
DOI: http://dx.doi.org/10.1590/1980-5373-MR-2018-0810
Materials Research. 2019; 22(suppl 1): e20180810

Imidazolium-based Ionic Liquids Impregnated in Silica and Alumina 
Supports for CO2 Capture
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Ionic liquids (ILs) physical immobilization in solid materials is a key strategy for developing 
efficient and low cost CO2 capture processes. In this work, two porous commercial substrates with 
different characteristics (silica and alumina) were impregnated with ILs by physical wet method. 
Imidazolium based IL combined with [Br]- and [Tf2N]- anions were used in impregnation process. 
CO2 sorption capacity and selectivity (CO2/N2) of these materials were investigated. The best results 
regarding CO2/N2 selectivity and CO2 sorption were obtained with [Tf2N]- anion. In relation to solid 
support, commercial alumina exhibited enhanced CO2 uptake and higher selective capacity (CO2/N2) 
(6.1 (± 0.1)). Combination of commercial alumina as support and 20 wt% of mbmim [Tf2N] resulted 
in higher CO2/N2 selectivity of 9.5 ± 1.0. In addition, this material also showed fast sorption kinetics 
when compared to pure IL besides reuse capacity.
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1. Introduction 

One of the main challenges is the increase  in atmospheric 
CO2 concentration1. According to measurements, the mean 
CO2 level value is the highest already registered till date1,2. 
This fact underscores the need of reducing CO2 emissions 
from industrial sources (industrial processes and fossil 
fuels use/production) which are one of the main players 
contributing to this scenario2–5. Current processes for CO2 
capture are associated with high cost, energy penalty and 
chemical production limiting its use. The most well-known 
process involves aqueous amine solutions6,7. Despite being 
widespread this process presents operational drawbacks 
(high energy for regeneration stage, degradation byproducts, 
equipment corrosion) that discourage its use5,8–13. 

Ionic liquids (ILs) are a class of organic salts formed by 
combining organic cations and inorganic or organic anions 
resulting in compounds presenting melting temperature 
lower than 100°C14,15. ILs are candidates for replacing 
aqueous amine solution in CO2 capture processes15,16 due 
to their physico-chemical properties (like negligible vapor 
pressure) as well as CO2 sorption capacity1,17–20. Ionic 
liquids’ properties depend on cation and anion size, shape 
and nature21,22. Side chain branched imidazolium cation 
is considered promising for CO2 capture since it imparts 
sponge-like characteristics23. Moreover, anion nature has a 

great effect on gas solubility24. Fluorinated anions (such as 
[Tf2N]-) present high CO2 affinity25,26.  In spite of this, ionic 
liquids present disadvantages as high viscosity limiting 
mass transfer27. In order to overcome limitations related to 
ILs high viscosity, as poor CO2 dynamics separation, ILs 
impregnation in solid materials appears as a good platform28. 
Solid materials such as silica and alumina hold large specific 
surface area, pore volume, tunable pore size and good stability 
being interesting candidates for applications in separation 
processes2,26,29–33. Besides these characteristics, some factors 
are fundamental to ensure these materials applicability, 
such as: fast kinetic, CO2 sorption capacity, CO2 selectivity, 
chemical and thermal stability1,34,35. 

In this work we investigated anion and porous support 
effect on CO2 capture. Essential features to integrate this 
technique in large industrial systems such as CO2 sorption 
capacity, selectivity (CO2/N2), recyclability, sorption kinetics 
and thermal stability were evaluated. Commercial silica and 
alumina were used as solid supports impregnated with the 
ionic liquids mbmim [Br] and mbmim [Tf2N].

2. Experimental

2.1 Materials

1-Methylmidazole (99%, Sigma Aldrich), 1-Bromo-3-
methylbutane (96%, Sigma Aldrich, Toluene (99.0%, Merck), 
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Ether (Neon), Lithium trifluoromethanesulfonylimidate (Alfa 
Aesar, 98.0 %), Magnesium Sulfate (Merck), Dichloromethane 
(Anhydrol), Commercial Silica (S) and Commercial Alumina 
(A) were used as received.

