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A new SYBR Green real‑time PCR 
to detect SARS‑CoV‑2
D. R. Marinowic1,2,3,4,5, G. Zanirati1,3, F. V. F. Rodrigues1,3, M. V. C. Grahl1,2, A. M. Alcará1,3, 
D. C. Machado1,2,4,5 & J. C. Da Costa1,2,3,5*

Phylogenetic analysis has demonstrated that the etiologic agent of the 2020 pandemic outbreak is 
a betacoronavirus named SARS-CoV-2. For public health interventions, a diagnostic test with high 
sensitivity and specificity is required. The gold standard protocol for diagnosis by the Word Health 
Organization (WHO) is RT-PCR. To detect low viral loads and perform large-scale screening, a low-
cost diagnostic test is necessary. Here, we developed a cost-effective test capable of detecting 
SARS-CoV-2. We validated an auxiliary protocol for molecular diagnosis with the SYBR Green RT-PCR 
methodology to successfully screen negative cases of SARS-CoV-2. Our results revealed a set of 
primers with high specificity and no homology with other viruses from the Coronovideae family or 
human respiratory tract pathogenic viruses, presenting with complementarity only for rhinoviruses/
enteroviruses and Legionella spp. Optimization of the annealing temperature and polymerization 
time led to a high specificity in the PCR products. We have developed a more affordable and swift 
methodology for negative SARS-CoV-2 screening. This methodology can be applied on a large scale to 
soften panic and economic burden through guidance for isolation strategies.

In December 2019, an outbreak of pneumonia with unknown etiology was identified in Wuhan, China. The 
outbreak, which likely originated in a seafood market, occurred as a result of zoonotic transmission1. In January 
2020, the pneumonia outbreak progressed to a nationwide epidemic, which has now become a pandemic. Patients 
may present with fever, dyspnea, cough, and lung lesions and infiltrates2. The clinical picture of patients is similar 
to that of diseases caused by other coronaviruses, such as the Middle East Respiratory Syndrome (MERS) and 
Severe Acute Respiratory Syndrome (SARS)3. Phylogenetic analyses have proven that the etiologic agent of the 
Wuhan pneumonia outbreak is a betacoronavirus called SARS-CoV-24.

The Wuhan pneumonia outbreak has become a pandemic, with confirmed cases on all continents and thou-
sands of deaths around the world5. Since we are facing a pathogen for which there is no effective treatment or 
vaccine, public health measures are necessary to contain the spread of the virus6. Isolation and social distancing 
have been the main tools in the fight to interrupt the chain of viral transmission7. For social distancing to be 
effective, it is necessary to quarantine all individuals who carry the virus. However, some individuals may be 
asymptomatic, which makes it difficult to diagnose the pathology, and if they are not isolated, they will eventu-
ally spread the virus8.

To corroborate the effects of public health interventions, laboratory diagnoses of individuals with SARS-
CoV-2 is necessary. However, for a proper laboratory diagnosis, techniques with high sensitivity and specificity 
are necessary, considering that patients may have a low viral load when first infected. Molecular techniques have 
been designed to address this need9. According to the World Health Organization (WHO), the gold standard 
method to detect SARS-CoV-2 is real-time polymerase chain reaction (RT-PCR) using TaqMan probes, which 
precisely detect the presence of the virus10. However, due to the intensive labor required to perform the tech-
nique, the reagents involved, and the limited availability of kits, many diagnoses are based only on late-stage 
symptoms11. Early diagnosis, even when the patient is asymptomatic, is vital to prevent the spread of the virus, 
as well as for initial prophylaxis with emerging treatments12, since the spectrum of this disease in humans is 
not yet fully understood. Thus, low-cost diagnostic tests must be developed for large-scale patient screening to 
confirm positive and/or negative cases of the new coronavirus.
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To this end, we developed an auxiliary protocol for molecular diagnosis involving RT-PCR with a SYBR Green 
methodology to detect negative cases of SARS-CoV-2. This protocol will maximize the cost–benefit of viral detec-
tion and accelerate availability by the use of conventional kits on a large scale in molecular biology laboratories.

