
Received September 3, 2020, accepted September 15, 2020, date of publication September 18, 2020,
date of current version October 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3025206

SDN-Based Secure Application Admission
and Execution for Many-Cores
MARCELO RUARO 1, LUCIANO LORES CAIMI 2, (Member, IEEE),
AND FERNANDO GEHM MORAES 1, (Senior Member, IEEE)
1School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil
2Department of Computer Science, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, Brazil

Corresponding author: Fernando Gehm Moraes (fernando.moraes@pucrs.br)

This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil, under Grant
Finance Code 001. The work of Fernando Gehm Moraes was supported in part by the Fundação de Amparo á pesquisa do Estado do Rio
Grande do Sul (FAPERGS) under Grant 18/2551-0000501-0, and in part by the Conselho Nacional de Desenvolvimento Científico e
Tecnológico (CNPq) (Brazilian funding agencies) under Grant 302531/2016-5.

ABSTRACT General-purpose many-core system-on-chip (MCSoC) requires support to the execution of
dynamic workloads, i.e., admission of new applications at runtime. Some applications may require QoS and
security from the MCSoC, not tolerating that malicious tasks or hardware Trojans steal or corrupts their
data. A robust method to provide security is to isolate the communication and computation. Most current
works employ such isolation in continuous regions named secure zones (SZ). Motivated by the recent study
of the Software-Defined Networking (SDN) paradigm for MCSoCs, this work proposes to use SDN-based
management to implement the communication isolation at runtime. The computation isolation occurs by
mapping only tasks of the same application at each core. The communication isolation is supported by the
SDN paradigm, which establishes dedicating paths for secure applications. Results show that the SDN-based
approach presents a negligible latency to admit and execute a secure application, with a reduced hardware
cost and higher computational resources utilization compared to SZs.

INDEX TERMS Security, many-core, network-on-chip (NoC), secure zones, software-defined
networking (SDN).

I. INTRODUCTION
Many-core Systems-on-Chip (MCSoCs) supporting dynamic
workloads are ubiquitous in our lives as mobile smartphones,
IoT and general embedded devices. The support of dynamic
workloads requires adaptive techniques to admit new appli-
cations and fulfill their constraints at runtime.

Security is one of the constraints required by applica-
tions. An application can request the system to provide data
integrity and protection against potential attacks that aim to
steal or corrupt its data. The literature explores several tech-
niques that enforce security addressing application admission
and execution at the computation and communication levels.
A method to protect the MCSoC design with prominence in
the literature is the secure zone (SZ) [1]–[6]. The basis of this
technique is the resource reservation to execute applications.
For example, at the computational level, the application tasks
do not share the same CPU with other applications. At the
communication level, it is possible to protect flows by using

The associate editor coordinating the review of this manuscript and

approving it for publication was Yanjiao Chen .

dedicated routing algorithms, rerouting at runtime, cryptog-
raphy, or firewalls.

Recent research showed the Software-Defined Network-
ing (SDN) benefits for MCSoCs, targeting energy reduction
and QoS [7]–[9]. The SDN paradigm reduces the Network-
on-Chip (NoC) physical complexity by moving the router
control logic from the hardware to the software level. The
software managing the SDN is named Controller. The Con-
troller keeps the NoC resources status and, based on its rules,
defines paths at runtime for communicating tasks. The main
benefit of SDN is its global knowledge of the NoC, which
allows multi-objective communication path search and the
possibility to the designer to update the search rules without
the need to design a new NoC [7], [8].

Motivated by the SDN design flexibility, this work pro-
poses a ‘‘Secure SDN-based Application Admission and Exe-
cution’’ (SSAE) framework to admit and execute applications
securely. SSAE covers security at the computational and
communication levels:
• Computation: a secure application is mapped in dedi-
cated Processing Elements (PEs), i.e., its tasks are not

177296 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5995-435X
https://orcid.org/0000-0003-2018-169X
https://orcid.org/0000-0001-6126-6847
https://orcid.org/0000-0002-1382-0679


M. Ruaro et al.: SDN-Based Secure Application Admission and Execution for Many-Cores

TABLE 1. Related works on security for MCSoCs. CMP = Computation support, CMM = Communication support.

allowed to share a CPU with tasks belonging to other
applications.

• Communication: SDN-based management defines
exclusive communicating paths for secure flows using
a Multiple-Physical NoC (MPN) [17], [18].

The goal of this work is the proposition and evaluation
of SDN-based management to provide secure application
admission and execution. The motivation for adopting SDN
comes from its hypothetical advantages compared to SZs
(evaluated in this work). The first one is the creation of ded-
icated connections enabling non-continuous regions, allow-
ing a more flexible task mapping, and contributing to a
better system utilization. The second one is to promote a
lightweight physical design compared to approaches requir-
ing dedicated hardware for SZs, encryption mechanisms or
firewalls.

The original contributions of this work include:
• A framework to securely admit and execute applications
into anMCSoC based on the SDN paradigm. The frame-
work addresses a systemic protocol covering hardware
and software components of the system.

• A comparison of the SDN-based secure management
with a state-of-the-art SZ technique [6].

This work is organized as follows. Section II reviews
related work on security and SDN for MCSoCs. Section III
details the MCSoC architecture. Section IV describes the
secure zone model, which is the reference model compared
to our proposal. Section V presents the ‘‘Secure SDN-based
Application Admission and Execution’’ (SSAE) framework,
the main contribution of this work. Section VI evaluates
SSAE in terms of computational complexity, area, and
power, as well as compare it against the model presented in
Section IV. Finally, Section VII concludes this article and
point out directions for future work.

II. RELATED WORK
A. SECURITY FOR MCSoC
Table 1 presents a broad overview of works covering security
for applications executing in MCSoCs. The Table shows the

adoption of different methods, including Physical Unclon-
able Function (PUF) and Message Authentication Code
(MAC) [10], firewalls [11]–[13], encryption [12], [13], tem-
poral communication partition [14], packet validation [15],
routing schemes [16], and Secure Zones (SZ).

Works [1]–[6] address SZ. Such proposals vary according
to some characteristics, as creation time (design time [3] or
runtime [4], [5]), shape (discontinuous [3], [4] or continu-
ous [2], [6]), resource sharing (communication, computation,
none), and isolation method (cryptography [4], specialized
routing algorithms [3], rerouting [6], and spatial or temporal
isolation [5]).

