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Telomeres: Chromosome End Protective-Complexes and Its 
Association with Chronic Diseases
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Abstract
Telomeres are specialized nucleoproteins present at the end of linear eukaryotic chromosomes. 
They consist of a double- stranded DNA sequence and a single strand DNA protrusion (free 3'OH 
end). Telomeres are assembled into a three- dimensional structure in association with the shelterin 
complex. Telomeres play a central role in chromosomal stability and proliferative history of the 
cells. Shortening of telomeres is considered an important marker of cellular aging shortening in 
a physiological way in each round of cell replication in somatic cells. More impressive, telomeres’ 
attrition is highly susceptible to deterioration related to DNA damage accumulation during the 
aging process. Clinical evidence suggests that telomeres’ shortening contributes to the establishment 
and progression of the aging phenotype in some inflammatory chronic disorders. In other cases, 
experimental evidences suggest that aging is accompanied with an abrupt shortening in the context 
of such diseases, proposing that the length of telomeres may be an important biological marker for 
progression of various pathologies.
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AA: Aplastic Anemia; ATM: Ataxia Telangiectasia Mutated; ATR: Ataxia Telangiectasia Rad3-
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Ligand 11; CDKN1A: Cyclin Dependent Kinase Inhibitor 1A; COPD: Chronic Obstructive 
Pulmonary Disease; CTC1: CST Telomere Replication Complex Component 1; DC: Dyskeratosis 
Congenita; DDR: DNA Damage Response; DKC1: Dyskerin; DNA: Deoxyribonucleic Acid; DSB: 
Double Strand Break; dsDNA: double-stranded DNA; Exo1: Exonuclease 1; HDR: Homology-
Directed Repair; HHS: Hoyeraal-Hreidarsson Syndrome; IPF: Idiopathic Pulmonary Fibrosis; 
kb: kilobase; NHEJ: Non-Homologous End Joining; PBMC: Peripheral Blood Mononuclear Cells; 
POT1: Protection of Telomeres 1; RAP1: Ras-Related Protein 1; RNA: Ribonucleic Acid; SSB: 
Single Strand Break; ssDNA: single-stranded DNA ; STN1: STN1 subunit of CST complex; SZ: 
Schizophrenia; TCAB1: Telomerase Cajal Body Protein 1; TEN1: TEN1 subunit of CST complex; 
TERC: Telomerase RNA Component; TERT: Telomerase Reverse Transcriptase; TIN2: TRF1 
Interacting Nuclear Factor 2; TP53: Tumor Protein P53; TPP1: Tripeptidyl Peptidase 1; TRF1: 
Telomeric Repeat Binding Factor 1; TRF2: Telomeric Repeat Binding Factor 2

History of the Telomeres
The possibility of the presence of specialized structures at the end of the chromosomes emerged 

in 1938 when Herman Muller observed that X-rays could cause breaks in the chromosomes of the 
fruit fly Drosophila melanogaster and that the fusions did not occur at the ends of the chromosomes 
[1]. Simultaneously, in an independent study, Barbara McClintock observed a similar process after 
induction of chromosomal breaks in corn species [2]. The ability to avoid fusion of their ends led to 
the conclusion that the chromosomes were protected by some structure, called by Muller telomeres.

Years later, Leonard Hayflick observed in vitro that mouse fibroblasts had limited proliferative 
potential and accumulated aging-related characteristics, suggesting that these cells were not able to 
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divide indefinitely. The critic moment of cell cycle arrest was called 
the “Hayflick limit” [3]. A few years later, studies on the properties 
of the DNA semi conservative replication process [4,5] revealed 
particularities that corroborated Hayflick's theory of senescence.