Results
Validation of the primer sequences.  The Beacon Designer platform showed that there were no second-
ary structures, no hairpins, no homodimers, and no cross dimer formation in the primer set sequences. Primer-
BLAST analysis of both the hCOVassay1 and hCOVassay2 primer sequences showed that they are present only 
in the target SARS-CoV-2 genome. When base complementarity of the primer set was searched against the 
human genome, there was no similarity, reinforcing that the viral genome alone would be amplified. In addition, 
we verified the primers’ ability to anneal in the genomes from other airways circulating opportunistic microor-
ganisms. No relevant homologies were found, i.e., the primers will not generate unspecific amplifications. The 
searches are shown in Supplementary Table S1 and S2. The primers from hCOVassay1 and hCOVassay2 have 
proven to be specific only for the SARS-CoV-2 genome.

RNA extraction and reverse transcription optimization.  RNA was extracted using a total RNA 
extraction kit. The results were below 1 ng/μL according to quantification with the NanoDrop fluorometer. The 
values of the total RNA extracted were on the pg scale, below the equipment’s detection threshold.

After reverse transcription, the mean amount of ssDNA obtained was 1394 ng/μL (SD = 26.9) for the hCO-
Vassay1 primer, 1327 ng/μL (DP = 107.6) for the hCOVassay2 primer (3′ primer methodology), and 727 ng/μL 
(SD = 27.3) for the random primers methodology. The ssDNA purity levels were very similar in both techniques. 
The random primers technique was chosen to produce ssDNA in the first validation stage, since it is easier and 
quicker than the 3′ primer methodology.

Template DNA concentration curve for quantitative PCR detection.  The manufacturer’s recom-
mended temperatures, time per cycle, and number of cycles were applied to amplify the targeted DNA. The 
amplifications with the 3′ primer technique and master mix without UDG activation using the hCOVassay1 
primer and DNA dilutions of 500 ng, 100 ng and 50 ng yielded cycle threshold (CT) values of 34, 35 and 37, 
respectively (Fig. 1A). Amplifications with the hCOVassay2 3′ primer generated CT values of 35, 37 and 37, 
respectively (Fig. 1B). Amplifications of ssDNA reverse transcribed with random primers and master mix with-
out UDG activation using the hCOVassay1 with dilutions of 100 ng, 50 ng and 10 ng yielded CT values of 32, 
33 and 36, respectively (Fig. 1C). When the hCOVassay2 primer was used to amplify the same dilutions of the 
template DNA, the CT values were 33, 34 and 36, respectively (Fig. 1D). The CT value for the negative controls 
using 3′ primer ssDNA methodology was 34 for the hCOVassay1 primer set and 36 for the hCOVassay2 primer 
set (Fig. 1E).

When master mix with UDG activation was used with the 3′ primer technique using 500 ng, 100 ng and 50 ng 
dilutions of the template DNA, the CT values yielded for the hCOVassay1 primer set were 34, 34 and 37, respec-
tively (Fig. 2A). The hCOVassay2 primer set generated CT values of 31, 34 and 37, respectively (Fig. 2B). For the 
reverse transcriptase technique using the random primer methodology and master mix with UDG activation, 
template DNA with dilutions of 100 ng, 50 ng and 10 ng yielded CT values of 29, 30 and 32, respectively, for the 
hCOVassay1 primer set (Fig. 2C). When the hCOVassay2 primer set was used, the CT values were 30, 31 and 
33, respectively (Fig. 2D). The CT (cut-off) value for the negative controls using 3′ primer ssDNA methodology 
was 38 for the hCOVassay1 and hCOVassay2 primer set (Fig. 2E).

Thus, the 3′ primer methodology for synthesis of ssDNA was selected as the best option since the parameters 
of the amplification curves showed less nonspecific signal and a higher level of reliability.

Melt curve analysis.  The melt curve of all amplified SARS-CoV-2-positive samples with both sets of prim-
ers produced similar dissociation curves patterns and gave a clear and distinct melt peak (Fig. 3A–D). However, 
a clearly distinct dissociation curve was obtained for negative control samples that did not align with the melt 
curve obtained from the positive samples, suggesting that the melt curve peaks generated from the negative 
samples were due to nonspecific signals or the formation of primer dimers. This parameter is very important in 
the analysis of specificity of curves for the SyBr Green methodology.