Table 1 shows that SZ is the only technique protecting at
the same time computation (CMP column) and communica-
tion (CMM column) levels [2], [4], [6]. Other methods focus
on the protection of flows traversing the NoC, not addressing
security at the PE level. Some SZ approaches isolate PEs [1],
[5], without protecting the NoC flows. Thus, our motivation
is to study the effect of SDN-based management for secure
communication and computation execution compared to a
state-of-the-art SZ technique [6].

The last Table column presents the threat model. The pro-
posal prevents attacks related to the communication (as DoS
and timing attacks) due to the reservation of the links for
the communication, which occurs through circuit switching.
Therefore, it is impossible to attack the application’s flows.
Data confidentiality and integrity are guaranteed because
processors do not share the computation with any other appli-
cation, thus preventing spoofing and hijacking attacks. Note
that the proposed method guarantees data confidentiality and
integrity without using encryption. This feature provides two
advantages over solutions that use cryptography, a smaller
hardware implementation cost and no delay due to encryption
and decryption of messages. Thus, the performance of appli-
cations presents better performance compared to methods
requiring flow encryption.

The proposal and the SZ method from Caimi et al. [6]
share the same thread model, but with different methods
implemented at the hardware level.

VOLUME 8, 2020 177297



M. Ruaro et al.: SDN-Based Secure Application Admission and Execution for Many-Cores

FIGURE 1. Many-core SoC (MCSoC) architecture.

B. SDN FOR MCSoC
SDN comes originally from computer networks [19]. Its main
advantage is to unify the management of different device
vendors, removing the control from the network device, and
bring it to a software Controller. Recent works investigate
SDN for MCSoCs using a centralized approach [8], [9], [20],
while others propose distributed SDN management [7], [21],
including cluster-based organizations [7].

Some SDN proposals target specific goals, as power man-
agement [21] and QoS [8], while other works are generic,
focusing on the SDN paradigm support over the MCSoC
architecture [9], [22]. Ellinidou et al. [20] address security,
proposing a secure protocol to the Controller to config-
ure SDN routers at runtime, using an architecture based on a
Chiplet design, and not MCSoCs. There is a gap covering the
adoption of SDN to provide security for the user’s application
admission and execution, which this work aims to fulfill.

III. MCSoC ARCHITECTURE
This Section presents the basics of the MCSoC architecture
required for the understanding of our proposal.

A. HARDWARE
Figure 1(a) presents a global view of theMCSoC architecture,
connected to an external device, INJ (application injector),
responsible for deploying applications in the system. The
MCSoC adopts cluster-based management [23], with one
manager PE per cluster. A particular manager, GM (Global
Manager), receives requests from INJ.

Figure 1(b) details a cluster, while Figure 1(c) the PE. A PE
contains a CPU, memory (local memory or cache), a Network
Interface (NI), and a set of routers that connect the PE to other
PEs.

A Multiple-Physical NoC (MPN) [17], [18] interconnects
PEs. The MPN contains disjoint subnets. One subnet is ded-
icated for Packet-Switching (PS). The other subnets (param-
eterizable number at design time) correspond to SDN routers
(SR), implementing dedicated connections (CS – Circuit-
Switching). SR routers do not have routing logic, being con-
figured at runtime by the path definition rules of a Controller
running at the management level (next Subsection).

The PS subnet carries management packets and best-effort
applications’ data flows. The SDN subnets transmit real-time
and secure packets since their connections do not share data
with other flows.

PS routers adopt wormhole packet switching, credit-based
flow control, and input buffering (usually 8-flit depth).
SR routers do not have control logic (routing and arbitration)
since they are simple units that transmit data in streaming.
A flit coming from a given input port is sent to one of the
output ports, after one clock cycle, according to the configu-
ration made by the Controller. The one clock cycle delay is
due to the buffering process, avoiding long wires. Some CS
designs assume it is possible to transmit a flit from a source to
a target PE within a clock cycle [24], which is not physically
feasible.

B. SYSTEM MANAGEMENT
System management is implemented at the software level.
A given PE can run one of three classes of management
software: slave, manager, global manager.
• Slave PE (SP): runs a tiny OS (∼10KB) designed to
support the user’s task execution (multi-task), provid-
ing task scheduling, inter-task communication API, and
interruption handling.

• Manager PE (M): executes task mapping and con-
trols at runtime constraints fulfillment by executing
self-adaptive techniques, e.g. task migration and DVFS
control.

• Global Manager PE (GM): performs the same actions
of an M PE and receives requests from the INJ periph-
eral, admitting new applications and selecting the cluster
where the application will be mapped.

SPs run user’s tasks, while manager PEs only execute man-
agement functions. As MCSoCs may have dozen to hundreds
of PEs, we adopt hierarchical cluster-based management.
A cluster has a set of SPs, managed by one M PE. Figure 1(a)
shows anMCSoC instance with four clusters, and Figure 1(b)
overviews one cluster. One M PE is set as GM at design time
(typically the one closer to INJ).

Figure 1(a) contains the SDN controller (Controller),
which may be a task running in a given PE (centralized
SDN [8], [9], [20]) or several tasks distributed in the system

177298 VOLUME 8, 2020



M. Ruaro et al.: SDN-Based Secure Application Admission and Execution for Many-Cores

FIGURE 2. Example of two OSZs, and one non-secure flow (A3 ⇒ B3).

(distributed SDN [7], [21]). The Controller is a task with
OS privileges. It searches and configures dedicated paths
according to requests made by an M PE. M PEs can request a
path for communicating tasks when they have security or QoS
constraints, or a fault is detected in a path already established.
The Controller finds path based on its rules (e.g., the shortest-
path that avoids faulty-routers and hot-spots regions), con-
figure the path physically and reply to the M PE the path
definition result. The M PE then configure the communicat-
ing task pair to use the new path. Further details about the
Controller implementation are available at [7], [25], including
a distributed Controller implementation.

C. USER’S APPLICATIONS
Communicating task graphs describes applications, like the
one depicted in Figure 1(d). Tasks communicate throughmes-
sage passing. A message copies a memory region from the
producer task, transmitting it to the receiver task’s memory.

