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ABSTRACT 

Context. With a long duration return mission to Mars on the horizon, we must learn as much 

about the environment and its influence on the musculoskeletal system as possible to develop 

countermeasures and mitigate deleterious health effects and maladaptation. Aims. To 

determine the influence of simulated Mars gravity on the activity of four locomotor muscles 

while walking, in comparison to 1 G, using lower body positive pressure (LBPP). Design and 

Methods. Fourteen males (age: 20.6 ± 2.4 years) performed bouts of walking in both simulated 

Mars gravity (0.38 G) and Earth gravity (1 G) using an LBPP device. Dependent variables were 

the muscle activity evoked in the tibialis anterior, vastus lateralis, gluteus maximus and lateral 

portion of the gastrocnemius, measured using electromyography and expressed as percentages 

of maximum voluntary isometric contractions, and heart rate (HR). For statistical analysis, a 

paired t-test was performed. Statistical significance was defined as P < 0.05. Results. No 

significant differences in muscle activity were found across conditions for any of the 

investigated muscles. A significant mean difference in HR was identified between Earth 

(105.15 ± 8.1 bpm) and Mars (98.15 ± 10.44 bpm) conditions (P = 0.027), wherein HR was 

lower during the Mars trial. Conclusions. The Mars environment may not result in any 

deteriorative implications for the musculoskeletal system. However, if future research should 

report that stride frequency and thus activation frequency is decreased, in simulated Mars 

gravity, negative implications may be posed for muscle retention and reconditioning efforts on 

the Red Planet.   

Keywords: Mars, walking, hypogravity, lower body positive pressure, electromyography. 
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Introduction 

The next big milestone in human space exploration will be stepping foot on Mars. Current 

projections suggest a round trip to the Red Planet will take close to thee years, with 

approximately 12 months being spent in microgravity travelling to and from Mars, and 26 

months on the Martian surface. At present, no human being has spent longer than 437.7 days 

(14.4 months) continuously in microgravity. When muscle and bone are mechanically 

unloaded, degeneration of these tissues ensue1. For a Mars expedition crew, this could mean 

deconditioning to the point of debilitation. A meta-analysis by Narici and Boer (2011)2 

highlighted the anti-gravity and locomotor muscles as most susceptible to mass losses induced 

by spaceflight. Moreover, marked degrees of atrophy (≤ 15%) in these muscles have been 

documented after as little as nine days in microgravity3, 4. With regards to the skeletal system, 

maladaptation brings about appreciable losses in bone mineral density5. A decrease in intestinal 

calcium absorption and a rise in bone resorption has led to virtually every astronaut exposed to 

microgravity for longer than 30 days suffering bone loss6. Moreover, post-flight monitoring 

from Skylab revealed the crew continued to experience bone demineralisation for a further 5 

years following their return to Earth7. Considering that musculoskeletal degeneration and the 

accompanying increase in astronauts’ susceptibility to accident induced injuries and 

osteoporosis is evident after relatively short duration missions, a return to Earth following a 3-

year Mars mission may be disabling in the absence of efficacious countermeasures.  

It is essential to understand the musculoskeletal loading deficits that inhabitants would 

experience on Mars. Earth-based simulations of partial gravity environments can provide a 

platform to be employed for determining the degree of muscle activity (electromyography – 

EMG) relative to maximum that can be achieved, in addition to relative muscle comparisons8. 
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The latest and least functionally limited hypogravity analogue to emerge is the lower body 

positive pressure (LBPP) box treadmill9. Enclosing volunteers’ lower limbs inside an air-tight 

inflatable chamber, attached at the waist, the LBPP box utilises pressure differentials to 

generate lift and alter the weight of the participant as desired. While stood on a treadmill, gait 

and other physiological measurements can then be analysed in simulated hypogravity. 

Using this technology mostly to assess its efficacy as a gait rehabilitation tool, a handful of 

studies have employed EMG in lower body musculature 10, 11, 12, 13, 14, 15. All of these studies 

reported reductions in levels of muscle activity with bodyweight support. However, only one 

of these studies, Klarner et al. (2010) 11, explored muscle activity during walking, the type of 

locomotion that Mars inhabitants will spend most of their time performing, whereas Gluteus 

Maximus (GM) activity was not analysed. While numerous kinetic analyses of locomotion on 

Earth have identified low activity in the GM during steady-speed, level walking, it is known 

that this muscle also contributes greatly to spinal stabilisation16, 17. As postural muscles, the 

spinal stabilisers would likely atrophy during a return mission to Mars, therefore, any deficits 

in GM motor recruitment while walking on Mars could have significant implications. 

