
Management Application - a New Approach to
Control Many-Core Systems

Angelo Elias Dalzotto∗, Marcelo Ruaro†, Leonardo Vian Erthal∗, Fernando Gehm Moraes∗
∗PUCRS – School of Technology, Porto Alegre, Brazil

angelo.dalzotto@edu.pucrs.br, leonardo.e@edu.pucrs.br, fernando.moraes@pucrs.br
†Univ. Bretagne-Sud, UMR 6285, Lab-STICC, Lorient, France – marcelo.ruaro@univ-ubs.fr

Abstract—The increasing core count in many-core systems
introduced management challenges, including scalability, porta-
bility, and reduced overhead in the user’s applications. Works
available in the literature seek to manage a given objective,
such as power, temperature, communication, and quality-of-
service. These management strategies are tightly coupled to the
hardware platform and the operating system (OS) running on
it. This coupling implies the lack of management modularity,
resulting in low flexibility related to modifying management
strategies at runtime, and low portability. State-of-the-art shows
that few works propose management strategies or frameworks,
only evaluating the proposed objective’s quality. This work aims
to present a new approach to control many-core systems, named
Management Application (MA), which can implement multi-
objective management decoupled from the hardware and the
OS through a set of high-priority tasks. MA transforms the
management problem into a distributed application, allowing the
management to truly benefit from the high parallel power of
many-cores. The MA approach is demonstrated with a proof-
of-concept framework. Results evaluate the cost to adopt MA,
compared to the cluster management, and the benefits of adopting
MA to manage a benchmark with real-time constraints revealing
improved memory footprint and higher management throughput
due to its parallelization.

Index Terms—Many-core; resource management; system man-
agement.

I. INTRODUCTION

The increasing number of cores inside a chip results in
increased system complexity [1]. In a many-core, the commu-
nication mechanism must serve all cores with reduced delays,
and the performance must meet the requirements of tasks that
are often real-time. The power must also be under the designed
budget, which is even more limited for IoT applications. The
temperature should not exceed the physical limits to prevent
excessive silicon wear out. These challenges must be met by
the hardware and by the system managing the many-core.
Using the Operating System (OS) and/or dedicated manage-
ment components, state-of-the-art many-cores are increasingly
evolving to meet multiple management objectives that can be
conflicting, like power versus performance.

Many-core management scalability has been tackled initially
by separating the system into clusters, reserving processors
to manage these areas. Another approach is to dedicate one
manager processor for each application running in the system.
Both methods present weaknesses, and neither is inherently
modular. The main drawbacks include the specialization of
a set of processors for management, requiring dedicated

OS support, which implies a lack of modularity, i.e., it is
impossible to add new management functions at runtime.
State-of-the-art management strategies revealed few-to-none
concerns with modularity or portability features. These works
use consolidated management organizations to evaluate one or
more system constraints.

This work proposes a new management approach, Man-
agement Application (MA), decoupled from hardware and
OS targeting portability and modularity while keeping similar
or even lower management overheads compared to state-of-
the-art approaches. MA brings benefits to designers. First, it
decouples the management tasks from the OS, making it light
and equal for all Processing Elements (PE). Second, the MA
makes the management infrastructure agnostic to the hardware,
making it possible to replace the OS or the processor.

Experiments revealed an increase in management through-
put by leveraging the many-core parallelism not just in user
tasks but also in management tasks. The memory footprint is
reduced w.r.t. other management strategies due to the simpler
many-core organization.

This paper is organized as follows. Section II presents
related work. Section III details the MA proposal. Section IV
presents a proof-of-concept for the MA. Section V presents
results comparing the MA proposal to the cluster organiza-
tion. Finally, Section VI concludes this paper and points out
directions for future works.

II. RELATED WORK

To fully exploit the parallelism offered by many-cores it
is necessary to execute several management tasks, such as: (i)
map tasks to cores aiming reduced latency and communication
energy; (ii) migrate tasks to avoid hot spots, fragmentation, and
meet deadlines; (iii) control Dynamic Voltage and Frequency
Scaling (DVFS) to keep the execution under power and
temperature constraints, preventing the introduction of dark
cores; (iv) increase reliability and lifetime. The many-core
management organization defines where the management is
located and how it runs in a many-core.

