy flux, defined as 

 (t) = 

∫ 
V 

ρ(x 1 , x 2 , x 3 , t) u 2 (x 1 , x 2 , x 3 , t)d V. (27)

hanges in total kinetic energy K can indeed be associated with 

hanges in dissipation (the total kinetic energy will eventually be 

ransformed in heat via dissipation), which will affect the internal 

nergy and ultimately the background energy via density diffusion. 

he total viscous dissipation can be explicitly computed as 

(t) = 

1 

Re 

∫ 
V 

∂u i (x 1 , x 2 , x 3 , t) 

∂x j 

∂u i (x 1 , x 2 , x 3 , t) 

∂x j 
d V, i, j = 1 , 2 , 3 . 

(28) 

hile density diffusion can be defined as 

(t) = 

1 

ReSc 

∫ 
V 

x 2 
∂ 2 ρ(x 1 , x 2 , x 3 , t) 

∂x 2 
i 

d V i = 1 , 2 , 3 . (29)

iscous dissipation and density diffusion are unidirectional energy 

echanisms which act as source and sink of the internal energy, 

espectively. The internal energy I can be evaluated as 

(t) = 

∫ t 

0 

[ ε(t) − �(t )]d t . (30) 

The second route for the conversion of available potential en- 

rgy P a to background potential energy P b is a direct route, known 

s irreversible dyapicnal mixing. The term dyapicnal refers to the 

act that mixing is a diffusive process across interfaces of differ- 

nt densities (also known as diapycnal surfaces), hence this route 

s only available in stratified flows as explained in [112] . In the 

urrent framework, irreversible dyapicnal mixing is defined as an 

rreversible energy transfer mechanism acting towards smoothing 

radients of ρ (directly increasing the background potential energy 

 b ). Following the work of [112] , irreversible dyapicnal mixing can 

e simply defined as the time derivative of 

(t) = 

˙ P b (t) . (31) 
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Fig. 4. New energy budget framework for gravity currents in a lock-exchange set- 

up. 
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The energy budget framework is presented in Fig. 4 , with the 

istribution of energy among the different terms. Note finally that 

n the next sections, the energy budget is normalised by the total 

otential energy at the start of the simulation P(t = 0) = T (t = 0) .

. DNS validation against experimental data 

The laboratory experiment number 6 of [33] (EX6) has been 

elected as a reference for comparison with the simulations. It 

onsists of a dense solution (with g ′ = 12 cm s −2 ) made from

ugar and water which is placed behind a plastic lock in a 2 . 4 m ×
 . 5 m × 0 . 1 m tank filled with tap water. The domain size for the

imulations is equal to L 1 × L 2 × L 3 = 12 × 1 × 0 . 5 whereas the ini-

ial reservoir L 1 ,b × L 2 ,b × L 3 = 1 × 1 × 0 . 5 . The Reynolds number is

qual to 31,0 0 0. It should be noted that in the present set-up and

eference experiment L 2 = L 2 ,b . Only limited experimental data are 

vailable for comparison with the present simulations: (i) instan- 

aneous spanwise-averaged density fields at regular time intervals, 

ii) the temporal evolution of the front position and associated 

ront velocity (extracted from the movies provided with the arti- 

le); (iii) the evolution of the dilution based on normalised subar- 

as of specific density thresholds; and (iv) the evolution of avail- 

ble and background potential energy. Hence, the strategy here is 

o first perform a DNS, compare the results with the available ex- 

erimental data and then assess the performance of the LES mod- 

ls with the DNS data. Note that the Reynolds number in EX6 is 

arge enough for a LES approach and it remains computationally 

eachable for a DNS. 

For a DNS, all turbulent scales are supposed to be adequately 

esolved down to the mesh level. Such requirement, however, im- 

oses certain restrictions on the spatial resolution. According to 

ope [89] the mesh spacing for a DNS (in physical space) should be 

x ≈ 2 . 1 ηK where ηK = (ν3 /ε K ) 
1 / 4 is the Kolmogorov scale, rep- 

esentative of the smallest scale in a turbulent flow, where vis- 

osity dominates and the turbulent kinetic energy is dissipated 

nto heat. In the definition of ηK , ε K is considered as the av- 

raged rate of dissipation of turbulence kinetic energy per unit 

ass. Note that the computation of ε K is not straightforward in 

he context of gravity currents: the flow is transitional, evolving 

rom a laminar to a highly-turbulent state; there is a significant 

nisotropy due to stratification; the flow is inhomogeneous due 

o the presence of walls and there are no homogeneous spatial 
8 
irections for averaging (except the spanwise direction for chan- 

elised currents). Finally, the recommendation from Pope [89] did 

ot take into account the accuracy of the numerical methods. It 

s now well-established that, in terms of accuracy and computa- 

ional efficiency, the most spectacular gain is obtained using spec- 

ral methods based on Fourier or Chebyshev representation [13] . 

n particular, highly accurate finite-difference numerical methods, 

ith quasi-spectral properties, are desirable in a DNS context due 

o their ability to provide flexibility for the boundary conditions 

as opposed to purely spectral methods) and accurate results with 

 moderate number of mesh nodes when compared to more con- 

entional low-order schemes. 

