
Scalable and Decoupled Logging for State Machine
Replication

Luiz Gustavo C. Xavier1,3, Fernando Luı́s Dotti2,
Cristina Meinhardt1,3, Odorico M. Mendizabal1,3

1Centro de Ciências Computacionais
Universidade Federal do Rio Grande (FURG)

2Faculdade de Informática
Pontı́ficia Universidade Católica do Rio Grande do Sul (PUCRS)

3Departamento de Informática e Estatı́stica
Universidade Federal de Santa Catarina (UFSC)

xavier.luizgustavo@gmail.com, fernando.dotti@pucrs.br,

{cristina.meinhardt, odorico.mendizabal}@ufsc.br

Abstract. State Machine Replication (SMR) is a widely used approach for fault
tolerance of important services. Support for SMR implementations on shared
infrastructures has emerged, allowing wider adoption. However, there are still
non-trivial aspects that developers have to handle to build and deploy their de-
pendable services. In this paper we tackle the need for recovery to keep fault-
tolerance levels, and propose an approach to: (i) simplify the development of
logging; (ii) improve resource sharing in shared infrastructures; (iii) alleviate
costs with replication in pay-per-use infrastructures. The central idea is to de-
couple service execution from logging and offer logging functionality as a ser-
vice attachable to SMR deployments. Beyond the added simplicity to deploy an
SMR, we show that this approach does not penalize performance of replicated
services, and that a logging service can scale to look to several applications.

1. Introduction
With the increasing demand for highly-available and high-throughput systems, the devel-
opment of well performing distributed fault-tolerant services becomes a challenging task
to a wider group of system developers. State Machine Replication (SMR) is a known
technique to manage replicated serves [Lamport 1978, Schneider 1990]. In SMR replicas
behave as state machines, starting in the same initial state and deterministically executing
an identical sequence of client commands. Many dependable systems entrust SMR with
their critical data [Marandi et al. 2016].

In [Altinbuken and Sirer 2012, Netto et al. 2017, Pereira et al. 2019,
Borges et al. 2019] authors present different contributions to enable the SMR approach to
use shared infrastructures, significantly reducing the initial efforts needed to build repli-
cated services. These efforts, along with strong consistency [Herlihy and Wing 1990],
that offers replication transparency, significantly help developers to adopt SMR. Nonethe-
less, the engineering to build fault-tolerant services still has complex aspects, and we
advocate that further functional support is needed.

To provide robustness, a replica should be able to recover. Recovery proto-
cols [Bessani et al. 2013, Mendizabal et al. 2017, Kończak et al. 2019] allow a recover-
ing replica to restore a consistent state and catch up with other replicas in the system. A
recoverable state is usually built up from a combination of data acquired from log and
checkpoints. To keep this information persisted in a stable storage, both logging and
checkpointing strategies have to be adopted, influencing the performance of replicas dur-
ing normal operation. The typical logging in SMR takes place while processing each
command: the command is logged, executed and a reply is sent to the client. When con-
sidering high-throughput systems logging can account for a considerable portion of the
processing time of each command. Also, logs grow with the throughput of the system
and thus have to be frequently truncated, increasing checkpoint frequency. This again
penalises the replica’s performance [Bessani et al. 2013, Mendizabal et al. 2016].

Logging thus represents an aspect of complexity during the development and de-
ployment of replicated services. Therefore in this paper we present a logging service
decoupled from the application, with the goal of: (i) simplifying the development of
durability techniques; (ii) improving resource sharing in shared infrastructures; (iii) al-
leviating costs with resource usage in pay-per-use infrastructures. As main technical
aspects, we propose this decoupling by: (a) having a specialized log service available
in the form of logger processes; (b) including logger processes as part of the replicated
service, sharing the same agreement protocol with state machine replicas. By doing so,
these light processes can log the same sequence of ordered commands delivered to each
replica. Logging of commands is transparently executed by the logger with no need for
modifications in the execution of commands. In a shared infrastructure, multiple services
could share a single logging service. Besides sharing the same logger, services can start
or stop using the logging service at runtime. The simple API and elasticity offered by
our decoupled logging service fits well to approaches where dependable services are de-
ployed in shared infrastructures, such as those already mentioned. Also, this approach
relieves replicas from logging commands, reducing both the replica’s overhead caused by
sequential logging operations and the total amount of data stored in persistent storage.