In 1978, Elizabeth Blackburn and Joe Gall observed the repetition 
of the 5'-TTGGGG-3' hexamer at the DNA molecules on chromosome 
ends through sequencing the macro nuclear genome of Tetra hymena 
[6]. In 1982, Jack Szostak confirmed the conservation of telomere 
function throughout the evolution of the species, demonstrating 
that the linearization of yeast circular DNA could be stabilized after 
recombination with the telomere sequence of the protozoan Tetra 
hymena [7]. Since that, several studies emerged with the intention to 
investigate the function of telomeres biology and its association with 
diseases.

Structure and Function
Telomeres consist of a non-coding nucleotide sequence, 

composed by a double-stranded DNA sequence and a single strand 
DNA protrusion composed of 150-200 nucleotides (Figure 1), 
stabilized by proteins that forms an intricate structure, preventing 
telomeres been recognized as a single (SSB) or double DNA Strand 
Breaks (DSB). The single- stranded DNA (ssDNA) overhang consists 
of guanine-rich repeats at the 3'OH end, called the G-strand. The 
complementary 5’ strand is rich in cytosine and named as C-strand 
[8].

The molecular analysis demonstrates that telomeric DNA forms a 
stable structure, in which the 3'OH overhang is rearranged, inserting 
into the double-stranded DNA (dsDNA), forming a lariat structure, 
called the T-loop [9]. The final, single-stranded portion of the T-loop 
is protected by the ssDNA, disrupting base pairing between the double 
helix, forming a portion of triple-stranded DNA, called the D-loop 
(Figure 2) [10]. This specialized structure prevents the 3'OH overhang 
from being recognized as an SSB, thus inhibiting the activation of 
the DNA Damage Response (DDR)-signaling machinery induced 
by Ataxia Telangiectasia Mutated (ATM) and Ataxia Telangiectasia 
Rad3-related (ATR), key pathways that promote end-to-end fusion 
by Homology-Directed Repair (HDR) and Non-Homologous End 
Joining (NHEJ) [11].

The number of replicates of the telomeric sequence widely diverse 
between species, but its sequence is highly conserved in eukaryotic 
[12]. In mammals, the nucleotide sequence consists of the TTAGGG 
tandemly repeated hexamer, but the number of replicates is also 
variable between tissues and cells within the same organism. In 
humans, the size of telomeres can vary between 10-15 kilobases (kb) 
in early life, and even in some mouse strains, which can be as long as 
40-80kb [13].

Thus, telomeres play an important role in protecting the genome 
against nucleolytic degradation, spontaneous recombination, repair 
events that result in chromosomal fusion and preventing SSB/DSB 
[14]. Moreover, telomeres are essential regulators of chromosomal 
positioning and cellular replicative capacity [15], conferring 
chromosomal stability and maintenance of genomic homeostasis.

The telomerase enzyme
In the early 1970s, Alexey Olovnikov hypothesized that a 

particular enzyme might be able to compensate for the loss of 
nucleotides resulting from the end replication problem [5]. In this 
sense, Telomerase was first described in 1987 by Carol Greider and 

Elizabeth Blackburn [16]. Telomerase is a reverse transcriptase 
enzyme responsible for the de novo synthesis of the telomeric DNA, 
being the main physiological mechanism by which mammalian cells 
extend their telomeres. In humans, telomerase adds the TTAGGG 
hexamer to the 3'OH overhang at the end of linear chromosomes [17].

The telomerase catalytic core is a ribo nucleoprotein complex 
composed of a polypeptide subunit termed Telomerase Reverse 
Transcriptase (TERT) and a Telomerase RNA Component (TERC) 
belonging to the non-coding RNA family [18] (Figure 3). Telomerase 
activity counteracts the natural shortening of telomeres associated 
with cell replication and DNA degradation events [19]. It’s up 
regulation or mutation is a strategy described in major types of cancers 
for unlimited replicative capacity [20]. Biogenesis and maturation 
of the telomerase complex, formed by its two major TERT and 
TERC subunits, occurs through associations with specific proteins 
and domains in the Cajal body [18], a highly conserved organelle 
specialized in the maturation of ribo nucleoproteins [13]. After 
assembly of the functional holoenzyme, additional proteins, such 
TPP1, TIN2 regulate the recruitment of TERT to the 3'OH free end 
of the G-rich leading strand, a process facilitated by the Telomerase 
Cajal Body Protein 1 (TCAB1) [21-24] and Dyskerin (DKC1), that 
interacts with specific non-coding RNA domains, conferring stability 
to the structure [25]. The telomerase complex is further associated 
with components that assure its in vivo activity. In this regard, the 
shelterin proteins are interconnected ss and dsDNA, assisting with 
the holoenzyme recruitment and activity [26,27].