IV. SECURE ZONE MODEL
This section details the SZ model adopted for comparison
purposes [6] – Opaque Secure Zones (OSZ). That proposal
differentiates from other SZ methods because the secure
region is opaque, i.e., flows belonging to other applica-
tions are forbidden to cross the OSZ. Such characteris-
tic enables integrity and confidentiality to the application’s
data exchange, inhibits denial-of-service (DOS) and timing
side-channel attacks (SCA) because it is not possible to dis-
turb flows inside the OSZ. Figure 2 illustrates twoOSZs, each
one with a 4-task application mapped on it.

The OSZ approach assumes an MPN NoC with two PS
subnets and a broadcast subnet. The broadcast subnet is a spe-
cialized NoC, named brNoC [26], used to send management
commands using broadcast transmission. The M PEs are in
charge of creating and closing OSZs at runtime, executing
the following steps [6]:

• shape selection: reservation of a continuous rectilinear
region, with PEs belonging to this region without exe-
cuting any user task. If it is impossible to reserve the set
of PEs required to run the application, it is possible to
use task migration to create the OSZ region.

• task allocation: the M PE maps the application’s tasks
inside the OSZ, sending the tuples {task_ID, address} to

the INJ peripheral, which transmits the object codes to
the PEs. Each task object code has a MAC attached to it,
verified during its reception. The MAC ensure integrity
to the object code load.

• wrapper activation: the M PE actives wrappers at the
OSZ boundary after task allocation, closing the OSZ to
any packet trying to leave or enter the OSZ through the
PS subnets. The M PE uses the brNoC for this step.

• application initialization: the M PE notifies the OSZ’s
PEs to start the application, by using the brNoC.

• application ending: at the end of the execution of all
application’s tasks, the M PE requests the wrappers’
opening using the brNoC. Each slave PE clears it’s
memory content and deactivates the wrappers.

Packets hitting the OSZ boundary are retransmitted with-
out crossing it. Consider the example presented in Figure 2,
where task A3 transmits packets to B3. Once the OSZ closed,
a packet transmitted by A3 hitting the OSZ is dropped, and
the brNoC notifies A3 that the path is broken. The OS on
which A3 is running requests to the brNoC to find a new path
for B3. After finding a new path, all packets transmitted to
B3 uses source routing, represented by the dashed red path
between A3 and B3.

The OSZ advantage is to secure the applications’ execu-
tion. However, we identify limitations related to OSZs:

• Task mapping. In systems with a small utilization,
the mapper quickly finds continuous regions. With the
system utilization increase, the availability of continu-
ous regions reduces, preventing the application admis-
sion or requiring task migration to ‘‘open’’ space in the
system. Also, opaque regions inside the system lead to
fragmentation of non-secure applications, increasing the
communication energy [27].

• Communication of non-secure applications. The PS
NoC must support different routing mechanisms (as XY
and source routing), and the shape selection step must
avoid the creation of unreachable regions. The rerouting
process impacts the performance of non-secure applica-
tions due to the adoption of longer paths.

V. SSAE FRAMEWORK
This Section presents the ‘‘Secure SDN-based Application
Admission and Execution’’ (SSAE) framework. SSAE avoids
the OSZs limitations previously mentioned:

• Task mapping. Not limited to continuous regions. Once
defined the PEs to execute the secure application,
the SDN Controller defines dedicated paths for the com-
municating tasks.

• Communication of non-secure applications. Not
affected by the secure applications, once they use the
PS subnet to communicate.

Figure 3 differentiates SSAE from OSZs (Figure 2). Tasks
from application 2 communicate using SDN subnet 0 (blue).
When task A3 transmits a packet to B3, it uses the PS subnet,
not interfering in application 2 (blue tiles) traffic because

VOLUME 8, 2020 177299



M. Ruaro et al.: SDN-Based Secure Application Admission and Execution for Many-Cores

FIGURE 3. Example of three discontinuous SZs using SDN-based
management, and one non-secure flow (A3 ⇒ B3).

subnets are disjoint. PEs of the top right corner shows a
different scenario, two secure application: 1 (yellow tiles),
and 4 (green tiles). Both applications are mapped close to
each other. While tasks A1 and B1 use SDN subnet 0, tasks
A4 and B4 use subnet 1. Both communications take place
without interference, with minimal path length, and maxi-
mum throughput.

Figure 4 presents the SSAE protocol, detailing the inter-
action between the MCSoC components. Left labels, (a) to
(e) in Figure 4, correspond to the next subsections.

A. INITIALIZATION
The initialization phase executes once, at system startup.
In this phase, the GM authenticates the INJ to ensure that
requests made by INJ come from reliable entities. Both INJ
and GM execute a mutual authentication algorithm based on
the Elliptic Curve Diffie–Hellman Key Exchange (ECDH)
protocol. At the end of this phase, the INJ and the MCSoC
share a common session key – Ke. This key is used to guar-
antee the integrity of the tasks’ object code during the secure
task loading (Section V-E).

The GM initializes the Controller with an ML list, which
contains the set of M PE addresses that the Controller should
accept path requisitions. The Controller accepts requests for
SDN paths iff the M PE address is in ML, avoiding unautho-
rized path requests. The Controller rejects any packet whose
address is not inML [25].

B. APPLICATION ADMISSION
The INJ peripheral is responsible for requesting the deploy of
new applications in theMCSoC. To deploy a new application,
the INJ transmits a ‘‘new application request’’ message to the
GM, with the application task graph. The GM authenticates
the request with Ke, and if successful, it selects the cluster to
receive the application using as criteria the cluster utilization,
temperature or computing capacity (e.g., BIG.little).

The GM sends an ‘‘application request’’ message to the
M PE of the selected cluster (GM can also be chosen). The
application request contains the application task graph (for
mapping), and the information if it is secure or not.

C. SDN-BASED SECURE TASK MAPPING
When an M PE receives an ‘‘application request’’ message,
it verifies if the application has security constraints. If it is

a standard application (without security or QoS constraints),
M executes task mapping by grouping tasks as close as pos-
sible to reduce the hop count. Otherwise, M performs the
SDN-based Secure Task Mapping (SSTM) algorithm. SSTM
has two constraints:
• spatial isolation at the computation level: secure tasks
can only share a PE with tasks belonging to the same
application;

• spatial isolation at the communication level: map tasks
in regions where the SDN subnets utilization is low to
increase the probability of all applications’ tasks receiv-
ing a dedicated connection.