In almost all published DNS studies of gravity currents, no es- 

imate of the Kolmogorov scale is provided, with usually very lit- 

le information on mesh requirement for a given Reynolds number 

ther than a mesh convergence study. Härtel et al. [41] suggested 

hat the number of mesh nodes required to achieve adequate res- 

lution depends on the steepness of the initial profile for the con- 

entration field at the gate (in a channelised lock-exchange set-up, 

ee δb in Eq. 6 ). The authors also recommended using the same 

esolution in the streamwise and vertical directions in the mid- 

le of the channel while a much more refined mesh is needed 

lose to the bottom wall to allow for an adequate resolution of 

he developing boundary layer. Zgheib et al. [115] justified their 

patial resolution by observing between 4 and 6 decades of decay 

n the streamwise-spectra of particle-volume fraction at various 

imes. They also claimed to have similar decay for other quantities 

nd vertical-spectra and spanwise-spectra. Similar arguments were 

sed in [11] to justify the spatial resolution for DNS of axisymmet- 

ic gravity currents. In [28,29] , the authors looked at the energy 

udget and in particular at the total energy, which is supposed to 

e conserved if all the turbulent scales are modelled properly. If 

he smallest scales of the flow (the dissipative ones) are not re- 

olved, then an accumulation of energy would appear at the mesh 

esolution level, and the total energy would not be conserved. Note 

hat this accumulation of energy would also be visible on energy 

pectra. 

The DNS is discretised with n 1 × n 2 × n 3 = 4097 × 769 × 257 

esh nodes and a time step of 
t = 2 × 10 −4 . Note that the mesh

s not refined closed to the bottom wall in the vertical direc- 

ion. This spatial resolution has been chosen after a mesh refine- 

ent study to make sure that the solution is independent of the 

esh resolution. Expressed in wall viscous units, it corresponds to 

 maximal resolution of 
+ 
x 1 max 

≈ 1 , 
+ 
x 2 max 

≈ 0 . 5 and 
+ 
x 3 max 

≈ 1 . 

hose values have been obtained by calculating the maximum 

alue of the spanwise-averaged wall shear velocity at each time 

tep. The DNS is performed with 8192 computational cores on 

he UK Supercomputing facility ARCHER . The spatial resolution re- 

uired to capture the smallest scales of the flow adequately was 

hecked by looking at the temporal evolution of the ratio between 

he spatial resolution and the largest Kolmogorov scale for each 

ime step, see Fig. 5 . The average rate of dissipation of turbulence 

inetic energy per unit mass ε K is evaluated at each time step us- 

ng the following expression 

 K = 

1 

Re 

∂u 

′ 
i 

∂x j 

∂u 

′ 
i 

∂x j 
, i, j = 1 , 2 , 3 (32) 

here the fluctuating velocities u ′ 
i 

have been obtained by remov- 

ng the spanwise-averaged mean velocity at each time step. It can 

e seen in figure 5 that in the vertical direction, the condition 

x 2 /ηK ≤ 2 is always satisfied while 
x 3 /ηK ≤ 3 and 
x 1 /ηK ≤ 5 

re satisfied in the spanwise and streamwise directions, respec- 

ively. It should be noted that for more than 90% of the simulation, 

x i /ηK ≤ 2 , and the largest ηK are located in the head of the grav-

ty current, at the early stages of the simulations, close to the peak 

f total kinetic energy, see Fig. 15 . It is also important to reiter- 

http://www.archer.ac.uk
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Fig. 5. Temporal evolution of the spatial resolution with respect to the Kolmogorov 

scale for the present DNS. 
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te that the well-know recommendation from [89] ( 
x i /ηK ≈ 2 . 1 ) 

bout resolution requirements does not take into account the order 

f the numerical schemes. High-order schemes such as the ones 

sed in the present study are able to capture more small scales at 

 given resolution than low-order schemes. Fig. 5 suggests that the 

esh resolution is fine enough to take into account the smallest 

eatures of the current and a good comparison with the experi- 

ental data can be expected. Furthermore, as an extra check for 

he resolution requirement, Fig. 15 a shows that the total energy in 

he DNS is perfectly conserved, confirming that the spatial resolu- 

ion is adequate for the present study. 