2.2 Ionic Liquids synthesis 

The ionic liquid mbmim[Br] (1- (3-methylbutyl) -3- 
methylimidazolium bromide) was synthesized as described 
by Andresova et al.36. Using this IL as starting material, 
anion exchange was carried out with lithium salt (LiTf2N) 
addition36, resulting in mbmim[Tf2N] (1- (3-methylbutyl) 
-3-methylimidazolium bis- (trifluoromethanesulfonylimide). 
ILs syntheses were confirmed by proton nuclear magnetic 
resonance (1H-NMR)36, in a Varian spectrophotometer, 
VNMRS 300 MHz, using DMSO-d6 as solvent and 5 mm 
diameter glass tubes. mbmim[Br]: 1H-RMN (300 MHz, 
DMSO-d6 , 25°C), δ (ppm) 10.28 (m, 1H), 7.79 (t, 1H), 7.61 
(t, 1H), 4.39–3.96 (m, 4H), 1.87–1.69 (m, 4H), 1.59 (m, 1H), 
1.13 (m, 2H), 0.85 (t, 3H). mbmim[Tf2N]: 1H-RMN (300 
MHz, DMSO-d6 , 25°C) δ (ppm) 9.13 (s, 1H), 7.79 (d, 1H), 
7.70 (d, 1H), 4.24 (t, 2H), 3.85 (s,3H), 1.69 (m, 2H), 1.51 
(m, 1H), 0.92 (d, 6H). ILs structures are depicted in Fig. 1. 

2.3 Physical wet method immobilization

Ionic liquids immobilization in commercial porous 
substrates (silica S and alumina A) was performed by 
wet impregnation. In this technique the IL (mbmim[Br] 
or mbmim[Tf2N]) in concentrations of 10 to 30% wt is 
dissolved in dichloromethane; the contact with the support 
is effected manually with a pistil37. Samples were named 
as X-mbmim[Y]-Z, where X indicates the solid support 
(silica S or alumina A), Y the anion and Z the immobilized 
IL concentration. For example, S-mbmim[Tf2N]-10 means 
silica support, Tf2N anion and 10% wt of IL.

2.4 CO2 sorption and sorption kinetics assays

Pure and immobilized porous substrates sorption tests 
were performed statically through the cell-based pressure 
decay technique similar to that developed by Koros and Paul38. 
Tests were performed in triplicate at 45°C of temperature and 
0.4 MPa (equilibrium pressure). CO2 solubility procedure, 

tests and calculation, was performed as presented in our 
previously published works2,39. Solid and liquid sorption 
kinetic was evaluated by controlling CO2 sorption until 
saturation amount over time. Recycle tests were performed 
by repeating sorption/desorption cycles five times at 0.4 
MPa with desorption after each cycle by sample heating in 
an oven at 65 °C. Kinetic tests and solubility calculations 
for ionic liquids were performed just as in the case of solids, 
but with constant stirring of 800 rpm40.

2.5 CO2/N2 separation – Selectivity tests

Procedure for selectivity determination is well described 
in literature2,41. Tests were performed using a primary standard 
gaseous mixture with CO2 content of 15.89% and N2 balance. 
Experiments were carried out at equilibrium pressure of 2.3 
MPa and temperature of 45°C. CO2 separation efficiency was 
calculated by equation 1, where Yi stands for molar fractions 
in the gas phase and Xi in the sorbed phase.