Before starting SSTM, the M PE requests to the Con-
troller the MPN utilization. The Controller verifies if the
M address is in ML, and replies with the set USDN =

{SRU1,0, SRU1,1, SRU2,0, SRUp,s}, where SRU is the SR uti-
lization at PE p and subnet s. Each SRUp,s is a five-bit vector
SRUp,s = {Ek ,Wk ,Nk , Sk ,Lk}, where Ek , Wk , Nk , Sk , Lk
corresponds to the status (used or free) of an SR input port
(East, West, North, South, Local).

The next step corresponds to the SSTM algorithm execu-
tion, presented in Algorithm 1. The algorithm has as inputs:
i) the USDN set;
ii) the application task set:

At = {(at1, ctp1), (at2, ctp2), . . . , (atn, ctpn)} (1)

where: atID is a unique task identifier of the applica-
tion to be mapped; and ctpID is the set of tasks with
which task atID communicates, named communicating
task pairs;

iii) the current cluster task mapping, MAPPE , with a set of
tuples {tk , SPx,y, init}, where tk is a task identifier, SPx,y
is the location where tk is mapped, and init signalizes
if tk is an initial task1 of a given application. Note that
more than one task is allowed to be mapped in the same
SPx,y (multi-task mapping).

The algorithm executes three main steps:
1) Taskmapping - starts by selecting an initial PE, mapping

the set At around this PE.
2) Bounding box computation (BB) - after mapping At ,

the algorithm computes a rectangular BB, including all
mapped tasks.

3) BB utilization - SDN subnets utilization computation at
each PE within the BB.

The selected mapping is the one with the smallest SDN
subnets utilization. The SSTM output is the application map-
ping, AMAP, with a set of tuples {atk , SPx,y, init}.

The presentation of Algorithm 1 contains four blocks. The
first block (a) addresses variables initialization:
i) EXINIT : list of initial PEs already addressed by the algo-

rithm.
ii) BBU_RATE_BEST : smallest BB utilization rate achieved

during the algorithm execution.

1Initial task: the task of an application task graph with no dependencies to
other tasks, i.e., it only sends data as ‘‘Task A’’ in Figure 1(d).

177300 VOLUME 8, 2020



M. Ruaro et al.: SDN-Based Secure Application Admission and Execution for Many-Cores

FIGURE 4. SSAE Protocol. (a) INJ authentication. (b) Application cluster selection. (c) SDN-based secure task mapping.
(d) Secure SDN path configuration. (e) Secure application task admission.

Algorithm 1 SDN-Based Secure Task Mapping (SSTM)
Input: USDN, At, MAPPE
Ouput: AMAPP
1. EXINIT ← Ø
2. BBU_RATE_BEST ←∞
3. AMAPP ← Ø (a)
4. N←MAX_PROCESSORS
5. Do
6. PEINIT ← select_initial_PE(EXINIT,MAPPE)
7. If PEINIT == NULL then
8. Break /∗System is saturated∗/ (b)
9. End If
10. EXINIT ←EXINIT U {PEINIT} /∗Adds PEINIT to the

EXINIT set∗/
11. AMAPP_TMP ← Ø
12. For each task ati of At do
13. AMAPP_TMP(ati)

← diamond_mapping(PEINIT,MAPPE, ati)
14. If AMAPP_TMP(ati) == NULL then (c)
15. AMAPP_TMP ← Ø
16. Break /∗mapping not feasible∗/
17. End if
18. End For
19. If AMAPP_TMP 6= Ø
20. ABB ← compute_app_BB(AMAPPTMP)
21. BBU ← compute_BB_SDN_utilization

(ABB,USDN) (d)
22. BBU_RATE ← BBU/ get_PE_number(ABB)
23. If BBU_RATE < BBU_RATE_BESTthen
24. BBU_RATE_BEST ← BBU_RATE
25. AMAPP ← AMAPP_TMP
26. End If
27. End For
28. N← N − 1
29. While N > 0
30. Return AMAPP

iii) AMAPP: application mapping.
iv) N : number of attempts to execute the algorithm. In this

example N = MAX_PROCESSORS, which is the

number of PEs in the cluster, being the worst-case in
terms of iterations.

Next, block (b), the algorithm starts the do-while loop
(lines 5-29) responsible for computing the application map-
ping – AMAP. Line 6 invokes the function select_initial_PE()
to select an initial PE – PEinit . The function walks over
each free PE, i.e., a PE not running any task, looking for
a candidate PEinit . The selected PEinit is the one with the
highest Manhattan distance from another PEinit closer to it
and not belonging to EXINIT (PEinit /∈ EXINIT ).
If there is no available PEinit (lines 7-9), the algorithm

ends, returning AMAP (it may be empty in a system with
all SPs executing tasks). At line 10, the algorithm includes
PEinit in the EXINIT list to avoid its use in the next
iterations.

Block (c) in Algorithm 1 maps the application’s tasks.
The function diamond_mapping() computes the mapping by
assigning the initial task to PEinit , and the other tasks around
it, according to the communication edges (ctp in Equation (1))
in the application task graph (the number of tasks per SP
is a design parameter). This function returns the SP address
for ati. To meet the first constraint, spatial isolation at the
computation level, tasks can be only assigned to SPs withs
tasks of the application being mapped. If a given task cannot
be mapped (lines 14-16), the mapping is not feasible since
the diamond_mapping() uses a predetermined search radius
to avoid applications’ fragmentation [28].

The last block (d) addresses the second constraint, spatial
isolation at the communication level. If the mapping suc-
ceeds, the algorithm calls the function compute_app_BB()

VOLUME 8, 2020 177301



M. Ruaro et al.: SDN-Based Secure Application Admission and Execution for Many-Cores

with the temporary mapping result (A_MAPP_TMP), returning
in ABB a data structure with the bounding box coordinates
enclosing the application’s tasks.