Fig. 6 shows the evolution of the spanwise-averaged density 

eld at t = 12 . 4 and t = 24 for the DNS and EX6. Overall, it can

e seen that the experimental current and the numerical current 

re almost identical, with a similar shape, and they seem to be 

volving at the same speed. The well-known Kelvin-Helmholtz bil- 

ows can clearly be seen, especially for the DNS. Few differences 

an be observed at the interface between the current and its am- 

ient, with a clearer interface for the experiment. This could be at- 

ributed to the difficulty in the experiment to capture low thresh- 

lds for the density field, as reported in [33] . The head of the cur-

ent is also more pronounced in the simulation (darker red) for 

 = 12 . 4 , suggesting that the current might carry more energy in

he DNS than in the experiment. This can be related to the noisy 

emoval of the gate in the experiment which might have con- 

umed extra energy. However, the opposite trend can be observed 

or t = 24 , with a more diffuse head for the DNS. It might be re-

ated to a more intense mixing activity at the interface for the DNS, 

hich could consume more energy than in the experiments. 

To track the evolution of the front position x f (t) in the DNS, a

imple reverse search is performed on the quantity ρ̄ defined as 

¯ (x 1 , t) = 

∫ L 2 

0 

∫ L 3 

0 

ρ(x 1 , x 2 , x 3 , t) d x 2 d x 3 , (33)

he streamwise position of the front of the current x f (t) is defined 

s the first position where ρ̄(x 1 , t) > 0 . 01 (starting from the end of

he computational domain in the streamwise direction). The asso- 

iated front velocity u f (t) is evaluated by calculating the derivative 

f x f (t) with respect to time. Fig. 7 a shows the temporal evolution

f x f (t) for both EX6 and the DNS. The experimental values have 

een extracted from Fragoso et al. [33] by using 32 equally-spaced 

rames from the video provided with the article. A specific mod- 

lation has been used to make sure that the aspect ratio of the 

ideo is the same as in the DNS. An excellent agreement between 

he experiment and the DNS is obtained for the location of the 

ront position. Note that t s corresponds to the end of the slumping 

hase and t to the end of the inertial phase. 
i 

9 
The temporal evolution of the front velocity is presented in 

ig. 7 b. For the DNS, the acceleration phase (in which the current 

nitially at rest reaches its maximum velocity) peaks at t ≈ 1 . 5 and 

s followed by a small deceleration phase up to t ≈ 4 . Note that the

cceleration phase for the experiment cannot be captured properly 

ue to the coarse temporal resolution from the video and the large 

erturbations generated by the manual removal of the gate. After 

 ≈ 4 and up to t s = 14 , both sets of data indicate that the front

elocity is nearly constant, corresponding to the slumping phase, 

ith u f,s = 0 . 44 . The front velocity then starts to decrease first at a

low rate (inertial phase, up to t = 21 ), then at a fast rate (viscous

hase). The current then hit the end of the computational domain 

or the DNS and the wall at the end of the water tank for the ex-

eriment for t w 

≈ 27 . Overall, numerical and experimental data for 

he front velocity are in good agreement with each other. Several 

heoretical and empirical models have been proposed to predict 

he front velocity during the inertial and viscous phases, where the 

urrent decelerate following power-law decays, with u f ∝ t −α, see 

11,44] . For the inertia phase, it was suggested that α = 1 / 3 and

or the viscous phase that α = 4 / 5 , values recovered here for both

umerical and experimental data as seen in Fig. 7 b. 

The dilution of the heavy fluid into the light ambient fluid 

as carefully investigated in [33] by counting over time areas of 

he current greater than arbitrary thresholds (using density colour 

aps for the spanwise-averaged density field). In our DNS, in a 

imilar fashion to [73] , a subarea A 

ρ1 , where ρ exceeds a certain 

hreshold ρ1 , can be defined for the spanwise-averaged density 

eld 

 

ρ1 (t) = 

∫ 
A 

(〈 ρ(x 1 , x 2 , t) 〉 x 3 ≥ ρ1 )d A. (34) 

ig. 8 a shows the temporal evolution of A 

ρ1 /A 

ρ1 
0 

(where A 

ρ1 
0 

= 

 

ρ1 (t = 0)) for thresholds ρ1 = 0 . 02 , 0 . 5 , 0 . 8 , 0 . 92 . The initial den-

ity field is zero everywhere, except in the reservoir for which it is 

qual to 1. In an idealised mixing scenario where the reservoir and 

he ambient have the same volume, the density field would even- 

ually be equal to 0.5 everywhere (corresponding to a perfect mix- 

ng). It is therefore natural to expect A 

ρ1 (t) /A 

ρ1 
0 

to go above/below 

 for thresholds below/above 0.5. In practice, and due to the lock- 

xchange set-up in the present work, this might not be exactly the 

ase. It also should be noted that the error margin is quite large in 

he experiments due to the difficulties associated with capturing 

ertain density levels with advanced optical techniques, as men- 

ioned in [33] . Furthermore, the manual removal of the gate in 

he experiments is producing more perturbations than its numeri- 

al counterpart based on a numerical white noise (the reader can 

ave a look at the video of the experiments provided with the 

rticle). It is therefore anticipated that more stirring and mixing 

ould occur in the experiments soon after removing the gate. As a 

esult, a small time delay (intrinsic to the threshold) is expected: 

arge thresholds for A 

ρ1 /A 

ρ1 
0 

will decay earlier and small thresholds 

or A 

ρ1 /A 

ρ1 
0 

will increase earlier, by comparison to the simulations. 

hresholds around 0.5 should not be affected. 