The shelterin complex
The ends of the chromosomes are protected by a complex 

consisting of six DNA binding proteins, called the shelterin complex, 
which in turn associates with other proteins, and complexes (Figure 
2), conferring structure stabilization and controlling the length of the 
telomeric DNA [28].

Telomeric Repeat Binding Factor 1 (TRF1) and 2 (TRF2) are 
independent proteins that bind to DNA in association with the 
protein of Protection of Telomeres 1 (POT1) and interact with the 
telomeric sequence, forming dimers or multimers [29]. The TRF1, 
TRF2, and POT1 proteins interact through a bridge formed by 
two other proteins, the Tripeptidyl Peptidase 1 (TPP1) protein and 
the TRF1 Interacting Nuclear Factor 2 (TIN2), which do not bind 
directly to the DNA strand [12]. The sixth component of the shelterin 
complex, the Ras-Related Protein Rap1 (RAP1), is the evolutionarily 
most conserved protein in the complex, interacting exclusively with 
TRF2 [26].

The formation of TRF1 protein homodimers with double-
stranded telomeric DNA is presumed to monitor sequence length, 
whereas homodimers formed by the TRF2 protein are able to stabilize 
T-turn formation by protecting the 3'OH ribbon protrusion from the 
G-strain [30]. TRF1 also may act as an inhibitor of the telomerase 
enzyme, preventing the elongation of the telomeric DNA [29].

The TIN2 protein binds to the complex formed by TRF1 and 
TRF2 in association with double-stranded DNA, bridging with POT1 
through TPP1. POT1 is the only protein in the shelterin complex 
that binds to the 3'OH protrusion of the G-strain. Thus, the six-
component polypeptides of the complex form two compartments 
with the telomeric structure. In one, the proteins are bound only to 
double-stranded DNA, while in the other; the proteins are bound in 
both the double- stranded telomeric region and the 3'OH protrusion 
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of the G-stranded ribbon [12].

The TRF1 protein has the function of controlling the size of 
telomeres through the maintenance of telomeric region replication 
[31,32]. Studies have demonstrated that TRF1 assists in the 
maintenance and direct regulation of telomere length by interacting 
with TIN2, TPP1 and POT1 proteins [33], and its depletion is 
related to increased DNA damage response, accelerating the aging 
phenotype [34]. The TRF2 protein stabilizes the T-loop in the 
telomeres by modifying DNA topology induced by positive super 
coiled conformational structures that protect the 3’OH overhang 
from NHEJ, directly suppressing ATM-dependent DDR signaling 
[35-37].

In addition, the interaction of the RAP1 and POT1 proteins is 
responsible for preventing events of homologous recombination 
[30]. In humans, the association of RAP1 with telomeres is stabilized 
by the TRF2 protein [38], with the auxiliary function of preventing 
homologous recombination and preventing telomere elongation 
independent of telomerase action. The interaction of TPP1 and 
POT1 also plays a suppressive role in homologous recombination 
[26], and in the inhibition of pathways that activate DDR [29]. In 
addition, other components of the shelterin complex may limit the 
bioavailability of POT1 in the telomeric structure, depending on 
the amount of the dimer formed by the binding between TPP1 and 
TIN2 [26]. Overexpression of TIN2 inhibits telomeres’ elongation 
in human cells of the immune system, whereas inhibition of the 
gene encoding that protein results in uncontrolled elongation of 
the telomeric sequence. In addition, it has been suggested that the 
binding of TIN2 to TRF1 induces changes in the formation of TRF1, 
favoring the structure of telomeres, making it inaccessible to the 
action of telomerase [39].