Evidence shows the cardiovascular system also experiences maladaptation with extended 

microgravity exposure, and several studies have also analyzed and compared heart rate (HR) 

at varying levels of simulated partial gravity. A convergent trend to this research is that HR 

decreases with increasing bodyweight support from an LBPP box. Jensen et al. (2009)12 and 

Ruckstuhl et al. (2010)18 both reported significant HR declines from 1G to running at 20% 

bodyweight and walking at 33% bodyweight, respectively. Cutuk et al. (2006)19 also found HR 

to decrease during LBPP walking, while Nishiyasu et al. (2007)20 observed HR to reduce with 

subjects simply standing upright with LBPP. More recently, Schlabs and colleagues (2013)9 

reported that HR was elevated to a significantly greater degree during walking in simulated 
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Mars gravity compared to simulated Moon gravity using an LBPP box. It thus may be 

expedient to include HR as a dependent variable in any prospective EMG studies related to 

Mars to gauge the degree of cardiovascular deconditioning that may occur in astronauts. 

The main purpose of this study was to determine the influence of simulated Mars gravity, 

using an LBPP box treadmill, on the activity evoked in four locomotor muscles – Tibialis 

Anterior (TA), Vastus Lateralis (VL), Gastrocnemius Lateral (GL) and Gluteus Maximus 

(GM), compared to 1G while walking. A secondary aim was to analyze and compare HR 

between conditions. 

Methods 

Participants 

Fourteen healthy males (age: 20.6 ± 2.4 years (mean ± standard deviation (SD)); height: 

171.9 ± 4.4 cm; body mass: 65.2 ± 8.2 kg) volunteered to participate in this study. 

Contraindication to participation included any physical condition that could affect gait pattern 

or walking. The study was approved by the ethics committee of The Pontificia Universidade 

Catolica do Rio Grande do Sul (PUCRS) and conformed to the Declaration of Helsinki. 

Informed consent was obtained from all volunteers prior to testing.  

Experiment Design 

Participants attended one session at the John Ernsting Aerospace Physiology Laboratory 

at PUCRS, Porto Alegre, Brazil, where they performed bouts of walking in both ‘Mars’ (0.38 

G) and Earth (1G) conditions inside the LBPP box treadmill. In this experiment, the level of 

muscle activity evoked in the TA, GL, VL and GM was measured using EMG, and HR (BPM), 

while walking on an LBPP box treadmill at a pre-determined pace that corresponded to a rate 

of perceived exertion (RPE) of 9 on the Borg scale (6 to 20 [AU]) 21 to ensure locomotive 
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intensity was relatively equivalent. Testing was conducted in a randomised and 

counterbalanced repeated measures design to mitigate the influence of order effects22. 

Maximum voluntary isometric contractions (MVIC) of all investigated muscles were 

performed at the beginning of each session to provide normalisation values for the raw EMG 

data and allow comparisons between muscles regarding their relative degree of activity 23. 

Electromyography Procedures 

Disposable silver-silver chloride (Ag Ag – Cl), bipolar configured passive wet gel surface 

electrodes (Covidien llc, Mansfield, MA, USA) were affixed in pairs, spaced 20 mm apart, to 

the belly of each muscle of interest on the right leg, in accordance with SENIAM (Surface 

electromyography for the non-invasive assessment of muscles) guidelines and oriented parallel 

to the muscle fibres 24 (Figure 1). To minimise noise signals and artefacts, the skin was shaved 

and cleansed with an alcohol wipe before electrode attachment. With participants each 

attending only one session, the reliability limitation of re-attaching electrodes in the same 

positions for each muscle between trials was accounted for. 
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Figure 1. Displaying the electrode placement sites, based on SENIAM guidelines, for all four 

investigated locomotor muscles – Tibialis Anterior (TA), Vastus Lateralis (VL), 

Gastrocnemius Lateral (GL) and Gluteus Maximus (GM) (source – authors) 

Attached to the back of the electrodes via snap fasteners, a wired telemetric module 

transmitted the myoelectric signals back to the 4-channel EMG system (MioGraph 4 canais, 

Miotec Equipamentos Biomedicos, Porto Alegre, RS, Brazil) where they were sampled at 2000 

samples/second. A wired reference (ground) electrode was placed around the wrist (electrically 

neutral tissue) of participants using a bracelet to provide a common reference to the differential 

input of the preamplifier in the electrode. To optimize transmission, a low pass filter was 

applied to signals for smoothing and noise removal. All raw EMG data was saved using 

manufacturer’s software (MioTool 2.0, Miotec Equipamentos Biomedicos, Porto Alegre, RS, 