A convincing agreement between the experimental and numer- 

cal data can be observed for the threshold 0.5. As expected, the 

arge experimental thresholds for A 

ρ1 /A 

ρ1 
0 

are decaying earlier than 

he ones in the simulation, however the rate of decay for both 

he experiment and the simulation are the same for ρ1 = 0 . 8 and

1 = 0 . 92 . It confirms that without a noisy removal of the gate in

he experiment or with a noisier artificial perturbation in the sim- 

lation, the blue and yellow lines would be on top of the blue and 

ellow symbols. For the lowest threshold, the agreement between 

he experiment and the simulation is not so good which confirm 

hat capturing properly very low thresholds in the experiment is 

hallenging due to margin of error of the camera, as mentioned by 

ragoso et al. [33] . The present results also confirm that accurate 
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Fig. 6. Spanwise-averaged density field for the DNS (top) and EX6 (bottom) for (a) t = 12 . 2 and (b) t = 24 . 

Fig. 7. Temporal evolution of the front position (a) and front velocity (b) for the DNS and EX6. t s corresponds to the end of the slumping phase and t i to the end of the 

inertial phase. 

Fig. 8. (a) Temporal evolution of A ρ1 (t) /A 
ρ1 

t=0 
for different density thresholds. The solid lines correspond to the DNS, and the symbols to EX6. (b) Temporal evolution of the 

normalised energy. Here, the black square symbols correspond to the total potential energy P(t) , the grey triangle symbols to the background potential energy P b and the 

green circle symbols to the difference between the two. Data are normalised so that the minimum total potential energy is zero and the maximum total potential energy is 

1. Time is scaled by t s .. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

m

a

t

fi

b

t

i

t

t

a  

c

b

I

m

l

i

t

s

o

E

s

e

easurements of mixing cannot rely on density threshold methods 

lone and must include an integral method, such as rearranged po- 

ential energy, to characterise the evolution of a continuous density 

eld, in agreement with the findings of [33] . 

Fig. 8 b compares the time evolution of total, available and 

ackground energy for EX6 and the DNS. For this figure, each 

erm is normalised so that the minimum total potential energy 

s zero and the maximum total potential energy is 1, while the 

ime is scaled by the time required to reach the slumping dis- 

ance. The DNS is able to capture the initial strong decay of avail- 

ble energy, up to t/t s ≈ 0 . 3 , followed by a more moderate de-

ay afterwards where the DNS over-predicts the available energy 
10 
y comparison to the experiment, with a 15% to 25% difference. 

t suggests that the noisy removal of the gate in the experiment 

ight have consumed a fair amount of available energy, hence the 

owest values reported in the experiment after t/t s ≈ 0 . 5 . Further 

nvestigations would be needed to confirm this point. More de- 

ails about the behaviour of P a and P b is provided in the next 

ection. 

Overall, the DNS is able to capture accurately the main features 

f the gravity current, with a good agreement with the experiment 

X6 of [33] , except for the temporal evolution of low and high den- 

ity thresholds. In the following, the DNS will be used as a refer- 

nce to evaluate the performance of the LES models. 
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. LES results 

The present study aims to assess the ability of LES to repro- 

uce the main features of a high-Reynolds number gravity current 

n a channelised lock-exchange set-up, at a fraction of the cost of 

he DNS. In this section, several LES are performed, with the stan- 

ard Smagorinsky model (SSM), with the dynamic Smagorinsky 

odel (DSM) and with the SVV model based on high-order finite- 

ifference schemes. The spatial resolution of the LES has been cho- 

en to be as small as possible while making sure that the LES are

table without any numerical artefact (no limiters to constrain the 

ensity field to values between 0 and 1 or filtering procedures 

o remove numerical oscillations are used in the present LES). 