Line 21 computes the SDN utilization in ABB, BBU . This
number is the summation of all used SDN subnets inside
the BB. As different mappings may have a different number
of SPs in BB, line 22 normalizes the utilization by divid-
ing ABB by the number of SPs inside the BB, resulting
in BBU_RATE .
Lines 23 to 26 selects the mapping with the smallest

BBU_RATE . The algorithm ends after executing ‘‘N’’ itera-
tions, or when there is no available PEinit .
If AMAPP returns empty at the end of the execution, it is not

possible to admit the application due to the lack of computa-
tional resources.

D. SDN CONNECTIONS ESTABLISHMENT
As Figure 1(d) shows, an application contains a set of com-
municating task pairs (ctp in Equation (1)), with a sender S
and a receiver R task. After finishing the task mapping, the M
PE sends the list of all ctps to the Controller, requesting a
dedicated SDN path to them. The Controller handles such a
message by running its search path heuristic.

The exploitation of search path heuristics is out of this work
scope. We adopt the Hadlock’s algorithm due to its bene-
fits [29], including a computational complexity of O(X .Y ),
where X and Y are the MCSoC dimensions. Hadlock’s
algorithm always finds the shortest path between S and R,
if it exists.

After finding a path, the Controller physically config-
ures the SR routers in the path by sending a configuration
message command through the PS subnet. The NI of the tar-
get PE receives the configuration message and configures the
respective SR router, assigning a given input port to an output
port. Ruaro et al. [25] describe the Secure SDN Framework
for configuring the paths, detailing each step required to
ensure the secure SR configuration.

This process finishes with the Controller sending to M the
connection establishment status. If a path cannot be estab-
lished, it is not possible to admit the application due to the
lack of communication resources.

E. SECURE TASK LOADING
If the mapping and SDN connection succeeds, the protocol
moves to the last phase. This phase securely loads the tasks
into the selected SPs.

This step starts with GM transmittingKe, without exposing
it, to the SPs that will receive the tasks. The GM first sends a
random number to these SPs, used to compute a temporary
key, Km, generated by the SIPHASH algorithm. This key
encrypts Ke resulting in the T key. The GM transmits T to
the SPs, which recover Ke.
The GM sends the AMAPP result to INJ , which transmits

the tasks’ object code appended with a MAC, created using
SIPHASH between the object code and Ke.

TABLE 2. Computational complexity evaluation for each phase of SSAE
(cc: clock cycles).

When an SP receives the task allocation message, it stores
the task’s code into its local memory. The SP OS computes
a MAC (CMAC ) by performing a SIPHASH using as input
the task’s code and Ke. The OS compares CMAC with the
received MAC. Note that even with the task loaded in the
memory, the OS does not schedule it before receiving a
release message.

All SPs notifies the status MAC comparison (‘‘task alloca-
tion complete’’ message) to the cluster M. If all tasks were
correctly received, M notifies all tasks to start their execution
(release message). M also notifies the application admission
result to the GM.

VI. EXPERIMENTAL RESULTS
The experimental setup adopts the Memphis MCSoC archi-
tecture [23]. The hardware is described in SystemC-RTL for
fast simulation and VHDL for synthesis. The software is
described in C language (mips-gcc cross-compiler, version
4.1.1, optimization O2).

The experiments aim to validate the SSAE frame-
work and compare the performance and design cost
with OSZ.

A. SSAE COMPLEXITY EVALUATION
Table 2 evaluates SSAE in terms of computational complex-
ity required for each protocol phase, presented in Figure 4.
The last column presents the average latency for each
phase, measured from the experiments presented in the next
Subsection.

Phase (a) – the initialization corresponds to the execution
of the ECDH key agreement protocol to generate Ke between
INJ and GM. As shown in the last column of Table 2,
the initialization takes a higher amount of time than the other
phases. The ECDH key agreement dominates such time. It is
important to note that despite costly, this phase does not affect
the application admission time, since it is only executed once,
at system startup.

Phase (b) – the cost corresponds to the execution of the
Cluster_Selection() algorithm. This algorithm has a small
cost, being a function of the clusters’ number. The cluster
selection uses as cost function the cluster’s utilization, eval-
uating the amount of running tasks at each cluster, selecting
the one with the lower usage.

Phase (c) – the SSTM algorithm cost is a function of the
following parameters:

• p: cluster size;

177302 VOLUME 8, 2020



M. Ruaro et al.: SDN-Based Secure Application Admission and Execution for Many-Cores

FIGURE 5. Performance comparision of SDN and OSZ.

• a: number of application number running in the cluster;
• b: bounding box size.

The algorithm executes functions with the following
complexities:

• select_initial PE: θ (p.a)
• diamond_mapping: θ (p.log(p))
• compute_app_BB: θ(b)
• compute_BB_SDN_utilization: θ(b)

Therefore, considering the loops of SSTM, it presents the
complexity θ (p.[p.a+ a.p.log(p)+ b+ b]), which leads to a
worst-case complexity of O(p3).
Phase (d) – SDN path establishment, has the complexity

according to the Hadlock’s algorithm O(n), where n is the
number of PEs in the cluster. However, note that the Had-
lock’s algorithm is executed for each communicating task
pair (ctp).

As the number of ctps can be higher than the cluster size
(in a pessimist case, with an application having several ctps),
the complexity is θ (p.n), where p is the PE number and n is
the ctp number. Therefore, the worst-case complexity results
in a quadratic function of O(n2), with n being the number of
ctps.

Phase (e) – Task’s loading, has a linear complexity O(n),
with n being the application tasks’ number.

B. PERFORMANCE COMPARISON
The performance comparison adopts two MCSoC imple-
mentations: secure zone model – OSZ (Section IV), SSAE
framework – SSAE (Section V). The comparison considers
two performance figures:

• PO: protocol latency overhead (in clock cycles – cc) is
the time that the target secure application (TA) has towait
to start its execution. PO is the interval from the moment
INJ requests TA to GM, until GM reply to INJ the end
of the TA’s allocation - phases (b) to (e) in Figure 4 and
Table 2.

• SU: System CPU utilization in terms of simultaneously
running tasks. PU is given according to Equation 2:

SU =
R

(S ×M )
(2)

where R is the number of running tasks, S is the number
of slave PEs of the cluster, and M is the maximum
number of tasks allowed to execute at each slave PE.