Mutations in the genes encoding the proteins of the shelterin 
complex can cause recombination of telomeric DNA strands, 
leading to telomere dysfunction, cell cycle arrest, and apoptosis [40]. 
Evidences have been suggested that the shelterin binding requires 
a minimum telomeric DNA length in order to maintain regulatory 
functions and telomere protection [41]. Thus, the integrity and 
function of telomeres are directly associated with the complex, as well 
as the bioavailability of each component and its interactions.

Telomeres’ replication
Linear chromosomes from eukaryotic organisms have protrusions 

at the 3'OH ends [42]. The leading strand is continuously extended 
in a 5'-3' direction towards the replication fork opening. However, 
the lagging strand is discontinuously synthesized by multiple small 
DNA fragments, called Okazaki fragments [43] and need additional 
exonuclease and DNA ligase1 activities to stabilize the newly formed 
strand [44,45]. In this sense, due to the inability of the DNA polymerase 
to completely replicate the discontinuous strand at the very last distal 
Okazaki fragment, the DNA replication machinery generates a 3'OH 
overhang at the end of the process [46]. This natural cellular process, 
called end replication problem, was first described by Jim Watson, 
who noticed the progressive loss of nucleotides at the 3'OH end of 
the chromosomes, within each cell division [4]. Physiologically, the 
number of nucleotides that are removed from each cell division is not 
constant and depends on several factors, such as the position and size 
of the nucleotide sequence of the last RNA primer and the length of 
the DNA sequence [46].

In addition to the end replication problem, mammalian telomeres 

are also shortened through a 3'OH nucleases- dependent resections 
accomplishment mechanism. After DNA replication process, TRF2 
recruits both nucleases Apollo and Exo1 in order to resect the leading 
and lagging ends on telomere DNA, and Exo1 to generate a functional 
3'OH overhang as a multi-step, shelterin-controlled process [47]. 
Afterward, POT1 directs the overhang fill-in synthesis in late S phase 
by the recruiting Pol-α through a three-protein complex named CST, 
composed by CTC1, STN1 and TEN1 proteins [48].

Telomeres as markers of biological age
As in mammals, telomerase activity is the major mechanism to 

avoid excessive telomeres’ attrition; its expression and regulation 
are tightly modulated [49-53]. In this sense, although TERC subunit 
is ubiquitously expressed in mammal tissues, TERT subunit is only 
expressed in most embryonic stem cell compartments, germ-line and 
cancer cells, and necessary for counteracting excessive telomeres’ 
attrition [54-57]. Some embryonic stem cells, such as hematopoietic 
precursors, are characterized by reduced telomerase activity, allowing 
partial compensation of telomeres shortening. Somatic cells, such 
as differentiated circulating immune system cells, are generally 
characterized by the absence of telomerase activity by suppressing 
TERT expression, implying in limited proliferative capacity [58].

Thus, the natural process of telomere shortening may represent 
the pace or rhythm of the aging process and can be compared to a 
mitotic clock, reflecting the proliferative history of the cells [14]. This 
definition suggests that the length of telomeres and their shortening 
rate could be considered a biological age marker, both at the cellular 
and systemic status, representing an objective measure of events 
accumulated over organism’s lifespan. In this regard, the accelerated 
attrition of the telomeric sequence could be associated with a potential 
biomarker related to the early onset of aging [59].