              (1)

2.6 Sample characterization

Materials structures were identified by FTIR. FTIR 
spectra were recorded on a PerkinElmer Spectrum100 
spectrometer in UATR mode. Samples morphology was 
evaluated by Field Emission Scanning Electron Microscopy 
(FESEM) and performed on a FEI Inspect F50 equipment 
in secondary electron mode. Samples thermal stability and 
immobilized IL content were evaluated by TGA/DTG (TA 
Instruments SDT-Q600), under nitrogen inert atmosphere 
from 25 to 800oC and heating rate of 20oC/min. Samples 
porous nature was investigated by N2 adsorption/desorption 
technique and the specific surface area was calculated using 
the Brunauer - Emmett - Teller (BET) method. Nitrogen 
adsorption-desorption isotherm was obtained using NOVA 
4200 High Speed   at liquid nitrogen temperature. Bulk density 
was obtained by measuring in a vessel, dispersed powder 
volume and weight, under gravity influence. Skeleton density 
was determined by helium pycnometry (Ultrafoam ™ 1200e, 
Quantachrome Instruments). Porosity (%) was theoretically 

Figure 1. ILs structure: a) mbmim[Br] b) mbmim[Tf2N].
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calculated using density and skeletal density results according 
to literature procedure42. IL samples content was determined 
by TGA in the range of 150 to 800°C using equation 2. The 
weight loss of sample S (3.4%) and sample A (17.6%) without 
IL loading was used as control and subtracted from obtained 
value from equation 2. For silica the observed weight loss 
up to 150°C corresponds to water loss. On the other hand, 
for alumina, besides weight loss related to moisture, there 
is also a weight loss corresponding to bohemite percentage 
and crystallites size43. 

              (2)

Where W150 and W800 are weight (g) at 150°C and 800°C, 
respectively.

3. Results and Discussion

FTIR spectra of solid supports (S and A) as well as solid 
supports impregnated with ILs are shown in Fig. 2. Immobilized 
samples with different IL content presented similar behavior, 
so samples with 30% of ILs mbmim[Br] and mbmim[Tf2N] 
are used to illustrate the immobilization in silica support (S)  
and mbmim[Tf2N] to illustrate IL immobilization in alumina 
sample (A).  In sample S (Fig. 2a) spectrum characteristic silica  
bands are observed2,44: at 3352 cm-1, 1635 cm-1 (hydroxyl), 
1066 cm-1 (condensed silica Si-O-Si) and  from 968 cm-1 to 
798 cm-1 (Si-OH). With ILs immobilization (Fig. 2a) one can 
observe the appearance of imidazolium cation characteristic 
bands at45: 2973 cm-1 (C-H of CH2), 1633-1625 cm-1 (C=N 
aromatic), 1571-1471 cm-1 (C=C aromatic), 1349 cm-1 (C-N 
aromatic), 1192 cm-1 (C-N aliphatic) and for [Tf2N] anion 

at45: 1054 cm-1 (N-S), 792 cm-1 (C-S), 741-657 cm-1 (C-F); 
and [Br]46: 655 cm-1 (C-Br). Sample A FTIR spectrum 
(Fig. 2b)  evidenced characteristics bands at47,48: 660 cm-1 
(aluminum in oxide octahedral coordination), from 890 to 
734 cm-1 (tetracoordinated aluminum). The band at 1060 
cm-1 corresponds to Al-OH48.  The bands at 1639 cm-1  and 
3200 cm-1 correspond to  angular and axial deformation of 
hydroxyls group, respectively47,48. The band at 1395 cm-1 is 
attributed to nitrate (NO3

-) and at 3089 cm-1 to alkyl groups 
(-CH2/-CH3) probably from fabrication process47,48. With 
IL mbmim[Tf2N] immobilized in sample A (Fig. 2b)  one 
can observe the appearance of imidazolium characteristic 
bands at45: 2966 cm-1 (C-H of CH2), 2878 cm-1  (C-H of CH3), 
1571-1469 cm-1 (C=C aromatic), 1348 cm-1  (C-N aromatic), 
1186-1135 cm-1 (C-N aliphatic) and for  [Tf2N] anion at45: 
1056 cm-1  (N-S), 876 cm-1  (N-S), 731 cm-1  (C-F). 