The rest of this paper is organized as follows. Section 2 exposes close related
contributions, that focus on cost reduction with durability and state recovery optimiza-
tions. Section 3 contains the system model. In Section 4 we briefly discuss about SMR
and recovery. Section 5 presents the decoupled logging strategy and some aspects for its
implementation. In Section 6 we experimentally evaluate our approach and compare it
with traditional logging schemes. Section 7 concludes this work.

2. Related Work
UpRight [Clement et al. 2009] introduces the idea of a helper process, a slight deviation
of a regular application that asynchronously captures application snapshots. Two similar
threads, the primary and the helper, execute in parallel. While the primary processes
requests and sends replies to the clients, the helper periodically takes checkpoints. This
strategy avoids pausing of execution of new requests during a checkpoint, and minimizes
intrusiveness to legacy code. The application decoupling for checkpoint creation adopted
by UpRight motivated us to decouple logging from commands execution. Different from
UpRight, though, where primary and helper run at the same machine, our strategy allows
distributed execution, where logger and application execute in remote machines.

Some approaches benefit from the agreement protocol to restore a consistent state.
In [Boichat et al. 2003] authors describe recovery strategies that rely on Paxos to record
the log of decided commands. One of the strategies requires Paxos to write data to a stable
storage once per decision. Another approach does not use a stable storage, but it requires
that a majority of correct processes is permanently under execution. Upon recovery, a
replica broadcasts a message indicating that it recovered its state and it does not vote in
further decisions. This strong restriction might be unsuitable for practical systems.

Kończak et al. [Kończak et al. 2019] also present recovery algorithms for Paxos-
based replicated systems. Authors propose three versions of the algorithm (FullSS,
ViewSS and EpochSS). Compared with [Boichat et al. 2003], taking weaker and more
practical assumptions about the system. FullSS follows the original Paxos definition and
the system frequently uses stable storage during normal execution. The ViewSS algo-
rithm extends Paxos with a recovery phase, and requires that the new ballot number is
synchronously written to stable storage on leader changes. The EpochSS algorithm re-
quires that every process stores in stable storage an epoch number, incremented every
time the process restarts. Thus, the EpochSS protocol requires only one synchronous
write to stable storage per fault-free run of a process. Both ViewSS and EpochSS al-
gorithms assume a limit on the number of processes that may crash at the same time.
In [Boichat et al. 2003, Kończak et al. 2019] Paxos is customized to provide logging and
recovery mechanisms for replicas. Different from their approach, our logging service
provides a simple API to service replicas without changes in the underlying protocol.

Some practical implementations of consensus protocols, such as Multi-Ring Paxos
[Benz et al. 2014], allow recovering replicas to retrieve the log of commands by querying
the sequence of commands previously decided. Through a relearn command, a recov-
ery replica proposes null values to an interval of already decided instances of consensus.
Participants return the real value decided in each of the requested instances. Although
providing a very simple API for recovery, this strategy introduces extra costs to the par-
ticipants of the consensus protocol, since they have to reach a decision for a possibly large
sequence of old values while they continue ordering upcoming commands from the ser-
vice clients. This overhead may temporarily cause a perceptible increase on latency by the
clients [Bessani et al. 2013, Mendizabal et al. 2017]. Furthermore, the relearn command
provided by Multi-Ring Paxos is not typically made available as a regular Paxos com-
mand. Then, similar solutions would be unavailable when using another implementation
of Paxos, Raft [Ongaro and Ousterhout 2014] or any other agreement protocol.

Corfu [Balakrishnan et al. 2013] is a distributed and shared log that allows client
operations to be run on parallel. During operation, Corfu’s clients maintain a local
projection map that stores references to physical log positions divided into pages dis-
tributed across a cluster of logging modes. Operations indexed to pages located in
distinct nodes run on parallel, improving throughput and scalability. Similar to the
Corfu’s distributed logging, other hacks and tricks allow the system to use the disk
efficiently [Chandra et al. 2007, Rao et al. 2011, Bessani et al. 2013]. For instance, in
[Bessani et al. 2013], authors propose the parallel logging, which attempts to postpone
and to batch synchronous writes in order to reduce their number and alleviate their la-
tency. Such improvements are orthogonal to our approach and might even be used in the
development of our decoupled logging service.

3. System Model

We assume a distributed system composed of interconnected processes. There is a limited
number of service replicas defined by the set S = {s1, s2, ..., sn}, a limited number of
logger processes defined by L = {l1, l2, ..., lm}, and an unbounded set C = {c1, c2, ...} of
client processes.