 Telomeres homeostasis is species-dependent and tissue-
specific. Its shortening rate varies with age and cell type [60]. 
During embryonic development of vertebrates, telomere length 
remains constant in most tissues by active telomerase. However, 
after birth, somatic cells undergo progressive telomeres shortening 
due to telomerase inactivation through regulation [61]. In this way, 
variations in the rate of telomeres attrition are directly correlated 
with its proliferative capacity. For example, high self-renewal tissues, 
such as intestinal mucosal and Peripheral Blood Mononuclear 
Cells (PBMC), are associated with accelerated shortening of their 
telomeres. On the other hand, tissues with lower turnover, such as 
neurons and myocytes, are characterized by attenuated telomeres’ 
attrition [62]. As mentioned before, the successive loss of nucleotides 
at each cell replication cycle is a physiological process. However, as 
we have seen, when telomeres reach a critical length, it may induce 
DDR signaling, resulting in cell cycle arrest and the transcription of 
genes that activate cellular senescence pathways [63]. Indeed, cell 
cycle arrest is stabilized by signals that activate the TP53/CDKN1A 
(P53/P21) pathway, which induces ATM/ATR kinases recruited to 
the DNA damage foci [64]. Although the cells remain metabolically 
active, they do not proliferate [65]. At this point, somatic cells start 
to stimulate the transcription of genes necessary for cycle arrest, 
preventing the propagation of mutagenesis, and tumor development 
as a consequence [9]. Consequently, these cells raise senescence-
induced phenotypic changes promoting a shift in their metabolism 
[65]. However, cells may recover their proliferative rate by TP53 
gene suppression or mutation, circumventing cell cycle regulation 
and avoiding the senescent state [66]. In this way, the cells acquire 
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unlimited proliferative capacity, so that their telomeres shorten until 
reaching a critical point, being unable to protect the ends of the 
chromosomes. This process results in the emergence of chromosomal 
abnormalities, such as Homology-Directed Repair (HDR) and NHEJ, 
as well as anaphase bridges followed by Breakage/Fusion/Bridge 
(B/F/B) cycles that lead to high rates of apoptosis due to genomic 
instability [67,68].

Telomere dysfunction in human chronic diseases
The length of telomeres, the activity of the telomerase enzyme and 

the association of proteins of the shelterin complex are fundamental 
factors in the pathophysiology of several human diseases. Numerous 
studies indicate that aging- related diseases and early-age (progeria) 
syndromes are characterized by accelerated shortening of telomeres, 
which may compromise cell viability and the immunological potential 
through disease progression [14].

In particular, clinical evidence suggests that defect on telomeres 
biology and its maintenance machinery causally contributes to the 
establishment and progression of the aging phenotype in some 
diseases, termed telomeropathies. The onset and progression of 
these pathologies, such as Dyskeratosis Congenita (DC) [69], 
Aplastic Anemia (AA), Idiopathic Pulmonary Fibrosis (IPF) [70] 
and Hoyeraal-Hreidarsson Syndrome (HHS) are directly related to 
mutations on telomerase or shelterin genes and critically shortened 
telomeres [71,72]. Although CD, AA, IPF, and HHS are apparently 
different diseases with diverse clinical manifestations, they all share 
several characteristics, such shortened telomeres as a causal effect. 
Thus, apparently heterogeneous phenotypes are caused by the 
same molecular defects or underlying mutations in the genes of the 
telomeric complex [73].

On the other hand, recent studies suggest that various chronic 
diseases, such as cardiovascular diseases [74], diabetes mellitus [75], 
metabolic syndromes [76-78], Chronic Obstructive Pulmonary 
Disease (COPD) and severe asthma [79-82], among others are 
associated with accelerated shortening of telomeres regardless of 
their individual biological age [70]. Chronic metabolic disorders 
share important characteristics and are associated with an immune 
system dysfunction leading to a chronic pro-inflammatory status 
that is closely related to the onset and persistence of such diseases 
[83]. These conditions are highly modulated by inflammation, 
oxidative stress and environmental factors, which can contribute to 
telomere dysfunction. The pro-inflammatory milieu triggers cellular 
proliferation and cell turnover, thus promoting an accelerated 

shortening of telomeres. However, a pro-oxidant imbalance can 
also promote DSB and DDR on telomeric DNA regions, resulting in 
telomere shortening [70].