Fig. 3 presents FESEM images for samples S and A as 
well as samples S-mbmim[Tf2N]-30 and A-mbmim[Tf2N]-30. 
Comparing sample S micrograph (Fig. 3, a) with sample 
S-mbmim[Tf2N]-30 (Fig. 3, b) one can observe an increase 
in particle size with IL immobilization (from ~25 µm to 
~120 µm). For sample A-mbmim[Tf2N]-30 (Fig. 3, d) an 

increase in particle size also was observed (from ~24 µm 
to ~36 µm) when compared to sample A (Fig. 3, c). Particle 
size increases under IL immobilization. This behavior is 
probably related to particle agglomeration for both samples.

Table 1 shows the amount of immobilized IL in supports 
S and A determined by TGA. The actual percentage values 
obtained for both supports (S and A) were close to the 
theoretical one evidencing process efficiency.

N2 adsorption/desorption isotherm tests at 77K were 
performed for all samples (Figure 4). Typical type IV curves 
with H3 hysteresis loop according to IUPAC classification 
were observed in all cases (Figure 4A)49–51 except for sample 
A-mbmim[Tf2N]-30 (Figure 4B). Sample A-mbim[Tf2N]-30 
presented a isotherm characteristic of non-porous materials 
(type III). This behavior is  possibly due to the amount of 
immobilized IL (30%) resulting in pore saturation altering 
its textural properties51–53 (see Table 2). 

Table 2 summarizes density and textural properties of all 
samples studied in this work. It is possible to observe that 
regardless the anion or the support, porosity, specific surface 
area, pore volume and pores radius were reduced with ILs 
immobilization. We can also highlight that the higher the 
ILs content the lower these values were probably due to pore 
filling. These data corroborates several studies reporting 

Figure 2. FTIR for samples: a) S, S-mbmim[Br]-30, S-mbmim[Tf2N]-30; 
b) A and and A- mbmim[Tf2N]-30.
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Figure 3. FESEM for samples: (a) S; (b) S-mbmim[Tf2N]-30; (c) A; (d) A-mbmim[Tf2N]-30.

Figure 4. N2 isotherms of adsorption (○) and desorption (□): (A) A-mbmim[Tf2N]-20; (B) A-mbmim[Tf2N]-30.
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Table 1. Amount (%) of immobilized IL in supports S and A 
determined by TGA.

Sample % IL

S -

S-mbmim[Br]-10 8.2 (± 1.9)

S-mbmim[Br]-20 19.8 (± 0.5)

S-mbmim[Br]-30 28.2 (± 1.5)

S-mbmim[Tf2N]-10 8.7 (± 0.4)

S-mbmim[Tf2N]-20 19.4 (± 0.7)

S-mbmim[Tf2N]-30 27.7 (± 2.0)

A - 

A-mbmim[Tf2N]-10 8.1 (± 1.0)

A-mbmim[Tf2N]-20 18.2 (± 0.8)

A-mbmim[Tf2N]-30 26.6 (± 0.4)

Table 2. Density and pore characteristics of all samples (S and A with and without IL immobilization).

 Densities (g/cm3)
   Bulk               

Skeleton

Porosity
(%)

BET
(m²/g) Pore volume (cm3)

Pore 
Radius 
(nm)

S 0.4428 2.306 80.80 487 0.75 2.69

S-mbmim[Br]-10 0.5908 2.516 76.52 441 0.56 2.38

S-mbmim[Br]-20 0.6166 2.219 72.21 367 0.45 2.10

S-mbmim[Br]-30 0.6386 2.254 71.67 315 0.43 1.87

S-mbmim[Tf2N]-10 0.5926 3.071 80.70 381 0.54 2.38

S-mbmim[Tf2N]-20 0.6088 2.734 77.73 307 0.43 2.10

S-mbmim[Tf2N]-30 0.6578 2.901 77.33 291 0.41 2.38

A 0.7434 3.366 77.91 196 0.26 2.12

A-mbmim[Tf2N]-10 0.8566 3.454 75.19 128 0.20 1.88

A-mbmim[Tf2N]-20 0.9044 2.562 64.70 73 0.12 2.75

A-mbmim[Tf2N]-30 - - - 7 - -

textural properties decrease after organic loading2,49–51 and 
also confirm that the relationship between bulk density and 
porosity is inversely proportional54.  