Figure 1 presents the three main management organizations:
centralized management, Cluster-Based Management (CBM),
and Per Application Management (PAM). In centralized man-
agement, shown in Figure 1a, the many-core allocates one
PE, called Global Manager (GM), to be the controller of all
management actions. Figure 1b presents the CBM approach,
which despite using a GM to synchronize the management,
divides the many-core into regions, named clusters, controlled
by Local Managers (LMs). PAM is another distributed way978-1-6654-2170-6/21/$31.00 ©2021 IEEE

20
21

 3
4t

h
SB

C/
SB

M
ic

ro
/I

EE
E/

AC
M

 S
ym

po
siu

m
 o

n
In

te
gr

at
ed

 C
irc

ui
ts

 a
nd

 S
ys

te
m

s D
es

ig
n

(S
BC

CI
) |

 9
78

-1
-6

65
4-

21
70

-6
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SB

CC
I5

34
41

.2
02

1.
95

29
98

9

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:47:53 UTC from IEEE Xplore. Restrictions apply.

(a) Centralized (b) CBM (c) PAM

Fig. 1: Management organizations.

to manage a many-core shown in Figure 1c that dynamically
assigns a manager for each running application.

One possible way to implement system management is to
use the ODA control loop [2]. ODA is a modular method to
divide the many-core management roles into three phases.
These phases are:

• Observe - Extracts information about the system or
task status, like deadline violations, temperature, and
communication latency.

• Decide - Algorithms that decide what resources and when
they will be reconfigured to meet application constraints
or system budget. A multi-objective decision can be made
from multiple different data from the observe phase.

• Act - Enforces the decision made from the previous step,
integrating the ODA loop to the hardware or the OS
through techniques as DVFS, task migration, the estab-
lishment of communication paths, changes in priority of
task scheduler, among others.

A. Centralized approaches
Centralized management is the most straightforward orga-

nization architecture for a many-core. The works [3, 4] adopt
centralized management, where the global resource manager
is located outside the many-core fabric.

Rahmani et al. [4] connect a many-core to a host machine
controlling runtime mapping and Dynamic Power Manage-
ment (DPM). Their work focus on a multi-objective DPM that
also considers performance fulfillment, reliability, and system
lifetime. They claim to have achieved enhanced throughput,
Thermal Design Power and Thermal Safe Power constraints,
and improved lifetime compared to state-of-the-art manage-
ment policies. Mariani et al. [3] propose the ARTE framework
that uses a general-purpose host processor called “fabric
controller” connected to a many-core fabric with 16 MIPS-
like processors.

According to Castilhos et al. [5], the central manager can
be quickly overloaded by answering requests from numerous
PEs, also generating a considerable amount of traffic around
it. Therefore, centralized management is only suited for lower
core counts due to its poor scalability.

B. CBM approaches
CBM stands out as the most widespread organization in the

literature. It divides the management into clusters, managed
by a cluster manager, implemented in a dedicated core. The
Authors in [6, 7] assume two hierarchical management levels
with slave cores that execute user tasks and a system core
assigned to the management of each slave cluster. The works

[8, 9] propose three hierarchical levels, with slave cores,
cluster manager, and one global manager. Such approaches
are scalable since they divide the management load among
clusters.

Agent-based Distributed Application Mapping (ADAM)
[10] was the first hierarchical CBM proposal, using a “global
agent” and “cluster agents”. The Authors’ goal is to present a
distributed runtime application mapping, which showed more
than seven times less computational effort than a centralized
mapper. Gregorek et al. [11] present Dracon. Dracon has a
RunTime Management (RTM) PE connected to each core
of its cluster, acting as an OS serving system calls and
scheduling tasks, and communicates with each other RTMs
using a dedicated management network.

The CBM’s main advantage is that it is easily scalable
to a large number of cores. However, the trade-offs are: (i)
the resulting overhead of lost PEs used only for management
purposes, mainly occurring on huge many-cores with smaller
cluster sizes; and (ii) the cluster size is essentially static, with
its size and location being decided at design time, impairing
the system dynamics.