The system is asynchronous in the sense that communicating processes may not
be able to obtain responses to their requests in time. In other words, there is no bound on
message delays and on relative process speeds. A process may fail by crash and subse-
quently recover, but processes cannot suffer from Byzantine faults. Service replicas and
logger processes are equipped with volatile memory and stable storage. Upon a crash,
a process loses the content of its volatile memory, but the content of its stable storage
survives the failure. We assume f faulty service replicas, out of nr = 2f + 1 servers, and
k faulty logger processes, out of nl = k + 1 loggers.

Processes communicate by message passing, using either one-to-one or one-to-
many communication. One-to-one communication is through primitives send(m) and
receive(m), where m is a message. If a sender sends a message enough times, a cor-
rect receiver will eventually receive the message. One-to-many communication is based
on atomic broadcast, whose main primitives are broadcast(m) and deliver(i,m), where
i refers to the consensus instance in which m was decided. This definition implicitly
assumes that atomic broadcast is implemented with a sequence of consensus instances
identified by natural numbers (e.g., [Lamport 1998]). This choice is made consciously,
based on the fact that introducing the consensus instance in the delivery event, a service
replica can easily determine the messages it needs to retrieve upon recovering from a
failure. Analogously, a logger process can keep the same sequence of logged messages
observed by the message delivery protocol.

Atomic broadcast ensures that (i) if a process broadcasts message m and does
not fail, then there is some i from an infinite ordered set of values such that eventually
every correct process delivers (i,m); and if a process delivers (i,m), then (ii) all cor-
rect processes deliver (i,m), (iii) no process delivers (i,m′) for m 6= m′, and (iv) some
process broadcasts m. Atomic broadcast requires additional system assumptions to be
implemented [Chandra and Toueg 1996].

4. State Machine Replication

SMR renders a service fault-tolerant by replicating the server and coordinating the ex-
ecution of client commands among the replicas [Lamport 1978, Schneider 1990]. The
service is defined by a state machine and consists of state variables that encode the state
machine’s state and a set of commands that change the service state. The execution of
a command may (i) read state variables, (ii) modify state variables, and (iii) produce an
output response for the command.

In order to ensure that the execution of a command will result in the same state
changes and results at different replicas, commands are deterministic, i.e., the changes to
the state and the response of a command are a function of the state variables the command
reads and the command itself. Therefore, if servers execute commands in the same order,
they will produce the same state changes and results after the execution of each command.

SMR provides clients with the abstraction of a highly available service while hid-
ing the existence of multiple replicas. This last aspect is captured by linearizability, a
consistency criterion [Herlihy and Wing 1990]: a system is linearizable if there is a way
to reorder the client commands in a sequence that (i) respects the semantics of the com-
mands, as defined in their sequential specifications, and (ii) respects the real-time ordering
of commands across all clients [Attiya and Welch 2004]. In SMR, linearizability can be
achieved by having clients atomically broadcast commands and replicas execute com-
mands sequentially in the same order.

4.1. Recovery in SMR

To allow replicas to be recovered after the occurrence of faults, durability strategies must
be implemented, such as logging, checkpointing and state transfer. Most SMR implemen-
tations follow a similar recovery approach [Boichat et al. 2003, Rao et al. 2011]:

(i) Commands are logged in the order in which they are executed (as part of atomic
broadcast) and a reply is only sent to the client after the corresponding command
is logged and executed.

(ii) Each replica periodically checkpoints its state to stable storage. Logged com-
mands preceding the moment in which the checkpoint was taken are discarded
from the log. Old checkpoints common to all replicas are also discarded.

(iii) Upon recovery, the replica:
(iii-a) reenters consensus and discovers the first consensus instance i decided

after its recovery;
(iii-b) retrieves and installs the latest checkpoint from another replica or from

remote storage; and
(iii-c) retrieves the log with executed commands that are not reflected in the

checkpoint, up to i, and sequentially execute these commands against the
state.

Client commands delivered during recovery are only processed after the recovery
procedure is complete.

5. Decoupled Logging
We propose a technique that separates the log handling from the application. The key idea
is to have service replicas dealing exclusively with command execution, free from logging
overhead, while an independent service logs the sequence of commands processed.