he spatial resolution for the LES is n 1 × n 2 × n 3 = 577 × 201 × 24

esh nodes, a reduction of more than a factor 7, 3.8 and 10 in

he streamwise, vertical and spanwise directions, respectively, by 

omparison to the DNS data. Expressed in wall viscous units, it 

orresponds to a maximal resolution of 
+ 
x 1 max 

≈ 10 / 15 , 
+ 
x 2 max 

≈ 2 

nd 
+ 
x 3 max 

≈ 10 / 15 . Those values have been obtained by calculat- 

ng the maximum value of the spanwise-averaged wall shear veloc- 

ty at each time step. They are in line with the recommendations 

f [85] who suggested that the first off-wall mesh node should 

ie in the viscous sublayer of the current at the bottom wall. The 

treamwise and spanwise values are much smaller than the val- 

es reported in [77] ( 
+ 
x 1 max 

≈ 50 , 
+ 
x 2 max 

≈ 1 and 
+ 
x 3 max 

≈ 20 ). For 

onsistency, the same small time step is used for the DNS and the 

ES so that temporal discretisation errors are negligible. It means 

hat the present LES are about 275 times cheaper than the DNS. 

e

ig. 9. Isocontours of the Q-criterion ( Q = 50 in green) and the density field ρ = 0 . 1 (pin

he references to colour in this figure legend, the reader is referred to the web version of

11 
he first important result is that the SSM LES and DSM LES are 1.8 

nd 2.5 times more expensive than the SVV model, respectively, as 

he latter does not require any explicit terms in the Navier-Stokes 

quations nor filtering. 

As described in Section 2.4 , the SVV model relies on a physi- 

al scaling of the numerical dissipation introduced when evaluat- 

ng the viscous term of the Navier-Stokes equations. To estimate 

he physical scaling of ν0 /ν, the strategy proposed by Dairay et al. 

20] has been used. It is based on a Pao-like spectral closure es- 

ablished on physical arguments to scale the numerical viscosity. 

ith the current mesh resolution, the theoretical prediction of the 

caling is ν0 /ν = 60 (simulation SVV60). It should be noted that 

his estimate was designed for homogeneous isotropic turbulence; 

ence the theoretical prediction of this scaling might not be accu- 

ate for gravity currents (stratified transitional flows in the pres- 

nce of a wall). A sensitivity analysis is presented in Appendix A . 

t can be seen that for the range of ν0 /ν investigated, the quality 

f the results does not change much when compared to the DNS 

ata of reference. 

.1. Instantaneous data 

In Fig. 9 iso-contours of Q − cr iter ion = 50 and of ρ = 0 . 01 are

resented for t = 15 , when the current has reached a fully tur- 

ulent state. As expected, a wider range of turbulent scales can 

e observed for the DNS, with very fine vortices at the head of 

he current and at the interface between the heavy fluid and the 

ighter fluid. The LES do not produce obvious spurious oscillations, 

xcept close to the heavy/light fluid interface for the explicit mod- 
k) at t = 15 . From top to bottom: DNS, SVV60, SSM and DSM. (For interpretation of 

 this article.) 
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Fig. 10. 2D visualisations of the spanwise averaged density field at t = 24 : (a) DNS, (b) SVV60, (c) SSM, (d) DSM. 

Fig. 11. 2D friction velocity maps at t = 24 : (a) DNS, (b) SVV60, (c) SSM, (d) DSM. 
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i  

t

s  
ls (SSM and DSM) for x 1 ≈ 3 , 4 . 5 and x 1 ≈ 6 . 5 . At these locations,

he streamwise-orientated elongated structures are not as well de- 

ned as for the SVV model due to the presence of small non- 

hysical oscillations. The head of the current for the DSM is fur- 

her ahead than the one in the DNS. For the two explicit LES, the 

ail of the current (where vortical structures are no longer observ- 

ble) seems to be further downstream from the inlet than in the 

VV LES and DNS. 

The spanwise-averaged density field at t = 24 is presented in 

ig. 10 . It can be seen that the current for the DSM is indeed

ravelling faster than the current in the DNS while the current in 

he SSM is travelling slower than the current in the DNS. The LES 

eems to be able to reproduce properly the main features of the 

urrent, in particular the characteristic Kelvin-Helmholtz vortices 

enerated at the head of the current and convected upstream at 

he heavy/light fluid interface. Furthermore, there seems to be a 

ood agreement between the LES and DNS regarding the different 

olour thresholds representing different density values. 

The friction velocity and associated wall shear stress can be 

sed in a simulation to estimate the critical shear stress level be- 

ond which incipient motion can occur. Such an approach, first in- 

roduced by Shields [97] , is based on a similarity method for sedi- 

ent process, yielding to the Shields diagram. It remains the most 

idely used strategy to estimate the potential for incipient motion 

f particles and has been applied in several experimental and nu- 

erical works [32,47,71,76,103,105,113] . It should be noted however 

hat incipient motion is very often neglected as the configurations 

tudied in laboratory experiments and via high-fidelity simulations 

annot replicate the erosion process observed in real-life currents 

ue to the limitation in the Reynolds number. The correct repro- 

uction of the friction velocity is nevertheless an interesting (and 

hallenging to reproduce) quantity of interest to assess the quality 
12 
f LES models. 2D maps of the friction velocity u ∗ are presented in 

ig. 11 for t = 24 . The friction velocity is defined as 

 