C. PAM approaches
Liao and Srikanthan [12] adopt the PAM approach, with a

global manager to create rectangular sub-meshes and assign
one core of this area to be a local manager that will control
the application hierarchically. DistRM [13] also uses the PAM
organization but is fully decentralized without any global
synchronization by assigning each manager called “agent”
randomly at application arrival. These managers are based on
the concept of multi-agent systems, distributing the control
among agents that have local information about the system
and act independently of each other.

Anagnostopoulos et al. [14] use PAM in a more deep hier-
archical way. They first separate the many-core into clusters
based on “controller cores”, using “initial cores” for temporary
resource management at application arrival, and then finally
creating “manager cores” for each application management
and resource exchange. Compared to DistRM, this work shows
reduced communication overhead with 70% fewer messages
and 64% less message size while gaining up to 20% speed-up.

PAM addresses the CBM’s problem of lacking runtime mu-
tability by creating and killing managers at runtime. However,
two main trade-offs exist: (i) having a considerable overhead
for applications with a small number of tasks; and (ii) focusing
mainly on applications QoS instead of meeting the whole
system goals.

D. Final remarks
Most of the evaluated works, including the most recent ones

[15, 16], adopt a given management organization to evaluate
an algorithm, hardware, or framework. This fact resulted
in many centralized resource management works due to its
straightforward implementation, with a single PE to execute
the management procedures, resulting in poor scalability.

The management organizations (centralized, CBM, and
PAM) rely on dedicated cores for management, which requires
special support from the OS kernel, imposing challenges to
reuse the management procedures in other systems and making

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:47:53 UTC from IEEE Xplore. Restrictions apply.

it difficult to add new goals. CBM organization that defines
statically a many-core division, some researched centralized
organizations [3, 4] that rely on a external manager hardware,
and the work of [11] that uses a hardware architecture for
management, are tightly coupled to its hardware, making it
unfeasible to port an already verified management strategy to
different platforms. Despite being scalable, PAM and CBM
result in an overhead of reserved resources for management,
resulting in a potential loss of parallelism.

III. MANAGEMENT APPLICATION – MA
The principle of the MA organization is the absence of

processors dedicated to system management. All management
functions are removed from the OS, running as distributed
tasks in user-space. This new paradigm transforms the man-
agement problem in a distributed application, allowing the
management to truly benefit from the high parallel power of
many-cores. Figure 2 presents an example of management
tasks according to the MA approach. Blue, green and red
PEs represent Observation, Decision, and Actuation tasks,
respectively. These tasks can be mapped at different positions
of the system, and the number of tasks can also be defined
at runtime according to the workload requirements. All PEs
running management tasks can be shared with with user tasks.

O

O

O

O

D

D

D

A

A

Fig. 2: MA organization. O - Observation, D - Decision, A -
Actuation.

Note that the mapping of MA tasks presented in Figure 2 is
just an example. The tasks can be mapped close to each other,
allocated close to strategical regions of the system where the
monitoring load is higher, or allocated in cores with more
computing power (especially for decision tasks that need to
run heuristics at runtime).

The main advantages of the MA paradigm include:
• No need for dedicated cores for management execution

as in centralized management, CBM, and PAM. Manage-
ment tasks can share processors with user tasks.

• Management tasks are not bound to specific locations as
in other paradigms. They can also be migrated, bringing
additional reliability in case of violated thermal con-
straints or faulty cores.

• The OS becomes lighter and easier to maintain since
it is not overloaded or modified with new resource
management modules insertion.

To adopt the MA organization, it is necessary to include in
the OS of each PE:

• Low-Level Monitors (LLM): periodically pulls raw
data from hardware and redirects to Observation tasks
without executing complex computation. LLM examples
include deadline miss detection, communication latency,
task profiling (computation- or communication-intensive,
or hybrid), heart-beat for periodic applications, power and
thermal, and core utilization.

• Adaptation Enforcer (AE): provides the drivers to phys-
ically apply the requests from Actuation tasks. Examples
are DVFS and task migration drivers (which require
kernel privileged memory access).

• Management Communication API: the OS must pro-
vide a secure communication method for MA tasks,
ensuring that user tasks do not tamper the system.