Increasing evidence demonstrates that comorbidities and chronic 
inflammation related to obesity are associated with shortened 
telomeres [84-86]. In this sense, we demonstrated that telomere 
shortening in the context of obesity is related to the condition itself, 
independently of comorbidities occurrences. We also observed a 
dysregulation on shelterin components, where TRF1 negatively 
contributed to telomeres’ attrition [32]. Additionally, we describe 
chronic detrimental effects from the plasma of patients with 
obesity. Our findings demonstrate an immunosenescent phenotype 
characterized by increasing mitochondrial dysfunction and DNA 
damage associated with augmented apoptosis on PBMC from a 
eutrophic donor by supplementation with plasma from patients 
with obesity [87]. Longitudinal studies have focused on the effects 
of bariatric surgery on telomere shortening rate. In this context, 
Laimer et al. observed an increase in telomeres length in PBMC after 
10 years of bariatric procedure [88]. On the other hand, Formichi 
et al. observed shorter telomeres on obese patients with no effect 12 
months after intervention [89]. Literature controversy is supported 
by our recent review with meta-analysis comprising 119,439 patients 
from 39 original studies, where we demonstrate inconclusive results 
with a trend towards a negative correlation for obesity and telomere 
shortening [90].

Moreover, our studies on psychiatric diseases, such as Bipolar 
Disorder (BD), show shortened telomeres in individuals diagnosed 
with BD [91]. More interestingly, when we compared the telomere 
length of these individuals with their non-BD siblings and with 
unrelated healthy individuals; we found a progressive order of 
degeneration between groups. In this sense, shorter telomeres on 
PBMC were associated with an increased pro-inflammatory profile 
in BD carriers [92]. When we replicated this work in individuals with 
another severe neurodegenerative disease, such as Schizophrenia 
(SZ), we also observed increased senescence profile on cells marked 
by telomere attrition. However, when we analyzed the telomeres 
length in the same three groups, we observed that both SZ individuals 
and their siblings had telomeres of similar length and shorter than 

Figure 1: Chromosomes and telomeres. The telomeres (in violet) are the final 
tips of the chromosomes. They consist of a double-stranded DNA sequence 
and a single strand DNA protrusion with 150-200 nucleotide-long non-coding 
TTAGGG repeats at the free 3'OH end, called G-strand. The complementary 
strand (5' end of DNA) is rich in cytosine and termed as C-strand.

Figure 2: Schematic model of telomeric DNA structure stabilized by the 
shelterin complex. The six-protein complex Shelterin assembles in an 
intricate structure with a loop configuration in order to maintain the telomeres 
3-D conformation. The 3’OH overhang invades the double-strand telomeric 
DNA to form a protective structure, preventing the 3’ overhang from being 
falsely recognized as DNA double-strand breaks. Abbreviations: TRF1: 
Telomeric repeat binding factor; TRF2: Telomeric repeat binding factor 2; 
RAP1: Repressor/activator protein 1; TPP1: Adrenocortical dysplasia protein 
homolog; TIN2: TRF1 Interacting Nuclear Factor 2; POT1: Protection of 
telomeres protein 1; DKC1: Dyskerin.



Barbé-Tuana FM, et al., Journal of Molecular and Cellular Biology Forecast

2019 | Volume 2 | Edition 2 | Article 1018ScienceForecast Publications LLC., | https://scienceforecastoa.com/ 5

unrelated healthy individuals. These results highlight a pathological 
profile of premature aging possibly present in the course of SZ and 
suggest that the length of telomeres could be an endophenotype 
present in individuals at risk [93]. Finally, in the last work, we 
demonstrated a positive association between telomere length and 
CCL11, a peripheral biomarker associated with inflammation in 
aging. We further describe negative associations between telomere 
length and gray matter volume or recent memory episodes in subjects 
with SZ [94]. Although all these studies are cross-sectional, the results 
of this set are consistent with the hypothesis of disease- induced 
accelerated disease (BD or SZ) rather than age.