3.1 Influence of anion on CO2 sorption capacity  

Fig. 5 presents sorption values at 45°C of temperature and 
0.4 MPa of pressure for sample S and the ILs mbmim[Br]- and 
mbmim[Tf2N]-, with different IL content, immobilized on 
sample S. It can be seen that sample S presents the highest 
CO2 sorption capacity (81.7 (± 2.2) mg CO2/g) when compared 
to immobilized samples. This behavior is possibly associated 
with its high specific surface area (487 m²/g). Polar groups 

(Si-OH) on sample S surface also can improve CO2 sorption 
due to affinity with CO2

55. Regarding  immobilized ILs a 
tendency in CO2 sorption capacity reduction with IL content 
increase was observed for both anions (S-mbmim[Br]-10 71.7 
(± 2.6) mg CO2/g; S-mbmim[Br]-20 54.8 (± 1.0) mg CO2/g; 
S-mbmim[Br]-30 55.1 (± 1.3) mg CO2/g ; S-mbmim[Tf2N]-10 
56.0 (± 0.7) mg CO2/g; S-mbmim[Tf2N]-20 55.8 (± 1.0) mg 
CO2/g); S-mbmim[Tf2N]-30 45.2 (± 2.3) mg CO2/g).  This 
behavior is probably related to specific surface area and 
porosity reduction with IL immobilization (see Table 2). 
From results, one can infer that IL content and anion type 
has a secondary influence on sorption values. On the other 
hand, specific surface area is the main factor influencing CO2 
sorption capacity. Higher sorption capacity was observed for 
sample S-mbmim [Br]-10 (71.7 (± 2.6) mg CO2/g; S= 441 
m²/g) when compared to other samples containing IL with 
less important specific surface area values. Similar behavior 
was described by Kim et al.56. Results obtained in this work 
for silica samples/immobilized ILs were similar or higher 
than those reported in literature under the same pressure and 
temperature conditions (~55 mg CO2/g) for 10% amine (PEI 
and PEHA) immobilized on mesoporous silica57.  

CO2/N2 selectivity for sample S as well as for sample 
S immobilized with ILs is depicted in Fig. 6. As seen, ILs 
immobilization improves silica samples selectivity. This 
behavior is probably related to imidazolium ring polarity58,59 
and IL content60. Yet,   ionic liquids have more affinity for 
CO2 when compared to other gases such as CH4 and N2

61. 
The best result regarding selectivity was observed for anion 
[Tf2N] and sample S-mbmim[Tf2N]-30 of (7.9 (± 0.2)). 
This result is in accordance with literature which describes 
[Tf2N]  having high CO2 selectivity in gas mixtures when 
compared to other anions57. The best sorption capacity was 
obtained for sample S, but the higher separation efficiency 
(CO2/N2) was obtained by mbmim[Tf2N]-30 sample. This 
parameter has a direct impact on product purity degree, 
playing an important role in sorbent choice35. The presence 
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of [Tf2N] anion results in the best material for CO2 capture. 
In the next section support performance evaluation will be 
described using mbmim[Tf2N] as IL.

3.2 Solid support role in CO2 sorption capacity 
and CO2/N2 selectivity

 Table 3 presents the results obtained for CO2 sorption and 
CO2/N2 selectivity for sample A and sample A immobilized 
with the IL mbmim[TF2N] in different content in comparison 
with sample S and sample S with the IL mbmim[TF2N] in 
different content as well.