∗ = 

√ 

τw 

with τw 

= 

1 

Re 

√ (
∂u 1 

∂x 2 

)2 

+ 

(
∂u 3 

∂x 2 

)2 ∣∣∣
x 2 =0 

. (35) 

ccording to Fig. 11 , the best agreement for the friction velocity 

s obtained for the SVV model, followed by the DSM. The SSM is 

ot able to capture the high values of the friction velocity at the 

ead of the current. It can be connected to a high-level of numer- 

cal dissipation at the bottom of the channel. Non-uniformities are 

bserved at the head of the current, a signature of the well-known 

obe-and-cleft structures, characterised with intense friction veloci- 

ies with a streaky pattern (dark blue in the figure). These imprints 

annot be captured properly by the SSM. 

The formation, merging and meandering of the lobe-and-cleft 

tructures at the front of the current can be seen in Fig. 12 with

so-lines of the bottom wall density field ( ρ = 0 . 01 ). These struc-

ures arise from an instability produced by the ambient fluid, 

hich is overrun by the heavy fluid, and it is one of the main fea-

ures of gravity currents. As expected, the DNS generates a wider 

ange of lobe-and-cleft structures, with more merging and mean- 

ering by comparison to the LES. It seems that less splitting and 

erging events are present for the explicit LES models as for the 

VV model. It is consistent with the overly dissipative behaviour 

eported in Fig. 11 for the friction velocity. 

.2. Averaged data 

The temporal evolution of the front position and front veloc- 

ty for the LES is presented in Fig. 13 . As already hinted with

he instantaneous visualisation of the current in the previous sub- 

ection, it can be seen that the SSM and DSM are not able to ac-
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Fig. 12. Temporal evolution of the isolines of the bottom wall density field ( ρ = 0 . 01 ) for (a) DNS, (b) SVV60, (c) SSM, (d) DSM. 

Fig. 13. Temporal evolution of the front position (a) and front velocity (b) for the various LES. 

c

s

l

t

s

c

N

f

R

e

l

p

t

h

u  

t

f

t

d

0

p

m

I

t

t

t

i

t  

m

m

s

a

o

p

a

f

n

I

f

r

I

urately capture the correct location of the front position after the 

lumping phase. The SVV model is able to capture perfectly the 

ocation of the front. The SSM is underestimating the front loca- 

ion, with a deviation from the DNS data starting at the end of the 

lumping phase. The DSM is slightly overestimating the front lo- 

ation after the slumping phase, in line with the results of [78] . 

ote that an excellent agreement between LES and experiments 

or the front location was reported in [80] but only for very low 

eynolds numbers. Despite this minor discrepancy for the SSM, 

xplicit LES models are more or less able to capture the power- 

aw decays when the current is slowing down, after the slumping 

hase (the front velocity for the DSM is just slightly higher than 

he DNS one and it is lower for the SSM). 

Fig. 14 a shows the temporal evolution of the dilution of the 

eavy fluid into the ambient fluid by using the same thresholds 

sed in the experiment of [33] , see Fig. 8 . It can be seen that all

he LES are able to match the DNS data of reference, especially 

or high thresholds. For the lowest threshold of 0.02, it seems that 

he DSM is in slightly better agreement with the DNS, while the 

ilution for the SVV model and SSM is marginally faster for ρ1 = 

 . 02 . 

Fig. 14 b shows the temporal evolution of the total mass ex- 

ressed as 

 s (t) = 

∫ 
ρ(x 1 , x 2 , x 3 , t)d V. (36) 
V 

13 
t can be seen that all the LES models are capable of conserving the 

otal mass with high accuracy, within less than 0 . 05% . It suggests 

hat the LES models do not introduce large spurious oscillations to 

he current. For the explicit LES models, a small amount of mass 

s numerically created soon after the release of the heavy fluid, up 

o t = 10 for the DSM and up to t = 20 for the SSM. For the DSM,

ass is removed from the current from t = 10 onward while the 

ass is more or less conserved for the SSM and the SVV model. It 

uggests that the DSM might have an under-dissipative behaviour 

t the start of the simulation (with a fast-moving current) and an 

ver-dissipative behaviour when the current is fully established. 

The total energy budget is presented in Fig. 15 a while the tem- 

oral evolution of the energy transfer mechanisms (vertical buoy- 

ncy flux and mixing) is presented in Fig. 15 b. In order to account 

or the numerical dissipation, the calculation of the internal energy 

eeds to be modified as follow 

(t) = 

∫ t 

0 

[ ε(t) − �(t)]d t + I LES . (37) 

Following a strategy introduced in [101] , I LES , which accounts 

or contribution of the numerical dissipation to the dissipation 

ate, can be evaluated as a residual 

 LES (t) = T (t = 0) − T (t) . (38) 
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Fig. 14. Temporal evolution of the dilution for different thresholds for the density field (a) and the global mass (b) for the DNS and the LES. 