Figure 1 illustrates our strategy, which decouples logging from the application
logic by adding logger processes to the system (Log 1 and Log 2). These light processes
log the same sequence of ordered commands delivered to each replica, without execut-
ing them. Actually, logger processes do not implement the application logic and can be
implemented in a generalized way, without entering in details of the service.

In order to ensure a total ordered sequence of commands observed by both repli-
cas and loggers, logger processes participate in the same agreement protocol with state
machine replicas. Towards this end, logger processes are associated to the system at ini-
tialization, exactly as service replicas do. For instance, for SMR implementations using
Paxos-based libraries, for instance [Benz et al. 2014], loggers play the learners role. For
those implementations based on Raft protocol, they can execute as non-voters. Joining

Figure 1. Logging approach for State Machine Replication

loggers to the replicas group is dependent on SMR implementation. Notice, though, that
loggers and replicas join to the system in exactly the same way, which simplifies the
implementation and deployment of logger processes.

By adding these specialized processes to the system, an extra assumption has to
be made. While nr = 2f + 1 service replicas are required to tolerate up to f crashed
service replicas, adding logger processes impose nl = k + 1 logger processes to tolerate
up to k crashed loggers. Since loggers do not participate in the agreement of commands
ordering, it is enough that a single logger is correct.

5.1. Discussion of recovery correctness
Here we argue that a recovery procedure with the proposed decoupled logging reestab-
lishes a consistent replica state. Under the assumption of logger fault-tolerance, a logger
will be available to retrieve commands. As logger processes deliver commands in total
order, the produced logs follow the execution order. The recovery behavior assumed is
as described in Section 4.1, where step (iii-c) is implemented by requesting the logger
service for the commands from the last one checkpointed up to the current one. Since
we decouple logging from execution, we have to consider that loggers and replicas could
have different heights in the computation prefix. Case 1 - if loggers are ahead of replicas
execution, the recovering replica will immediately retrieve the interval of missing com-
mands. Case 2 - if replicas are ahead of loggers, then due to loggers fault tolerance and
participation in consensus they will eventually reach instance i (the first decided after re-
covery started) and thus have the interval of commands needed to serve the recovering
replica. This could possibly delay but not prevent recovery.

5.2. Performance Considerations
When logging is separated from the application logic some important performance con-
siderations emerge due to decoupling itself and due to the different relative speeds of
logger and server replicas.

First, service replicas do not need to log each command. Second, supposing well
equipped loggers, for instance running on top of servers with file systems and devices op-
timized for I/O operations, massive I/O operations could be performed and thus keeping
longer logs as well as truncating the log are no longer critical. As a consequence, efforts
to frequently take checkpoints and truncate the log become less important. That means
service replicas could relax the periodicity in which they checkpoint and request log trun-
cation. As a positive side-effect, reducing checkpoint frequency would directly result in
further performance gains at replicas, as discussed in [Mendizabal et al. 2016]. A third
important aspect concerns the relative speeds of replica and logger processes.

• If loggers are faster than replicas, and if replicas momentarily do not provide
throughput enough to serve incoming requests, then replicas would lag behind
loggers. This will not harm recovery, as discussed in Section 5.1. In fact, since
this depicts a scenario of saturation at replicas, would be even worse if we had the
classic case of replicas logging commands as well.
• If replicas are faster than loggers, and if loggers do not provide throughput enough

to log incoming requests, then loggers would lag behind replicas. If such satura-
tion is momentary then eventually the logger will catch up, also as discussed in
Section 5.1. In such case a request to retrieve a log interval will suffer some la-
tency and eventually be served when the logger has all requested commands.
If logger saturation however becomes prominent, we would face a gradual increase
in the delay of commands delivered to logger processes, and an increase in the
delay to recover of replicas, since a recovering replica would request commands
that were not stored by the logger yet, so it has to wait until the logger is able to
transfer the whole log. To mitigate these problems, a replica could truncate log
commands always it is possible, i.e., right after taking a checkpoint. This way,
logger processes would be requested to trim commands they had not processed
yet. By doing this, upon receiving commands behind the truncation point, logger
processes can simply discard those commands and resume logging of commands
after the truncation point. Even such mitigation is possible, the ideal configuration
is such that the loggers do not lag behind service replicas.