The experimental setup consists of four TAs, with its com-
municating graphs depicted in Figure 5(a–d), varying the
tasks’ number for each application (4, 6, 8, 10). The tasks’
number directly influences the PO.

We adopted a 5 × 5 cluster, with each PE supporting the
execution of one task, corresponding to a cluster with 24 SPs
(S = 24 andM = 1 in Equation (2)).
Experiments consider mapping TA in an MCSoC with only

secure applications mapped on it, with a preloaded SU. The
preloaded SU are: Low, 5 tasks pre-mapped corresponding to
a SU=20%; Medium, 12 tasks pre-mapped corresponding to
a SU=50%; High, the number of available PEs equals to the
number of TA’s tasks. Such initial SU pushes each approach
to increasingly saturated scenarios, where the probability of
finding resources to a secure application execution tends to
decreases.

Figure 5 presents four graphs. At each graph, the x-axis
corresponds to System CPU utilization, SU, which may be
low, medium and high. The y-axis corresponds to the protocol
latency, PO, for each SU. This figure presents 24 experi-
ments, varying the TA size and the preloaded SU for SSAE
and OSZ. The missing points in the plots correspond to
scenarios where the approach failed to admit TA.
The PO evaluation shows that OSZ is faster (−49%

on average) than SSAE to admit and execute a secure
application. Both approaches execute task mapping (soft-
ware job). The OSZ advantage is the smallest search area
than SSAE. The OSZ mapping search area is the secure
region area, while SSAE searches in the entire cluster. Also,
the SSAE approach requires an SDN path establishment
phase (software job), for each ctp, with a quadratic complex-
ity (Table 2). Thus, the higher PO cost for the SSAE approach

VOLUME 8, 2020 177303



M. Ruaro et al.: SDN-Based Secure Application Admission and Execution for Many-Cores

is expected due to the higher number of jobs executed in
software.

The SU evaluation shows that OSZ fails to admit appli-
cations with a high preloaded SU. The probability for OSZ
to find a continuous shape in such scenarios reduces due
to the fragmentation of the previous applications’ mapping.
A solution to solve this issue is to use task migration to create
a continuous region. However, task migration only is feasible
if the migrated tasks are non-secure and not have real-time
constraints (i.e., best-effort tasks). Additionally, task migra-
tion contributes to increasing PO since it imposes an overhead
around 200,000 cc to eachmigration, according to the average
state-of-the-art techniques [30].

The application tasks’ number also affects SU. Figure 5(d)
addresses an application with ten tasks. In this experiment,
OSZ fails to admit the secure application even for themedium
preloaded SU. An application with a larger size has more
tasks to be mapped, increasing the size required by the secure
zone and reducing the chances to find it.

The advantage of OSZ is the shorter time to admit the
application. Consider a system running at 500 MHz, with a
PO = 500.000 cc (SDN worst-case in Figure 5). The result-
ing latency to admit the application, in this case, is 1 ms.
As this overhead occurs once, at the application admission,
it is in practice imperceptible to the end-user. Thus, the main
advantage of SDN is to explore better the available system
resources (higher SU), avoiding the restrictions of continuous
regions.

After evaluating the latency to admit applications, the fol-
lowing results evaluate the applications’ execution time.
The evaluation considers two benchmarks: Dynamic Time
Warping (DTW) – a pattern recognition application, and
MPEG4 – an audio and video decoder. Figure 6(a) and Fig-
ure 6(b) show the communicating task graph of DTW and
MPEG4 benchmarks, respectively. The graph in Figure 6(c)
evaluates the execution time (x-axis) versus the iteration
latency (y-axis). The DTW recognizes 50 patterns (50 iter-
ations), and the MPEG4 decodes 100 frames (100 iterations).
Each curve in the graph corresponds to one simulation, with
the INJ peripheral requesting the application admission at
1 ms.

Table 3 presents the applications’ start time and the appli-
cations’ execution time. Considering Table 3 and Figure 6,
we observe:

• Protocol latency overhead (PO). Vertical bars show the
start time of both applications. As expected, SSAE has
a higher PO compared to OSZ, endorsing the experi-
ment presented in Figure 5. The higher PO seen in the
DTW-SDN comes from the larger number of connec-
tions to set up (16 connections) than the MPEG4-SDN
(7 connections).

• Execution time (ET). The SSAE execution time tends
to be smaller than OSZ due to the reduced iteration
latency. The iteration latency reduction comes from the
communication using CS, where packets spent just one

FIGURE 6. (a) DTW communicating task graph. (b) MPEG4 communicating
task graph. (c) Performance comparison of MPEG4 and DTW running at
SSAE (SDN) and OSZ systems.

TABLE 3. Evaluation of the start and execution time for OSZ and SDN
approaches.

FIGURE 7. Area and power comparison.

clock cycle per router. SSAE is 1.92% and 2.55% faster
than OSZ for DTW and MPEG4, respectively.

• Total execution time (TET = PO + ET). The PO
only affects the starting of applications’ execution. With
SSAE having a smaller iteration latency than OSZ, its
TET tends to be smaller which helps to amortize the PO
delay, as observed in the MPEG4 benchmark. For the
DTW benchmark, the OSZ is faster than SDN due to the
smaller number of iterations.

Summarizing, even with a larger PO, the SSAE proposal
does not impact the applications’ performance.

C. DESIGN COST
The next experiment evaluates the physical design cost for
SSAE and OSZ. Our goal is to show the area and estimated
power (provided after the physical synthesis) required for
each PE design in both approaches. We use the Cadence
Genus tool, with a 28nm FD-SOI technology, varying the
frequency constraint: 250MHz, 500MHz, and 750MHz.
Figure 7 shows the achieved results for area (a) and
power (b).

177304 VOLUME 8, 2020



M. Ruaro et al.: SDN-Based Secure Application Admission and Execution for Many-Cores

The OSZ PE has two 16-bit PS subnets and a dedicated
NoC for rerouting packets blocked due to a secure zone [26].
The SDN PE has three subnets, one 32-bit PS and two SDNs.
The SDN subnets are modeled in two versions: SDN1: 8-bit
flits; and SDN2: 16-bit flits.
The power required by OSZ was, on average, 85.4%

and 87.2% higher than SDN1 and SDN2, respectively. The
main reason for explaining such difference comes from the
straightforward design of SDN routers, which have a 1-flit
buffer depth and no routing and arbitration logic. The OSZ
approach uses PS routers, with 8-flit depth buffers, requiring
arbitration and routing at each hop in the path.