Figure 3 depicts the MA framework model. The LLM
generates messages periodically. Observation tasks handle
these messages, jointly with user commands. The Observation
tasks know the system and applications constraints and can
convert raw monitoring data into objectives. The objectives
are periodically sent to the Decision task that converts them
into goals [17] by using algorithms that detect when and
what resource needs actuation. If necessary, the Decision task
triggers an Actuation task, which implements the protocols to
dynamically change the resources by interacting with the AE
at the OS level.

Fig. 3: ODA model used MA. MCSoC: Many-core SoC.

IV. PROOF-OF-CONCEPT IMPLEMENTATION

Sections IV-A and IV-B present components of the MA
approach, the Management Communication API and the MA
task injection method, respectively. Section IV-C presents the
proof-of-concept, with the ODA tasks.

A. Management Communication API
Message exchange mechanisms, such as MPI, use send-

receive methods between communicating task pairs. However,
management tasks are reactive, triggered by multiple sources
at any time (for example, many observation messages can
be directed to a single decision task). Additionally, there is
communication between MA tasks and the kernel, and usually
MPI primitives are targeted to task-to-task communication.

This work proposes a management communication API
that is used by MA tasks. This mechanism is similar to

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:47:53 UTC from IEEE Xplore. Restrictions apply.

the MPI_ANY_SOURCE directive of MPI, differing from it
to allow task-to-kernel communication. Figure 4 presents the
Management Communication API sequence diagram.

Fig. 4: Sequence diagram of the new message-passing API for
management communication.

In Figure 4 when a producer wants to send a message, a
data available packet is generated containing the producer task
id and location. When the consumer calls the receive message
function, e.g., when all decision algorithms are done and the
task is put in a blocked state, it checks data availability sent
by producers. For each producer, the consumer then sends a
message request, knowing its task id and location from the
data available message. Finally, each producer kernel dis-
patches the stored message inside a message delivery packet.
User tasks do not have access to this API, ensuring that the
management system is not disturbed by malicious tasks.

B. MA Injector
The public-available Memphis many-core [18] is the base-

line system used to build the proposed MA approach. Memphis
has a homogeneous region with PEs, and peripherals con-
nected to the many-core borders. Each PE contains: a 32-bit
RISC processor (CPU); a true dual-port scratchpad memory
for instructions and data; a Direct Memory Network Interface
(DMNI), integrating a Network Interface and a DMA modules;
and the NoC router.

Memphis has a default peripheral, Application Injector, that
deploys applications into the system. This peripheral can be
seen as an Ethernet interface receiving applications to be
executed in the platform. For security reasons, it is necessary
to separate the deployment of management tasks from user
tasks. Thus, a second peripheral was added to the Memphis
platform, called MA Injector.

At system startup, all external interfaces of the many-core
are disabled, except the MA Injector interface. This peripheral

transmits the initial code of a set of ODA management tasks
to a given processor, including the mapping task, acting as a
flash memory with a trusted boot code. Once the MA tasks are
loaded in the system, the mapping task releases the external
interfaces. Note that the method does not exclude distributed
mapping since multiple mapping tasks can co-exist, being
hierarchically managed.

C. MA Proof-of-concept
The MA framework proof-of-concept contains ODA tasks

working together to guarantee the QoS of a real-time applica-
tion, triggering task migration when deadline violations occur.
The ODA task set contains: (i) a real-time task monitor –
Observer; (ii) a QoS Decider; (iii) a task migration Actuator.

Section III presented the three components required by the
platform to support the MA framework (LLM, AE, Communi-
cation API). With the Management Communication API, and
the existing OS migration support acting as the AE, the LLM
is implemented in the kernel of each PE. The LLM sends raw
messages periodically with deadline, slack time, and remaining
execution time of all PE real-time tasks.

The OS knows whom to send LLM messages to by coupling
an Observer task to each monitored user task when the mapper
releases the user task to run, notifying the nearest Observer
task. The mapper does this by checking a Task Type Tag
inserted into each task’s binary file, indicating if the task
is O, D, A or user, and its O, D, and A capabilities, like
QoS, migration, DVFS, or power management. This feature
also allows the mapper to answer service discovery messages
issued by the O, D, and A tasks that request the task that
serves each step in the ODA loop.