5.3. Application Programming Interface

Regarding engineering and architectural design, by decoupling logging from application,
developers do not need to rewrite applications from scratch or implement optimized per-
sistence routines to maintain the application log. Service replicas interact with loggers by
using a very simple API, provided by the logger library and described bellow.

recover(first, last) The recover routine allows replicas to request an
interval of commands from the log. It is usually needed when a recovering replica joins to
the system or a new one is started, so it must acquire an interval of missed commands to
catch up with other replicas. first and last represent endpoints of a closed interval,
where the first corresponds to the first command to be processed after installing a
snapshot, or the first command when no checkpoint is available. The last corresponds
to the last command that has to be processed, once the next command can be delivered by
the agreement protocol.

truncate(instance) The truncate routine allows a replica to inform a safe
instance which can be used by loggers to trim a prefix of commands from the log up
to the command given by instance. This routine is used when a majority of correct
replicas has successfully saved a snapshot of the service state containing all updates up to
the command of instance instance. The truncate routine will effectively truncate the
log only when more than (n − 1)/2 replicas ask the logger for truncating. In this case,
the lowest informed value of instance will be used to truncate the log. This quorum
of replicas is needed to avoid a single replica checkpoints, ask the logger for truncating,
and fails. Notice that such case would lead the system to a unrecoverable state, where log
discarded commands that cannot be recovered from a snapshot.

6. Experimental evaluation
This section presents an experimental evaluation of our technique. Three main aspects
are discussed:

1. Evaluating the impact of performance on replicas during normal execution. On the
one hand, separating logging from the application alleviates the cost with routines
for data persistence. On the other hand, once loggers are added to the group of
replicas, some performance degradation might be observed by the consensus pro-
tocol due to the increased message density. The analysis compares the throughput
of application-level logging (i.e., the typical logging approach) and decoupled
logging (i.e., the proposed approach);

2. Evaluating the performance behavior of loggers w.r.t. replicas. This is observed
by comparing application and logger throughput, where a lower throughput on
logging commands indicates the logger is slowing down. This situation must be
avoided, since it would delay recovery or the addition of replicas in the system.

3. Checking the feasibility of sharing the decoupled logging service by multiple ap-
plications. The objective of this study is to evaluate how the distributed log service
scales with the number of applications.

6.1. Workloads and Distributed Applications
We implemented application prototypes that exercise both CPU and I/O-bound work-
loads. This way, we can observe the impact of commands logging in scenarios with
low and high competition for disk writes. By using the decoupled logging service in
I/O intense scenarios, it is expected a lower contention to the disk since the applica-
tion does not need to store commands in a log file. Two distinct distributed applications
were implemented to measure the efficiency of log decoupling, in terms of throughput
overhead and latency impact observed by clients.1 They were developed using Go pro-
gramming language and implement a SMR model using Hashicorp’s Raft implementation
[Hashicorp 2014] as consensus layer. Serialization of structured data is implemented with
protocol buffers.

kvstore implements a key-value store, where user’s data is kept in-memory. Client
may read and write data by invoking get(k) and set(k,v) operations. The key k is
represented by a integer number and the value v is a byte array with configurable size. In
our experiments, 1,000,000 distinct keys were used, and values size were set to 1,024.

diskstorage implements a directory service. Directory entries are kept in a
persistent storage. This application induces an I/O-intense behavior. Application
state is fully represented by a 1GB file, which is modified by read(offset) and
write(offset,v) requests, where offset describes a record in the directory and
v is a byte array with a fixed size. In our experiments values size are set to 1,024. Disk
updates are synchronous commands.

6.2. Experiments
For each application, we execute (i) a baseline application, where the logging service is
disabled; (ii) a version where besides processing client requests, the application is respon-
sible for logging commands (the typical logging approach); (iii) application running with
decoupled logging service, where commands are logged by remote logger processes.

1Applications available at github.com/Lz-Gustavo/raft-demo/tree/v1.2

Application clients are simulated by load generators, which initialize a set of client
threads. In order to avoid contention at the client side, every load generator runs at most
6 client threads. Every client thread randomly generates a command (read or write op-
eration) and broadcasts it for replicas execution. When the client thread receives the
response for a submitted command, it randomly waits for a maximum 10ms, generates a
new command and repeats the sending procedure.

6.3. Environment and configuration

Experiments were executed adopting a topology of bare-metal Dell PowerEdge 1435
nodes, equipped with 2x Dual-Core AMD Opteron(tm) processor running at 2GHz and 4
GB of main memory (DDR2 667MHz SDRAM), and a storage controller SATA II, 7.2k
RPM, 500 GB with a 16 MB buffer. All nodes are connected to an HP ProCurve switch
2920–48G gigabit. All nodes run Ubuntu 18.04 LTS Linux. Our prototype was set up
to tolerate one service failure, and one logger failure, requiring three application replicas
and two logger processes, all running in independent nodes.