Analyzing the supports sorption capacity one can notice 
that sample A has lower sorption capacity (61.1 (± 1.2) mg 
CO2/g) once compared to sample S (81.7 (± 2.2)). This 
behavior is related to sample S specific surface area being 
twice as large as sample A (Table 2). Unlike CO2 sorption, 
selectivity (CO2/N2) of sample A is higher when compared 
to sample S. This behavior is attributed to metal presence in 
sample A improving support/CO2 affinity1,58,59,62,63. Comparing 
CO2 sorption capacity of IL immobilized samples one can 
observe a reduction in CO2 sorption values for all samples. 
This behavior is related to the decrease in textural properties 
(see Table 2), except for sample A-mbmim[Tf2N]-30 which 
CO2 sorption capacity is similar to sample A. CO2 sorption 
capacity of sample A-mbmim[Tf2N]-30 may be related to 
the type III isotherm (Fig. 4) presented by this sample64. 

Chen et al.52 also observed similar behavior to that obtained 
for sample A-mbmim[Tf2N]-30 when immobilizing PEI 
(polyethylenimine) in mesoporous alumina. IL immobilization 
increased CO2 efficiency removal in relation to N2, when 
compared to pure supports. This behavior is  attributed to 
higher IL/CO2 affinity than support/CO2

2,65. Selectivity is 
directly influenced by immobilized IL content. For support 
S, increasing IL content continuously increased selectivity. 
For sample A this tendency was observed until IL content of 
20%. For 30% a selectivity reduction was observed probably 
due to the non-porous behavior (Fig. 4) and also to the fact 

Figure 5. CO2 sorption capacity at 0.4 MPa and 45°C.
Figure 6. Selectivity at 2.3 MPa of pressure and 45°C of temperature.

Table 3. CO2 sorption capacity and CO2/N2 selectivity for samples 
S and A with and without IL immobilization.

Sample Sorption Capacity 
(mg CO2/g)

Selectivity 
(CO2/N2)

A 61.1 (± 1.2) 6.1 (± 0.1)

A-mbmim[Tf2N]-10 52.1 (± 1.0) 6.9 (± 1.2)

A-mbmim[Tf2N]-20 42.7 (± 2.3) 9.5 (± 1.0)

A-mbmim[Tf2N]-30 57.5 (± 2.8) 4.8 (± 0.1)

S 81.7 (± 2.2) 2.31 (± 0.4)

S-mbmim[Tf2N]-10 56.0 (± 0.7) 3.7 (± 0.1)

S-mbmim[Tf2N]-20 55.8 (± 1.0) 4.6 (± 0.5)

S-mbmim[Tf2N]-30 45.2 (± 2.3) 7.9 (± 0.2)

that the IL reduces CO2/support metal interaction. Sample 
A-mbmim[Tf2N]-20 was more selective and choosen to 
perform kinetic and recycle tests.

3.3 Kinetics tests

Fig. 7 presents kinetic behavior of immobilized sample 
A-mbmim[Tf2N]-20 compared to kinetic behavior of pure 
IL mbmim[Tf2N]. It is interesting to note that immobilized 
ionic liquid presents CO2 sorption (42.7 (± 2.3) mg CO2/g) 
capacity higher than pure IL (14.6 (± 0.5) mg CO2/g). In 
addition, kinetics improves dramatically with immobilization. 
Pure IL is extremely viscous, needing longer times for CO2 
uptake (350 min). In contrast, IL immobilization in solid 
supports improves mass transfer, resulting  in a faster CO2 
sorption process (10 min)27,66–68. 
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3.4 Recycle tests

Fig. 8 shows sorption/desorption tests aiming sample 
A-mbmim[Tf2N]-20  stability evaluation. After 5 sorption/
desorption cycles, CO2 sorption in A-mbmim[Tf2N]-20 was 
reversible confirming sample stability and reuse.

be a good material for this purpose since it combined textural 
properties (specific surface area, volume and pore radius) 
with selectivity due to metal presence on its surface. This 
combination favored its performance in CO2/N2 selectivity 
when the concentration of immobilized IL was 20%. The 
best combination of support and ionic liquid content was 
obtained with sample A-mbmim[Tf2N]-20.
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