Brazil) where subsequent analyses were performed. At this stage, the data was full-wave 

rectified.All MVICs were performed unilaterally to maximise output amplitudes, with the right 

leg being used to maintain consistency with experimental data25. When acquiring the MVIC 

for the GL, participants were asked to stand on their right leg, using a chair in front of them for 

GL TA 

GM VL 
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support, and subsequently perform a maximum effort plantarflexion26. Due to equipment 

inaccessibility, the MVIC for the VL was performed with a modified version of a technique 

which has been previously substantiated greatly. This entailed the volunteer sitting on a sturdy 

chair, with their hip flexed to 90° and their knee flexed to approximately 60 degrees 27, 28. With 

a rope tied around the volunteer’s ankle and anchored behind them, a maximum effort knee 

extension was then instructed. For the TA, participants sat on a sturdy chair, their hip flexed to 

90°, their knee at 140° and ankle at 90° at the moment of exertion. The right foot was strapped 

with rope that covered the metatarsals and phalanges. A researcher, stepping on the rope at 

both sides of the participant’s foot to create tension, ensured that the foot was fixated securely 

and no movement occurred. Participants were then instructed to perform a maximum effort 

dorsiflexion 29. When acquiring the MVIC for the GM, subjects assumed a prone quadruped 

position, maximally extending the right hip with the knee flexed to 90° 8, 27, 30.  

LBPP Box Treadmill 

The LBPP treadmill used in this study was devised and built by engineers at PUCRS. 

Akin to the Alter-G treadmill, it consists of a treadmill enclosed inside a plastic inflatable 

chamber (Figure 2). Transparent sides allowed for kinematics to be visually inspected, in 

addition to allowing researchers to ensure that electrodes and Velcro straps remained affixed. 

The dimensions of the LBPP chamber were: length: 2.3 m, height: 1.3 m and width: 0.97 m.  

To achieve the desired unweighting of subjects for the Mars condition, the air pressure inside 

the chamber was elevated to a certain degree above ambient. Creating a pressure difference 

between the upper- and lower bodies in this way generates buoyancy, unloading the lower body 

of participants standing on the treadmill 10. 
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To mitigate escaping air from the chamber, participants wore skin tight neoprene shorts, 

fastened to the leg using Velcro straps for extra security. The top of the shorts was widened 

and fitted with one half of a zip fastener, extending out to interlock with the second half of the 

zip teeth on the neoprene ring at the top of the chamber, sealing the participant in at the waist.   

The LBPP box had a motor (blower) with a nominal frequency of 60Hz (max: 70Hz, 

min: 5Hz). Spinning at 2850RPM, it provided 800 W of power. Earlier experiments were 

conducted to determine the characteristic curve of the blower (pressure x flow rate) 31. To 

control the frequency converter, the microcontroller used an analogue output that generated 

signals ranging from 0V to 10V used by the frequency inverter (to adjust the frequency of the 

motor between 5Hz and 70Hz). To simulate the weight on Mars, a frequency of  ̴ 47.5Hz was 

used. However, the exact frequency depended on the mass of the participant. For instance, a 

frequency of approximately 47.5Hz was used for a subject with 60kg of mass. For the Earth 

trial, the equipment was set to 11Hz so as to just inflate the LBPP box and not suspend the 

participant.  
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      Figure 2. Annotated schematic of the LBPP device employed. (Source – Authors) 

Experiment Procedures 

After providing informed consent, all participants were weighed and heights measured 

without footwear. A research team member then prepared the skin surfaces at the sites of 

electrode placement and subsequently affixed the electrodes in place, according to SENIAM 

guidelines (Figure 1). After connecting the telemetric modules, participants donned the 

neoprene shorts and MVIC procedures began. After the ten-minute rest interval following the 

final MVIC, participants entered the LBPP device to stand on the treadmill and were then 

sealed inside the chamber with the zip fastener. The leads that transmitted the myoelectrical 

signals from the telemetric modules were guided underneath the neoprene shorts and out of the 

chamber to be connected to the EMG system. At this stage, the reference electrode was placed 

around the wrist of participants and connected to the EMG system. The chamber was then 

inflated according to the selected condition. Load cells underneath the treadmill translated the 

weight of participants to a digital display so that simulated Mars gravity at 0.38G could be 
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verified against calculations from participants’ pre-determined mass. Due to the LBPP system 

taking up to two minutes to stabilise for the Mars condition, with the subject standing in the 

chamber throughout, the same two-minute duration of standing was administered for the 1 G 

trial before experimental walking began to maintain consistency. When the target weight had 

been achieved following this two-minute period, basal HR was measured using a pulse 

oximeter. The treadmill was then started, increasing speed until communicated by the subject 

that an RPE of 9 had been reached. At this point, data collection began and EMG signals were 

collected for 3 min. HR values were taken again at 1.5 min and at 3 min, when the experiment 

was terminated. 