For the proof-of-concept, the real-time task monitor Ob-
server checks for missed deadlines for each monitored task,
and in case of occurrence, sends a message to the QoS Decider.
The QoS Decider stores in a buffer with a Least Recently
Used (LRU) replacement policy the latest monitored tasks by
the Observer. After a parameterizable number of deadlines
misses, the mapper starts a task migration. Note that the real-
time task monitor Observer could also send information to
the QoS Decider about tasks meeting deadlines with sufficient
slack time and processor usage to possibly execute a DVFS
Actuator to lower the frequency of these tasks’ processors and
improve power efficiency.

V. RESULTS

Section V-A evaluates the cost to adopt MA, in terms
of memory footprint, number of management packets and
discusses modularity. Section V-B compares the effect of CBM
and MA in a real benchmark with QoS constraints. Section
V-C also compares both approaches, but in terms of their
performance.

A. MA Cost
Figure 5 compares the CBM and MA management binaries

sizes. The CBM has all management tasks inside its kernel,
while the MA has the management split into real-time task
Observer, QoS Decider, and the migration Actuator, which also
is a mapper task. The ODA task set is 78.9% smaller than the
CBM kernel, while keeping the same functionality. This occurs

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:47:53 UTC from IEEE Xplore. Restrictions apply.

because the MA has the advantage of no clusters to manage,
which needs more structures in memory and more code for
the reclustering procedures. The size difference between the
kernels running in PEs executing user tasks is negligible, even
with the new communication API required in MA paradigm.

CBM MA
CBM kernel

MA kernel
0

20

40

60

25.7 25.4

13.6

64.3

Si
ze

(k
B

)

CBM
RT Observer
QoS Decider
Migration Actuator
Kernel

Fig. 5: Management binaries size: CBM, MA, CBM kernel,
MA kernel.

The CBM requires dedicated PEs for management, with a
64.3 kB management kernel at each of these processors. In
the MA approach, all PEs can run user tasks, with a kernel
having roughly the same size as the CBM kernel for PEs that
run user tasks. The proof-of-concept MA application requires
13.6 kB, being distributed in several PEs. This result shows
that the MA makes better use of system resources without
requiring more memory.

Table I shows the number of messages exchanged for
CBM and MA, related to the experiment described in the
next section. Despite resulting in about 87% more exchanged
messages, the MA only increased the total volume of flits by
about 20% because the added monitoring and management
messages are small. Note that this case study is simple and
contains only one application and one set of MA tasks. Real
scenarios execute several applications and may use many
ODA sets. Such scenarios reduce the overhead of the MA
messages since the distance, in hops, between user tasks and
management tasks reduces by using the MA approach.

TABLE I: Message exchange in CBM and MA.
CBM MA

Number of messages 1,443 2,698
Number of flits 77,257 92,830

Another advantage of the MA is modularity. While the CBM
approach can only vary the size of its clusters, changing the
number of managers, the MA platform can vary the number of
ODA tasks and change the management goals at runtime by
adding a new set of ODA tasks. Besides modularity, another
advantage is portability, allowing the reuse of the ODA tasks
in other platforms.

B. MA Case Study

Experiments in this Section adopt a 3x3 many-core to
verify the MA feasibility. This small system corresponds to
one cluster in the CBM and is scalable to larger systems
by increasing the number of clusters. The benchmark is a

Dijkstra’s shortest path algorithm, partitioned in 7 tasks. In
the MA approach, PEs 0x0, 0x1, and 0x2 receive the task
mapping, QoS Decider, and real-time task monitor tasks.
The CBM manager is mapped at PE 0x0. Both management
approaches allow up to 4 32 kB tasks per PE.

The CPU load of each Dijkstra’s task is 25%. The initial task
mapping of this application is one PE executing 4 tasks and 3
PEs for the remaining tasks. The reason to adopt this mapping
is to induce deadline misses. To make a fair comparison, the
adopted migration heuristic [18] and the monitoring window
are the same for both management approaches.

Table II evaluates the time required for the management
approaches to detect and react to deadline misses and the
application execution time. The 1st column details the events
where the time was measured. The 2nd and 3rd columns detail
the measured timestamp for CBM and MA, respectively.

TABLE II: Timestamps for the Dijkstra’s application using
CBM and MA (ms).