The area required by OSZ was, on average, 15% and
12.4% higher than SDN1 and SDN2, respectively. It is rec-
ommended to increase the number of SDN subnets in larger
systems, to increase the path diversity and ensure that paths
are found in congested scenarios [31]. Thus, the SDN area
may be larger than the OSZ increasing the number of SDN
subnets.

Such results highlight an SDN advantage over OSZ: the
reduced power consumption. Once a path established, com-
munication occurs through circuit switching, resulting in a
smaller switching activity.

VII. CONCLUSION AND FUTURE WORK
This work proposed a framework to admit and execute secure
application into a many-core based on SDN management
(SSAE). The main novelty of SSAE is to provide security
to applications by dynamically establishing circuit switch-
ing (CS) for its communicating task pairs using the SDN
management paradigm. This feature offers communication
integrity, leading to data transmission without the overhead
of encryption, arbitration, and routing required in PS NoCs.

The adoption of a session key, Ke, to the SIPHASH MAC
algorithm prevents hijacking and spoofing attacks when
transferring the task’s object code. Processors verify theMAC
attached to the object-code before starting the execution,
preventing malicious code insertion, and guarantee that only
external authenticated entities deploy secure applications in
the MCSoC.

Attacks to the availability, like DoS attacks, are prevented
due to the resources’ isolation. At the NoC level, CS’s adop-
tion avoids attacks that explore congestion or starvation at the
NoC links or routers. Avoidance of attacks over computation
resources results from the mapping decision that guarantees
that processors execute tasks belonging to the same applica-
tion. Timing attacks are prevented since no time inferences
can be taken from packets in CS channels since no external
packet can share links used by CS.

Comparing SSAE to a state-of-the-art secure zone
approach (OSZ), SSAE induces a higher application
admission latency due to the SDN execution for finding paths
between communicating tasks. Nonetheless, such latency is
negligible at the end-user perspective since it remains below
1 ms (@800MHz) according to the presented experiments.

On the other side, SSAE revealed two important findings.
The first one is the better system utilization, specifically
for congested scenarios, where OSZ cannot find continu-
ous regions to map tasks due to the system fragmentation.
The second one is the lower power consumption resulted from
the reduced switching activity when using CS.

Future work includes developing attack campaigns aiming
to evaluate scenarios with threats in both computational and
communication levels.

REFERENCES
[1] ARM. (Nov. 2008). ARM Security Technology Building a Secure Sys-

tem Using TrustZone Technology. [Online]. Available: http://infocenter.
arm.com

[2] H. Isakovic and A. Wasicek, ‘‘Secure channels in an integrated MPSoC
architecture,’’ in Proc. IECON-39th Annu. Conf. IEEE Ind. Electron. Soc.,
Nov. 2013, pp. 4488–4493.

[3] R. Fernandes, C. Marcon, R. Cataldo, J. Silveira, G. Sigl, and J. Sepulveda,
‘‘A security aware routing approach for NoC-based MPSoCs,’’ in Proc.
29th Symp. Integr. Circuits Syst. Design (SBCCI), Aug. 2016, pp. 1–6.

[4] J. Sepulveda, D. Flórez, V. Immler, G. Gogniat, and G. Sigl, ‘‘Effi-
cient security zones implementation through hierarchical group key man-
agement at NoC-based MPSoCs,’’ Microprocessors Microsyst., vol. 50,
pp. 164–174, May 2017.

[5] M. M. Real, P. Wehner, V. Lapotre, D. Göhringer, and G. Gogniat, ‘‘Appli-
cation deployment strategies for spatial isolation on many-core acceler-
ators,’’ ACM Trans. Embedded Comput. Syst., vol. 17, no. 2, pp. 1–31,
Apr. 2018.

[6] L. L. Caimi and F. G. Moraes, ‘‘Security in many-core SoCs leveraged
by opaque secure zones,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI
(ISVLSI), Jul. 2019, pp. 471–476.

[7] M. Ruaro, N. Velloso, A. Jantsch, and F. G. Moraes, ‘‘Distributed SDN
architecture for NoC-based many-core SoCs,’’ in Proc. 13th IEEE/ACM
Int. Symp. Netw.-Chip, 2019, p. 8.

[8] A. Kostrzewa, S. Tobuschat, and R. Ernst, ‘‘Self-aware network-on-chip
control in real-time systems,’’ IEEE Des. Test, vol. 35, no. 5, pp. 19–27,
Oct. 2018.

[9] K. Berestizshevsky, G. Even, Y. Fais, and J. Ostrometzky, ‘‘SDNoC:
Software defined network on a chip,’’Microprocessors Microsyst., vol. 50,
pp. 138–153, May 2017.

[10] J. Sepulveda, F. Willgerodt, and M. Pehl, ‘‘SEPUFSoC: Using
PUFs for memory integrity and authentication in multi-processors
system-on-chip,’’ in Proc. Great Lakes Symp. VLSI (GLSVLSI), 2018,
pp. 39–44.

[11] J. Rajesh, D. M. Ancajas, K. Chakraborty, and S. Roy, ‘‘Runtime detection
of a bandwidth denial attack from a rogue network-on-chip,’’ in Proc.
NOCS, 2015, pp. 8:1–8:8.

[12] M. A. Kinsy, S. Khadka, M. Isakov, and A. Farrukh, ‘‘Hermes:
Secure heterogeneous multicore architecture design,’’ in Proc.
IEEE Int. Symp. Hardw. Oriented Secur. Trust (HOST), May 2017,
pp. 14–20.

[13] B. Oliveira, R. Reusch, H. Medina, and F. Moraes, ‘‘Evaluating the cost
to cipher the NoC communication,’’ in Proc. IEEE 9th Latin Amer. Symp.
Circuits Syst. (LASCAS), Feb. 2018, pp. 1–4.