Statistical Analyses 

Data handling was performed using Microsoft Excel for Windows (2016), where mean 

(±SD) values were calculated for EMG data from all four muscles in both conditions for each 

subject, and then averaged across subjects. Following this, the data was imported into IBM 

SPSS 23.0 software for Windows (IBM, 2015) for inferential statistics to be performed on the 

data to determine whether any significant mean differences were present between conditions. 

Assessment of the normality assumption was first carried out using the Shapiro-Wilk test and 

a visual inspection of histograms before inferential statistics were performed. After verifying a 

normal distribution of data, a paired t-test was performed. In instances where data was assumed 

to be non-parametric, the Wilcoxon signed-rank test was employed. Statistical significance was 

defined as p<0.05. 
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Results 

Muscle Activity 

All reported muscle activity represents one minute of data taken between 1.5min and 

2.5min of the protocol. Due to the presence of extreme outliers that skewed the distribution of 

data, when performing inferential statistics, values from four participants were omitted from 

the GM data, as well as one participant from the TA data and two participants from the VL 

data. Analyzing the results of the myogram for the GM, the paired t-test identified no 

significant mean difference between Earth (47.78 ± 3.24 mV) and Mars (47.78 ± 3.25 mV) 

conditions (P = 0.877). For the GL, TA and VL, the results of the Wilcoxon signed-rank test 

also failed to identify a significant mean difference between the myoelectrical signals elicited 

in Earth (47.32 ± 1.53 mV, 44.53 ± 7.06 mV and 50.66 ± 2.39 mV, respectively) and Mars 

(47.20 ± 1.54 mV, 45.50 ± 7.86 mV and 50.65 ± 3.03 mV, respectively) conditions (P = 0.917, 

P = 0.182 and P = 0.722, respectively) (Figure 3). 

 

 

 

 

 



Page | 13 
 

 

Figure 3. Muscle activity (mV) (mean and SD) expressed as a percentage of MVIC in the GL, 

GM, TA and VL during both conditions. 

 

 

 

 

2.1. Heart Rate 

Heart rate data represents the values recorded immediately preceding experiment 

termination at three minutes into each trial. The paired t-test revealed significant mean 

differences between Earth (105.15 ± 8.1 bpm) and Mars (98.15 ± 10.44 bpm) conditions (P = 

0.027), wherein HR was higher during the Earth trial (Figure 4). 
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Figure 4. HR (bpm) (mean and SD) in both Earth and Mars conditions. *Significantly greater 

than Mars (P < 0.05). 

Discussion 

The main finding of this research was that no significant mean differences were identified 

between Earth and simulated Mars gravity conditions in any of the investigated muscles (Figure 

3). This is in direct opposition to the only other existing piece of literature investigating 

locomotor muscle activity during walking in partial gravity similar to that on Mars11.  However, 

the main focus of their research was to explore muscle coordination patterns with varying stride 

frequencies, and as a result, the exact degree to which muscle activity was attenuated with a 

60% bodyweight reduction was not documented to enable complete comparisons to be drawn. 

Our findings also contrast with the few running studies conducted in this area 10, 11, 12, 13, 14, 

15. A noteworthy finding of Hunter (2014) 10 was that hip adductor activity during the swing 

phase and medial and lateral hamstring activity during the first half of the stance phase were 

relatively unaltered with various levels of bodyweight support. This finding for the hamstrings 

has been substantiated elsewhere in the literature in the biceps femoris 12, 13. While this may be 

perceived as somewhat supporting our findings, since these muscles are also instrumental in 

locomotion, Hunter (2014)10 postulated that this was perhaps due to participants being 

unaccustomed to ambulation with LBPP and that with more familiarisation and training, a 

significant effect may have been observed. However, seemingly, bodyweight supporting 

muscles or ‘anti-gravity’ muscles respond differently than muscles that are associated with 

acceleration, deceleration and stability linearly and rotationally. In this regard, the biceps 

femoris is primarily responsible for leg swing, while the hip adductors likely function is to keep 

the swinging leg moving perfectly in the sagittal plane with little medio-lateral deviation, and 

less contribution to supporting bodyweight during gait32. Theoretically, with more bodyweight 
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support, only changes in potential energy are influenced, as opposed to kinetic energy, which 

is body mass dependent. Accordingly, muscles supporting the bodyweight during locomotion 

are more likely to exhibit a reduction in activity with LBPP, whereas muscles such as the biceps 

femoris should remain unchanged, assuming the movement pattern remains unaltered12. 