6.4. Results

Figures 2 shows the throughput versus latency graph for the kvstore and diskstorage ap-
plications both with value size set to 1,024 bytes. The number of emulated clients was
gradually increased to generate each point in the graphics. As expected, the version of
application without logging presents the best performance, reaching a maximum through-
put in both applications (around 2,500 commands/s for kvstore and 280 commands/s for
diskstore) and lower latency values. Figure 2(a) describes the execution of the kvstore
application, addressing a typical CPU intensive workload. As observed, the application-
level logging, where application is in charge of registering commands in the persistent
device, presents a slightly better performance when compared to the decoupled logging
strategy. The addition of logger processes in the consensus protocol might incur in extra
costs to the decoupled logging approach.

(a) key-value store (b) disk storage

Figure 2. Throughput versus latency of 1k-byte commands.

When running I/O-bound applications, the logging of commands increases com-
petition for disk access between commands execution and logging. As depicted by Figure
2(b), by running diskstorage, application performance is severely impacted, reaching a

saturation point when throughput approaches 280 commands per second. However, dif-
ferences among logging strategies are less perceptible. Even the configuration without
logging reaches a throughput very similar to those achieved when log is enabled.

According to our results, the addition of nodes to execute logger processes may
cause a small reduction in the maximum observed throughput, especially when workload
is CPU intensive. This cost is negligible for I/O-bound applications. Although there is
apparently no direct benefit in using the decoupled logging approach for a single appli-
cation, sharing a single logging service among multiple applications may contribute to
better use of resources, thereby saving costs, especially when services are deployed in
pay-per-use infrastructures.

In order to evaluate the impact of logging in shared infrastructure, we run multiple
instances of kvstore and diskstore applications in the same nodes. More precisely, we
choose groups of 3 nodes to host replicas of applications and 2 nodes to run the replicated
logging service. At most 4 shared applications are allocated per physical machine, while
a single pair of machines is used to deploy the logging service. The limit of 4 shared
applications was imposed since it is the maximum number of applications hosted in server
nodes before degradation is observed. However, the pair of machines used to deploy
logging service is capable to continue serving more applications. Each hosted application
is submitted to a workload of approximately 70% of their maximum load.

Figure 3 depicts the throughput variation according to the number of independent
applications running in the same group of servers. The x-axis indicates the number of
hosted applications, while the y-axis shows the cumulative throughput, i.e., the sum of the
average throughput observed by each application individually. As expected, the highest
cumulative throughput is observed when logging is disabled. For CPU-intensive applica-
tions (see Figure 3 (a)), as the number of hosted applications increases, both application-
level and decoupled logging experienced a decrease in the throughput growth rate. How-
ever, when evaluating the impact of logging in a shared infrastructure running diskstore
application (see Figure 3 (b)), the throughput of application without logging and applica-
tion using our decoupled logger service are practically the same. A small reduction on
the throughput growth rate is observed when application is responsible for logging com-
mands. This performance reduction is a consequence of a higher competition to the disk
caused by both commands execution and logging of commands.

In order to evaluate the scalability of our approach, we gradually increased the
number of applications served by the decoupled logger service. In this experiment, we
limited a maximum of 3 applications per group of replicas. Figure 4 shows the cumulative
throughput of kvstore with decoupled logging and the cumulative throughput of the logger
itself. We increased the number of application up to 9, while both application and logger
presented a very similar throughput. That means the logger is capable to handle this load.
Unfortunately, we did not have extra nodes to continue increasing the number of applica-
tions, which limited the scalability graph to 9 applications. With such load, we could not
identify the saturation point of the logger (we expected a slow decay at throughput curve
after a certain number of running applications, indicating the logger is slowing down).

As a way to redress the lack of resources in the previous experiment, and to
strengthen the scalability study, we evaluated the maximum throughput achieved by the

(a) key-value store (b) disk storage

Figure 3. Cumulative throughput of the logger shared by several applications.