Event CBM MA
1st migration request 4.99 5.29
end of 1st migration 5.16 5.48
2nd migration request 9.22 5.37
end of 2nd migration 9.39 5.58
end of application execution 11.80 11.72

CBM reacts quickly than MA for the first acting condition
(configured to 3 deadline misses), firing the migration before
MA. This happens due to the MA pipeline structure, with
messages sent from LLM to the Observer tasks, then from
this task to the Decider task that decides the migration.
But this pipeline behavior is the MA strength. Observe the
second acting condition. CBM misses this event because it
is finishing computing the previous decision and actuation
procedures (remember that CBM executes all ODA actions
in the same processor). Thus, CBM acts only in a third acting
condition. As the MA has the ODA tasks split into several
processors, it can detect violations from different tasks almost
simultaneously.

Even with the increased number of messages due to the
separated management tasks and the increased complexity of
the management communication API, the application executed
faster using MA (last Table row). The reason to speed up the
application is the faster MA detection and actuation.

Figure 6 depicts this parallelization on a scenario where
many LLM (one for each PE) sends QoS monitoring messages
to the nearest Observer task, while the Observer tasks gather
these data and pack to the correct Decider task that sends
messages based on the chosen action. Finally, the Act tasks
apply the decisions via the AE of a chosen target PE. In Figure
6 each entity is running in parallel, showing how the ODA
loop introduces parallelism to the management processes with
a pipeline model which truly exploits the parallel computing
power provided by the many-core.

C. Management throughput
The third experiment aims to saturate the management

infrastructure, using the previous experimental setup, but with

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:47:53 UTC from IEEE Xplore. Restrictions apply.

LLM AE

LLM AE

LLM AE

LLM AE

O

O

O

D
A

A

Fig. 6: MA pipeline model. The number of LLMs and AEs
is one per PE. Observer tasks are defined at design time,
while deciders and actuators are a function of the management
objectives.

a synthetic task. The synthetic task generates bursts of deadline
miss messages, and for each message, there is an actuation
(task migration).

Figure 7 shows on the x-axis the sequential number of
the monitoring messages and on the y-axis the time for the
management technique to handle an event (time to execute
the observation, decision, and migration). This chart has three
regions. The first region (messages 1 to 5) corresponds to the
MA warm-up, i.e., fill the MA pipeline. In this first region,
CBM acts quickly, as observed in Table II. For a short period
(messages 5 to 9), the CBM processor can still process the
observation messages and execute the decision. However, from
the ninth message onwards, the system reaches a steady-state,
with the throughput adapted to the processing capacity of
each management method. MA is faster than CBM due to
its parallel nature.

1 3 5 7 9 11 13 15

0.4

0.6

0.8

1

1.2

0.42

1.21
1.11

0.61

0.82

1.15

0.98

Monitoring message sequential number.

M
an

ag
em

en
t

te
ch

ni
qu

e
de

la
y

(m
s)

CBM
MA

Fig. 7: Delay from monitoring message emission until task
migration completion in CBM and MA.

Although small (11.7%), the observed gain was obtained
in a system with one task, seeking to illustrate the behav-
ior of management techniques. Such gain will increase in
actual scenarios, where there are multiple tasks generating
monitoring data (QoS, temperature, faults), which leads to
several decisions. Naturally, the management structure should
be scalable, such as the MA proposed in this work.

VI. CONCLUSION

In this paper, we presented a new method to manage many-
core systems, with the following advantages w.r.t. the state-of-
the-art: (i) there is no computational resources reservation for
management; (ii) implementation of the management method
as a distributed application. As a consequence of adopting this

method, we observed that the MA reacts quickly to missed
deadlines and does not penalize the execution of applications.

Future works include the MA evaluation in large systems
(e.g., 10x10), comparing it to CBM, and most important,
propose heuristics for multi-objective decisions.

ACKNOWLEDGMENT

This work was financed in part by CNPq (Con-
selho Nacional de Desenvolvimento Cientı́fico e Tec-
nológico), grant 309605/2020-2; and CAPES (Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior), Finance
Code 001.

REFERENCES

[1] O. Peckham, “Esperanto Unveils ML Chip with Nearly 1,100 RISC-V
Cores,” 2020. [Online]. Available: https://www.hpcwire.com/2020/12/
08/esperanto-unveils-ml-chip-with-nearly-1100-risc-v-cores/

[2] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agar-
wal, “A Generalized Software Framework for Accurate and Efficient
Management of Performance Goals,” in EMSOFT, 2013, pp. 1–10.