[14] H.M. G.Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T. Chong,
and T. Sherwood, ‘‘Networks on chip with provable security properties,’’
IEEE Micro, vol. 34, no. 3, pp. 57–68, May 2014.

[15] T. Boraten and A. K. Kodi, ‘‘Packet security with path sensitization for
NoCs,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), 2016,
pp. 1136–1139.

[16] C. Reinbrecht, A. Susin, L. Bossuet, G. Sigl, and J. Sepúlveda, ‘‘Tim-
ing attack on NoC-based systems: Prime+probe attack and NoC-
based protection,’’ Microprocessors Microsyst., vol. 52, pp. 556–565,
Jul. 2017.

[17] Y. J. Yoon, N. Concer, M. Petracca, and L. P. Carloni, ‘‘Virtual channels
and multiple physical networks: Two alternatives to improve NoC perfor-
mance,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 32,
no. 12, pp. 1906–1919, Dec. 2013.

VOLUME 8, 2020 177305



M. Ruaro et al.: SDN-Based Secure Application Admission and Execution for Many-Cores

[18] S. Liu, A. Jantsch, and Z. Lu, ‘‘MultiCS: Circuit switched NoC with
multiple sub-networks and sub-channels,’’ J. Syst. Archit., vol. 61, no. 9,
pp. 423–434, Oct. 2015.

[19] F. Bannour, S. Souihi, and A. Mellouk, ‘‘Distributed SDN control: Survey,
taxonomy, and challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 333–354, 1st Quart., 2018.

[20] S. Ellinidou, G. Sharma, T. Rigas, T. Vanspouwen, O. Markowitch, and
J.-M. Dricot, ‘‘SSPSoC: A secure SDN-based protocol over MPSoC,’’
Secur. Commun. Netw., vol. 2019, pp. 1–11, Mar. 2019.

[21] A. Scionti, S. Mazumdar, and A. Portero, ‘‘Towards a scalable software
defined network-on-chip for next generation cloud,’’ Sensors, vol. 18,
no. 7, pp. 1–24, 2018.

[22] I.-D. Salvador, S.-A. Remberto, M. Brox, and M. A. Ortiz, ‘‘Software
defined network controller: A neat solution administration for reconfig-
urable multi-core NoC,’’ in Proc. Int. Conf. ReConFigurable Comput.
FPGAs (ReConFig), Dec. 2017, pp. 1–4.

[23] M. Ruaro, L. Caimi, V. Fochi, and F. Moraes, ‘‘Memphis: A framework for
heterogeneous many-core SoCs generation and validation,’’ Des. Autom.
Embedded Syst., vol. 23, no. 3, pp. 103–122, 2019.

[24] T. Krishna, C.-H.-O. Chen, W.-C. Kwon, and L.-S. Peh, ‘‘Smart: Single-
cycle multihop traversals over a shared network on chip,’’ IEEE Micro,
vol. 34, no. 3, pp. 43–56, May 2014.

[25] M. Ruaro, L. L. Caimi, and F. G. Moraes, ‘‘A systemic and secure
SDN framework for NoC-based many-cores,’’ IEEE Access, vol. 8,
pp. 105997–106008, 2020.

[26] E. Wachter, L. L. Caimi, V. Fochi, D. Munhoz, and F. G. Moraes, ‘‘BrNoC:
A broadcast NoC for control messages in many-core systems,’’Microelec-
tron. J., vol. 68, pp. 69–77, Oct. 2017.

[27] T. Maqsood, N. Tziritas, T. Loukopoulos, A. S. Madani, U. S. Khan,
C.-Z. Xu, and Y. A. Zomaya, ‘‘Energy and communication aware task
mapping for MPSoCs,’’ J. Parallel Distrib. Comput., vol. 121, pp. 71–89,
Nov. 2018.

[28] C. A. Bonney, ‘‘Fault tolerant task mapping in many-core systems,’’
Ph.D. dissertation, Dept. Electron. Eng., Univ. York, York, U.K.,
2016.

[29] F. Hadlock, ‘‘A shortest path algorithm for grid graphs,’’ Networks, vol. 7,
no. 4, pp. 323–334, 1977.

[30] M. Ruaro and F. G. Moraes, ‘‘Demystifying the cost of task migration in
distributedmemorymany-core systems,’’ inProc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2017, pp. 1–4.

[31] M. Ruaro, H.M.Medina, and F. G.Moraes, ‘‘SDN-based circuit-switching
for many-cores,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Jul. 2017, pp. 385–390.

MARCELO RUARO was born in Três de Maio,
Brazil, in 1988. He received the M.Sc. and Ph.D.
degrees in computer science from the Pontifi-
cal Catholic University of Rio Grande do Sul
(PUCRS), Porto Alegre, Brazil, in 2014 and
2018, respectively. He is currently a Postdoc-
toral Researcher with PUCRS. He has eight years
of research experience in the field of NoC and
many-cores SoC architectures and two years of
experience in the embedded system industry. His

primary research interests include software-defined networking and security
for many-core systems.

LUCIANO LORES CAIMI (Member, IEEE)
received the M.Sc. degree in electrical engineer-
ing from the Federal University of Santa Catarina
(UFSC), Florianópolis, Brazil, in 1998, and the
Ph.D. degree in computer science from the Pon-
tifical Catholic University of Rio Grande do Sul
(PUCRS), Porto Alegre, Brazil, in 2019. He is
currently an Adjunct Professor with the Federal
University of Fronteira Sul (UFFS). His main
research interests include multiprocessor systems

on chip (MPSoC) and security for embedded systems.

FERNANDO GEHM MORAES (Senior Member,
IEEE) received the degree in electrical engineer-
ing and the M.Sc. degree from the Universidade
Federal do Rio Grande do Sul (UFRGS), Porto
Alegre, Brazil, in 1987 and 1990, respectively,
and the Ph.D. degree from the Laboratoire
d’Informatique, Robotique et Microélectronique
deMontpellier, France, in 1994. He has been a Full
Professor with the Pontifical Catholic University
of RioGrande do Sul (PUCRS), since 2002. He has

authored or coauthored 38 peer-refereed journal articles in the field of VLSI
design. His primary research interests include microelectronics, FPGAs,
reconfigurable architectures, NoCs, and MPSoCs.

177306 VOLUME 8, 2020