Figure 4. Scalability analysis of decoupled logging service.

logging routine and by the consensus protocol separately. First, we reproduce the work-
load of kvstore and record the generated commands locally, with the absence of network
and ordering costs. The average throughput observed for logging of commands is around
46,000 commands/s. With 9 applications the logger was subject to 14,000 commands/s,
which represents 30% of the maximum logging throughput. In order to estimate the max-
imum throughout of commands delivered, we implemented a Raft program that contin-
uously proposes commands and replicas simply discard the delivered commands. By
running an intense workload, we observed a delivery rate of 3,200 commands/s. Previous
tests were generating an average throughput of 2,200 commands/s, which means their
throughout was not limited by the consensus protocol. These benchmarks cannot replace
a detailed analysis of scalability, but they give some evidences that the logger would be
capable to handle additional applications before degrading performance. Future work
should extend the scalability analysis to provide more accurate information.

By allowing multiple applications to share a logging service, our approach reduces
the number of nodes in charge of writing logging information into the stable storage. As
discussed in Section 3, nr = 2f+1 servers, and nl = k+1 loggers are required to tolerate
f and k faults, respectively. Equations 1 and 2 depict the monetary costs of the traditional

and decoupled logging strategies. These equations involve the following variables:

Symbol Meaning Value for kvstore Value for diskstorage
n # of applications using same logger 1..9
f replicas that may fail 1
k loggers that may fail 1
da disk usage by application / min. 0 MB 50 MB
dl disk usage by logger / min. 59 MB 10 MB
φ fee per byte used ($) φ = 0.025/109 bytes
ε cost for a single machine ($ / month) ε = 0.0104× 720

Capp−level = φ{n[(2f + 1)× (da + dl)]}+ ε[n(2f + 1)] (1)

Cdecoup−log = φ{n[(2f + 1)× da] + [(k + 1)× dl]}+ ε[n(2f + 1) + (k + 1)] (2)

In order to estimate the monetary impact with the decoupled logging, we adopted
the current pricing policies charged by Amazon Web Services [AWS 2019], considering
sc1 EBS volumes and t3.micro EC2 instances for each server. Then, we set: φ =
0.025/109, which represents a fee of $0.025 per GB used; and ε = 0.0104 × 720, which
represents the cost of t3.micro nodes per month. Values of da and dl were obtained by
monitoring applications configured as described by scenarios shown in Figure 3. Every
minute, we observed da = 0 and dl ≈ 59 MB for kvstore, and da ≈ 50 MB and dl ≈ 10
MB for diskstorage. kvstore has none da usage due to absence of I/O operations, and
a greater dl because of its higher throughput. Monthly costs for both da and dl were
obtained by multiplying their values by 60 (minutes), by 24 (hours), and by 30 (days).

Therefore, we can observe a monthly cost reduction of 23.28% for kvstore and an
increase of 1.4% for diskstorage. By extending for nine applications, the monetary cost
is reduced to 82.54% and 13.72%, which can represent important savings on pay-per-use
infrastructures. As depicted in Figure 5, cost reduction is observed on kvstore even with
a single application under execution, whereas for diskstorage a slower gain is observed
with three or more applications. As can be seen, the benefits are proportional to dl and
n. This inquires that the greater is the application’s throughput, the greater will be the
monetary savings by sharing a decoupled log with different applications.

(a) key-value store (b) disk storage

Figure 5. Monthly costs of decoupled logging shared by multiple applications.

Finally, we evaluate the impact of decoupled logging upon recovery of replicas.
Towards this end, we start a new replica during a test execution, so it retrieves the com-
plete log of commands by issuing a recover request and sequentially processes every
command in the log. From this moment on, the replica is recovered and able to exe-
cute new commands. In order to compare traditional and decoupled logging strategies,
we evaluate the recovery time and application throughput for both configurations. The
new replica is started after 3 minutes of test execution. At this time, log contains around
380,000 commands, which corresponds to approximately 195 MB. Both techniques pre-
sented a similar behavior. The time taken to transfer the log remains close to 2.7 seconds,
while the processing time was fixed in 1.65 seconds, which results in approximately 4.4
seconds to recovery the replica. Neither logging techniques caused throughput fluctua-
tions in application during recovery.

7. Concluding Remarks
This paper presents a logging service for SMR decoupled from application. The general
idea is to add light processes, called loggers, to the set of replicas in the system. Loggers
are in charge of maintain and retrieve the log of commands processed by the replicas.
The paper describes the decoupled logging approach, discusses recovery correctness and
some performance implications of this approach.