Fig. 15. Temporal evolution of the energy budget normalised by the total initial energy (a) and the energy transfer mechanisms (b). The solid lines corresponds to the DNS, 

the dotted lined to the SVV60, the dashed lines to the SSM and the dash-dotted lines to the DSM. 
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he main assumption of this approach is that the energy is per- 

ectly conservation for the LES. In the DNS, I LES (t) is of course 

qual to zero (which is the case in our DNS). 

It can be seen in Fig. 15 that at the very early stage of the sim-

lations, there is a swift drop of available potential energy P a , up 

o t ≈ 4 , associated with a rapid increase of total kinetic energy K. 

his rapid increase is produced by a strong vertical buoyancy flux 

 as shown in Fig. 15 b. Over 50% of the available potential en-

rgy is transferred into total kinetic energy. It corresponds to the 

mportant amount of energy used by the current to establish itself 

ollowing the removal of the gate. Very little irreversible dyapic- 

al mixing �, defined as an irreversible energy transfer mechanism 

cting towards smoothing the density field, is occurring at the start 

f the simulations, which is consistent with a quasi-steady back- 

round energy (only diabatic mixing can produce changes in the 

ackground state, see [112] ). 

After the peak of total kinetic energy, the available potential 

nergy and total kinetic energy exhibit a steady decay, associated 

ith an increase in internal energy and background potential en- 

rgy associated with a sustained mixing activity (with � nearly 

onstant). The vertical buoyancy flux � and viscous dissipation ε
re steadily decreasing after the total kinetic energy peak, while 

he density diffusion � is increasing and the irreversible dyapic- 

al mixing � is more or less steady. The small increase in available 

otential energy and the sudden decrease in total kinetic energy at 
14 
he end of the simulations are linked to the current reaching the 

nd of the computational domain for t ≈ 27 . By the end of the sim-

lation, the available potential energy is as low as 10% of its initial 

alue. Most of the available potential energy has been converted as 

nternal energy (more than 50%). The main mechanism of transfer 

f energy is the vertical buoyancy flux, which is more or less two 

rders of magnitude larger than the density diffusion, one order of 

agnitude larger than the irreversible dyapicnal mixing, and much 

arger than the viscous dissipation. 

Overall, all the LES are able to reproduce the energy budget 

nd the evolution of the transfer mechanisms obtained in the DNS, 

ith only minor differences such as an over-estimation of the in- 

ernal energy for the SSM model of about 10 − 15% , associated 

ith a slight under-prediction of the total kinetic energy of about 

 − 10% . It is a confirmation that the SSM is possibly too dissi- 

ative ( I LES is much larger for the SSM than for the DSM), es- 

ecially in high shear/low turbulence regions. The DSM and SVV 

odel have a consistent behaviour, with a similar amount of nu- 

erical dissipation added to the current and only a marginal over- 

stimation of the internal energy for the DSM with respect to the 

NS. As expected, the viscous dissipation ε is under-predicted in 

he LES by comparison to the DNS as ε is computed with first or- 

er derivatives for which there is no added numerical dissipation. 

is slightly more under-predicted for the SSM than for the DSM 

nd SVV model. The LES seem to be able to capture accurately the 
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vailable and background potential energy from the DNS. A simi- 

ar observation was already reported in [75] where the background 

otential energy was used to assess the performance of 6 different 

ES models for lock-exchange gravity currents. A small peak of in- 

ignificant importance for the dynamic of the current (two order 

f magnitude small than the vertical buoyancy flux � ) can be ob- 

erved in for � and � at t ≈ 3 . This peak is over-estimated in the 

ES by comparison to the DNS, especially for the DSM, however 

ith virtually no impact on the temporal evolution of the energy 

ransfer mechanisms after the peak (confirmed by the good agree- 

ent with the DNS data). 

. Conclusions 

In this numerical study, high-fidelity simulations of a grav- 

ty current in the lock-exchange set-up have been performed and 

ompared with experimental data. The potential of using a high- 

rder finite-difference SVV approach in the context of LES was in- 

estigated with a detailed comparison with more conventional LES 

ased on explicit SGS model and with a resolved DNS. The DNS 

as performed with more than 800 million mesh nodes and, it is 

o the best of our knowledge, a DNS of gravity currents in a lock- 

xchange set-up at the highest Reynolds number. The LES were 

erformed with only less than 0.4% of the total number of mesh 

odes of the DNS. An original energy framework was introduced 

o better understand the main features of the gravity currents. 