Still, the reflex of the exposure to adverse situations on the length 
of telomeres can be detected even in childhood. Studies show an 
association between the shortening of telomeres and the occurrence of 
childhood obesity [95], as well as being related to low socioeconomic 
status [96] and exposure to psychological stress [97]. In a longitudinal 
study that followed children exposed to violence for five years, the 
rate of shortening of telomeres persisted, suggesting that events early 
in life may cause chronic alterations, increasing the risk of diseases 
in adulthood [98]. Other studies have shown that premature rupture 
of membranes is related to the shortening of leukocyte telomeres 
already in the fetal period [99,100]. In addition, there is evidence that 
adverse events during pregnancy may be associated with shortening 
of leukocyte telomeres in newborns [101], and in young adults [102].

Several studies have also shown that lifestyle factors, such 
as smoking [103], alcoholism [104], exposure to environmental 
pollution [105], beverage drinks consumption [106], socioeconomic 
status, as well as other diseases associated with chronic inflammation, 
and biochemical [107] or psychological stress events [108] directly 
influence the health and life expectancy of individuals. These might 
potentially accelerate the shortening rate of telomeres from PBMC, 

increasing the risk of developing several types of cancer and the rate 
of aging, leading to a senescence phenotype or inducing cell death 
[14].

There is also evidence in the literature for interventions that 
can reverse the accelerated rate of telomeres shortening. As an 
example, many programs have focused on modifying individuals' 
comprehensive lifestyle changes. In a three-month follow-up study of 
patients with prostate cancer, lifestyle change, including a balanced 
diet, follow-up by group therapy, moderate physical activity, and 
control of stress levels, contributed to the elongation of the telomeric 
sequence, decreasing the acceleration of the aging process [109].

Conclusions
The elucidation of the complexity of replication and regulation 

of the structure of telomeres is a fascinating focus of basic research 
involving cell biology. Telomeres are cell structures associated with 
biological aging and are regulated by a network of complexes formed 
by specialized proteins, conferring stability to the sequence. Thus, 
telomeres are structures that play a fundamental role in chromosomal 
stability, avoiding the triggering of DNA damage responses to 
the genome of organisms, avoiding nucleolytic events during the 
progression of the aging process.

According to Lopez-Otín, shortening of telomeres is considered 
an important marker of the aging process, since this structure is highly 
susceptible to deterioration and related to the accumulation of DNA 
damage during the aging process [110]. Thus, structural or mutagenic 
deficiencies in the components of the shelterin complex are capable of 
causing a destabilization of the telomeric DNA structure, promoting 
structure unblocking [111] and accelerated shortening of telomeres 
[112].

In addition, experimental evidence suggests that telomeres 
shortening, DDR activation, and cellular senescence contribute 
to the establishment and progression of the aging phenotype. One 
hypothesis about aging is that abrupt shortening occurs early in the 
disease, suggesting that the length of telomeres may be an important 
biological marker in the establishment and progression of various 
pathologies [113].

Studies between the telomeres of cell biology and human diseases 
are complex. In addition, they require a deepening and holistic 
multidisciplinary approach in order to comprehensively understand 
clinically relevant data. Although the role of telomeres in cell 
physiology is of paramount importance during tumorigenesis, many 
studies have focused on much broader efforts, addressing a spectrum 
of complex diseases. Thus, this type of multidisciplinary approach 
can allow the discovery of effective therapeutic modalities and the 
prevention of diseases related to the acceleration of the biological 
aging process.
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