From a programming perspective, by using this service, developers do not need to
rewrite applications from scratch or implement optimized persistence routines to maintain
the application log. The logger service provides a very simple API, allowing service repli-
cas to retrieve the log at recovering or truncate the log to eliminate a prefix of commands
no longer needed to restore a consistent state.

From a performance perspective, besides alleviating the overhead of service repli-
cas with I/O operations, loggers can support multiple services at the same time. A sustain-
able use of resources is especially attractive to reduce costs of service providers, such as
cloud providers. In this sense, the decoupled logging service becomes a good alternative
to dependable services running at shared environments, such as cloud infrastructures.

Future steps in this work include moving the logging service to a component in
a cloud service provider. Replicated services running into the cloud should rely on our
logger service to keep track of commands processed by replicas and to retrieve a log prefix
at recovery. Another improvement would be to apply specific optimizations and test the
shared logger using specialized hardware for I/O.

References
Altinbuken, D. and Sirer, E. G. (2012). Commodifying replicated state machines

with openreplica. available at http://openreplica.org/static/papers/
OpenReplica.pdf.

Attiya, H. and Welch, J. (2004). Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Wiley-Interscience.

AWS (2019). AWS EBS and EC2 pricing values. https://aws.amazon.com/.

Balakrishnan, M., Malkhi, D., Davis, J. D., Prabhakaran, V., Wei, M., and Wobber, T.
(2013). Corfu: A distributed shared log. ACM TOCS, 31(4):1–24.

Benz, S., Marandi, P. J., Pedone, F., and Garbinato, B. (2014). Building global and
scalable systems with atomic multicast. In ACM MIDDLEWARE 2014.

Bessani, A., Santos, M., Felix, J., Neves, N., and Correia, M. (2013). On the efficiency of
durable state machine replication. In USENIX ATC 2013.

Boichat, R., Dutta, P., Frølund, S., and Guerraoui, R. (2003). Deconstructing paxos. ACM
SIGACT 2003.

Borges, F., Pacheco, L., Alchieri, E., Caetano, M. F., and Solis, P. (2019). Transparent
state machine replication for kubernetes. In IEE AINA 2019.

Chandra, T. D., Griesemer, R., and Redstone, J. (2007). Paxos made live: an engineering
perspective. In ACM SIGACT 2007. ACM.

Chandra, T. D. and Toueg, S. (1996). Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267.

Clement, A., Kapritsos, M., Lee, S., Wang, Y., Alvisi, L., Dahlin, M., and Riche, T.
(2009). Upright cluster services. In ACM SIGOPS 2009.

Hashicorp (2014). Raft GitHub repository. https://github.com/hashicorp/
raft.

Herlihy, M. P. and Wing, J. M. (1990). Linearizability: A correctness condition for con-
current objects. ACM TOPLAS 1990, pages 463–492.

Kończak, J. Z., Wojciechowski, P. T., Santos, N., Żurkowski, T., and Schiper, A. (2019).
Recovery algorithms for paxos-based state machine replication. IEEE TDSC 2019.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565.

Lamport, L. (1998). The part-time parliament. ACM TOCS, 16(2):133–169.

Marandi, P. J., Gkantsidis, C., Junqueira, F., and Narayanan, D. (2016). Filo: Consoli-
dated consensus as a cloud service. In USENIX ATC 2016.

Mendizabal, O. M., Dotti, F. L., and Pedone, F. (2016). Analysis of checkpointing over-
head in parallel state machine replication. In ACM SAC/DADS 2016.

Mendizabal, O. M., Dotti, F. L., and Pedone, F. (2017). High performance recovery for
parallel state machine replication. In IEEE ICDCS 2017.

Netto, H. V., Lung, L. C., Correia, M., Luiz, A. F., and de Souza, L. M. S. (2017). State
machine replication in containers managed by kubernetes. JSA, 73:53–59.

Ongaro, D. and Ousterhout, J. (2014). In search of an understandable consensus algo-
rithm. In USENIX ATC 2014.

Pereira, P. M., Dotti, F. L., Meinhardt, C., and Mendizabal, O. M. (2019). A library for
services transparent replication. In ACM SAC/DADS 2019.

Rao, J., Shekita, E. J., and Tata, S. (2011). Using paxos to build a scalable, consistent,
and highly available datastore. Proceedings of the VLDB Endowment.

Schneider, F. B. (1990). Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM CSUR 1990.