[3] G. Mariani, G. Palermo, V. Zaccaria, and C. Silvano, “ARTE: An
Application-specific Run-Time managEment framework for multi-cores
based on queuing models,” Parallel Computing, vol. 39, no. 9, pp. 504–
519, 2013.

[4] A. M. Rahmani et al., “Reliability-Aware Runtime Power Management
for Many-Core Systems in the Dark Silicon Era,” IEEE Transactions on
VLSI Systems, vol. 25, no. 2, pp. 427–440, 2017.

[5] G. Castilhos, M. Mandelli, G. Madalozzo, and F. Moraes, “Distributed
resource management in NoC-based MPSoCs with dynamic cluster
sizes,” in ISVLSI, 2013, pp. 153–158.

[6] B. D. de Dinechin et al., “A clustered manycore processor architecture
for embedded and accelerated applications,” in HPEC, 2013, pp. 1–6.

[7] Y. Xiao, S. Nazarian, and P. Bogdan, “Self-Optimizing and Self-
Programming Computing Systems: A Combined Compiler, Complex
Networks, and Machine Learning Approach,” IEEE Transactions VLSI
Systems, vol. 27, no. 6, pp. 1416–1427, 2019.

[8] M. Al Faruque, J. Jahn, T. Ebi, and J. Henkel, “Runtime Thermal
Management Using Software Agents for Multi- and Many-Core Archi-
tectures,” IEEE Design & Test of Computers, vol. 27, no. 6, pp. 58–68,
2010.

[9] W. Quan and A. D. Pimentel, “A Hierarchical Run-time Adaptive
Resource Allocation Framework for Large-scale MPSoC Systems,”
Design Automation for Embedded Systems, vol. 20, no. 4, pp. 311–339,
2016.

[10] M. A. A. Faruque, R. Krist, and J. Henkel, “ADAM: Run-time agent-
based distributed application mapping for on-chip communication,” in
DAC, 2008, pp. 760–765.

[11] D. Gregorek, J. Rust, and A. Garcia-Ortiz, “DRACON: A Dedicated
Hardware Infrastructure for Scalable Run-Time Management on Many-
Core Systems,” IEEE Access, vol. 7, pp. 121 931–121 948, 2019.

[12] X. Liao and T. Srikanthan, “A scalable strategy for runtime resource
management on NoC based manycore systems,” in ISICir, 2011, pp.
297–300.

[13] S. Kobbe, L. Bauer, D. Lohmann, W. Schröder-Preikschat, and J. Henkel,
“DistRM: Distributed resource management for on-chip many-core
systems,” in CODES+ISSS, 2011, pp. 119–128.

[14] I. Anagnostopoulos, V. Tsoutsouras, A. Bartzas, and D. Soudris, “Dis-
tributed run-time resource management for malleable applications on
many-core platforms,” in DAC, 2013, pp. 1–6.

[15] X. Huang, X. Wang, Y. Jiang, A. K. Singh, and M. Yang, “Dynamic
Allocation/Reallocation of Dark Cores in Many-Core Systems for Im-
proved System Performance,” IEEE Access, vol. 8, pp. 165 693–165 707,
2020.

[16] M. H. Haghbayan, A. Miele, Z. Zouv, H. Tenhunen, and J. Plosila,
“Thermal-Cycling-aware Dynamic Reliability Management in Many-
Core System-on-Chip,” in DATE, 2020, pp. 1229–1234.

[17] E. Shamsa et al., “Goal-Driven Autonomy for Efficient On-chip Re-
source Management: Transforming Objectives to Goals,” in DATE, 2019,
pp. 1397–1402.

[18] M. Ruaro, L. L. Caimi, V. Fochi, and F. G. Moraes, “Memphis: a
framework for heterogeneous many-core SoCs generation and valida-
tion,” Design Automation for Embedded Systems, vol. 23, no. 3-4, pp.
103–122, 2019.

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on October 01,2021 at 18:47:53 UTC from IEEE Xplore. Restrictions apply.

		2021-09-11T15:10:43-0400
	Certified PDF 2 Signature