One of the main conclusions of this study is that all LES models 

erform well at reproducing the main features of the gravity cur- 

ents, however, the presented SVV model performs slightly better , 

n particular close to the bottom of the channel. It should be noted 

hat the SVV model does not require any filtering nor the com- 

utation of extra terms in the Navier-Stokes equations, making it 

ery competitive in terms of computational cost (the SSM and DSM 

re 1.8 and 2.5 times more expensive than the SVV model, respec- 

ively). Therefore, we may argue that the SVV model is up-and- 

oming for future high-fidelity simulations of gravity currents at 

uch higher Reynolds numbers, with the potential to reach real- 

ife parameters. 

Our next study will focus on high-fidelity simulations of high 

eynolds numbers Boussinesq gravity currents, thanks to the flow 

olver QuasIncompact3D , part of the Xcompact3d framework. 

his solver is based on the compressible Navier-Stokes equations 

n the low Mach number limit, allowing simulations of gravity cur- 

ents with densities ratio of up to 10 between the heavy release 

nd the ambient fluid [4] . High Reynolds numbers non-Boussinesq 

ravity currents in a basin set-up (where the current can freely 

volve in the spanwise and streamwise directions, see [34] ) will 

lso be investigated. 

It could also be of interest to investigate the potential of the 

resent SVV model for turbulent flows where the mixing as- 

ect is dominant, such as turbulent flows induced by Rayleigh- 

aylor instabilities [116–118] . A two-phase flow solver based on the 

llen-Cahn phase-field approach is currently under development 

ithin the Xcompact3D framework, as an extension of the exist- 

ng QuasIncompact3D flow solver. This will allow us to study 

urbulent mixing induced by hydrodynamic instabilities such as 

he Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz in- 

tabilities with potential applications in astrophysics, geophysics, 

nd other engineering flows of both scientific interest and practi- 

al significance. 
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ppendix A. Sensitivity study for the SVV model 

To investigate the sensitivity of ν0 /ν for the present lock- 

xchange set-up, five extra LES have been performed with ν0 /ν
anging from 15 to 90, with increment of 15 (simulations SVV15 

o SVV90). Fig. A.16 shows spanwise-averaged visualisations of the 

ensity field at t = 24 for SVV45, SVV60 and SVV75. Overall, an ex- 

ellent agreement with the DNS data of reference can be seen with 

ery little difference when the numerical dissipation is changed. 

o spurious oscillations can be observed suggesting that enough 

umerical dissipation is added at small scales, even for SVV45. It 

hould be noted that no numerical artefact is applied to the den- 

ity field (no filtering nor limiters). 

The front location and front velocity for the various SVV simu- 

ations are in excellent agreement with the DNS data of reference, 

s seen in Fig. A.17 . Actually, all the SVV simulations are in better 

greement with the DNS data than the explicit LES models. It is 

nother evidence that the SVV model is not sensitive to ν0 /ν, as 

ong as enough numerical dissipation is added to the flow. 

Fig. A.18 a compares the temporal evolution of the dilution of 

he current for four thresholds, in a similar fashion to Fig. 14 a. 

nce again, it can be seen that changing ν0 /ν does not affect the 

ilution of the heavy fluid in the ambient fluid. All the SVV mod- 

ls are in excellent agreement with the DNS data of reference, ex- 

ept maybe for the lowest threshold ρ1 = 0 . 02 for which all the 

VV models are marginally under-predicting the DNS data, with 

 slightly faster decay rate. The same observation can be drawn 

or the global mass which is perfectly conserved within 0 . 5% . It is,

owever clear that SVV15 is the simulation with the less accurate 

esults. For the range of numerical dissipation considered here, the 

ravity current shows low sensitivity to the choice of ν0 /ν . The 

mall discrepancies in Fig. A.18 can be attributed to discretisation 

rrors. 

Overall, the method proposed by Dairay et al. [20] to estimate 

he physical scaling of ν0 /ν seems to be perfectly capable of pro- 

iding an adequate value numerical dissipation for the SVV model, 

ven if it is designed for homogeneous isotropic turbulence. An- 

ther important observation is that adding too much numerical 

issipation does not seem to affect the quality of the solution. It 

ill however affect the stability of the simulation. The use of high 

alues for ν0 /ν would require very small time steps because of the 

tability limit ν
t/ 
x 2 < σr / (ν0 /ν) π2 (with for instance σr = 2 . 5

or a third-order Runge-Kutta scheme, see [55] ). 

https://sdumont.lncc.br/machine.php?pg=machine#
http://www.archer.ac.uk
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Fig. A.16. 2D visualisations of the spanwise averaged density field at t = 24 for the DNS and SVV45, SVV60 and SVV75. 

Fig. A.17. Temporal evolution of the front position (a) and front velocity (b) for the DNS and the various LES based on the SVV approach. 

Fig. A.18. Temporal evolution of the dilution for different thresholds for the density field (a) and of the global mass (b) for the DNS and the various LES based on the SVV 

approach. 
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