Indeed, it has been documented that increasing the speed of running using a fixed level of LBPP 

seems to augment overall locomotor muscle activity12. These findings greatly highlight the 

need for further investigations using walking as the chosen mode of locomotion with LBPP, to 

contribute to this almost non-existent body of literature and allow true comparisons with the 

findings of the current study, since prospective Mars astronauts will spend most of their time 

walking, as opposed to running on the Red Planet. Moreover, it has been suggested that due to 

running being less energy efficient than walking, i.e., more metabolically demanding, muscle 

activity may be relatively more reduced during unloaded running than during unloading 

walking 33. Therefore, most of the existing literature in this area may be overestimating the 

muscle activity deficit that may occur during everyday ambulation on Mars; our findings serve 

to substantiate this notion. 

Sainton and colleagues (2015)15 found an overall reduction in lower limb activity with 

bodyweight reduction but reported that pre-contact and braking phase extensor activity 

exhibited no change. While this was a running focused study and the lowest simulated partial 

gravity was 0.6G equivalent, as mentioned, running may be more likely to evoke significant 

reductions in muscle activity during unloading, thus offering the possibility that a walking trial 

at 0.38 G may have generated similar results. Should this be the case, it may offer support to 

our findings, since VL activity was indifferent between conditions (Figure 3). However, 

unfortunately, 3D motion capture for kinematic gait analysis was not used in the current study 

and so it was not possible to correspond muscle activity with the different phases of the gait 

cycle to support this. Adding credence to the notion that muscle activity may be reduced to a 
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relatively greater extent during unloaded running than during unloaded walking due to energy 

efficiency differences, Ruckstuhl et al. (2010)18 reported that greater treadmill speeds elicit 

relatively greater declines in HR and oxygen consumption with unloading. 

Interestingly, we found that HR was significantly lower in the Mars condition than in the 

Earth condition (Figure 4), substantiating all previous work 9, 12, 18, 19, 20. In a process that is 

present during microgravity exposure, it is likely that the LBPP translocates blood from the 

lower body to the upper body, promoting venous return, reducing the baroreflex-mediated 

enhancement in sympathetic activity and lowering HR 34, 35. However, the state of the 

cardiorespiratory system on Mars is not well simulated using LBPP as it only affects the lower 

body; as such, it may have confounding influences on cardiorespiratory variables.   

It is also conceivable that, at any given treadmill speed, an increased stride time or stride 

length as evidenced by several LBPP studies, would demand less from the locomotor muscles 

over the same period, even in the presence of unaltered levels of muscle activity, since fewer 

steps are taken 12, 36. As such, the metabolic demand would ostensibly be lower, requiring less 

work from the heart. 

The results of the current study suggest that walking on Mars may not elicit any deficit in 

muscle activity compared to walking on Earth. However, the fact that participants were 

unaccustomed to locomotion inside the LBPP device may have created an unnatural gait and 

negatively influenced results, and a familiarisation period might be required. A limitation of 

the current study is that kinematic analyses were not performed. In future, it would be expedient 

for studies to employ 3D motion capture to analyse kinematics and enable correspondence 

between muscle activity and different phases of the gait cycle after synchronisation, to more 

sensitively detect in which instants any potential deficits may be present9, 12, 36, 37. 
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Some degree of muscle atrophy will occur on the outward journey to Mars while exposed 

to microgravity, specifically in locomotive and postural or anti-gravity muscles, such as those 

investigated in the current study2. Based on our findings alone, the partial gravity environment 

on the Red Planet itself may not carry any deteriorative implications for the musculoskeletal 

system. If this were to be true, the implementation of efficacious strategies that promote muscle 

hypertrophy and strength, such as a well periodized and comprehensive resistance training 

regime, with particular attention to anti-gravity muscles, while on Mars may be able to reverse 

the atrophy suffered on the outward journey, in preparation for further microgravity exposure 

during the return trip to Earth. If, however, it is determined by future research that a reduction 

in stride frequency is present in simulated 0.38 G, then it may prove difficult to support muscle 

retention and reverse the atrophic effect of the outward journey.  
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