Visualization of RT‑PCR amplicons.  The RT-PCR amplicons were separated by electrophoresis, and the 
products were analyzed under UV to confirm negative and positive samples. Figure 4 shows the 102 bp amplicon 
corresponding to SARS-CoV-2-positive samples, while the last two lanes show negative samples. When master 
mix with or without UDG activation was used, the negative control samples did not have a 111 bp band for the 
hCOVassay1 primer set or a 102 bp band for the hCOVassay2 primer set (Fig. 4: lanes 7 and 8).

Optimization of amplification parameters.  The amplification parameters for each primer were modi-
fied (primer annealing temperature and time and Taq DNA polymerization time), which improved the capture 
signal during the RT-PCR assay, mainly when the master mix with UDG activation was used. The parameter 
alterations reduced possible nonspecific annealing and hindered the formation of double strands larger than 
200 bp.

Figure 5 shows that the RT-PCR amplification curves obtained from the use of master mix without UDG 
activation produced a faint SYBR signal for the negative controls for SARS-CoV-2 (Fig. 5A,B), although for both 
primer sets no amplicons can be visualized after separation by electrophoresis (Fig. 5C).
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The SYBR Green master mix with UDG activation proved to be very efficient and reliable in terms of non-
specific signals. The master mix with UDG activation was more appropriate for avoiding false positives in unin-
fected human cDNA samples, maintaining the specificity of the amplification signal (Fig. 6).

The Supplementary Table S3 shows the pre-established parameters, as recommended by the manufacturer, 
and alterations made to improve the detection method are described here.

Quantifiable control and detection curve.  It was possible to detect the presence of the virus by observ-
ing the amplification curve from 20 copies of SARS-CoV-2 for both primers. Regarding the detection capac-
ity, less than 20 ng of total ssDNA after transcription using the 3′ primer did not generate a considerably safe 
amplification curve for virus detection. ssDNA equal to or greater than 200 ng were capable of being detected 
with great reliability. The comparison of the amplification curves showed that 200 ng of ssDNA corresponds to 
approximately 200 copies of the SARS-CoV-2 virus in the sample (Fig. 7).

Figure 1.   Real-time reverse transcription amplification curves using master mix without uracil DNA 
glycosylase (UDG) activation. (A) Dilutions of ssDNA (500 ng, 100 ng and 50 ng) from SARS-CoV-2 positive 
samples amplified by the 3′ primer of the hCOVassay1 set. (B) Three different dilutions of ssDNA (500 ng, 
100 ng and 50 ng) from SARS-CoV-2 positive samples amplified with the 3′ primer of the hCOVassay2 set. 
(C,D) The three dilutions of ssDNA (100 ng, 50 ng and 10 ng) from SARS-CoV-2 positive samples produced 
with the random primers methodology and amplified with the (C) hCOVassay1 and (D) hCOVassay2 primers. 
(E) Amplification curves of negative controls produced using the two primer sets using 3′ primer ssDNA 
method. The negative control was from a negative patient.
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ssDNA sequencing.  The amplicons generated through the optimization protocol with SYBR Green mas-
ter mix with UDG activation were sequenced. For the hCOVassay1 primer, nucleotides showed the highest 
identity of 100% forward (F) and 95.83% reverse (R) with SARS-CoV-2 from Russia (MT890462.1), 95.45% F 
and 95.31% R with virus from the United States (MT642254.1), 95.45% F and 95.31% R from an Italian strain 
(MT890669.1), 95.45% F and 95.31% R from a China strain (MT079844.1) and 95.45% F and 95.31% R from 
Brazil strain (MT827074.1). The hCOVassay2 showed a similar identity, with 100% SARS-CoV-2 from Russia, 
94.92% F and 98.31% R from the United States, 94.92% F and 98.31% R from Italy, 94.92% F and 98.31% R from 
China and 94.92% F and 98.31% R from Brazilian virus. The alignment of nucleotides after sequencing is shown 
in Fig. 8A.

Protocol validation using unknown samples.  To validate all variables that improved the distinction 
between the positive and negative samples, 41 samples from inpatients suspected of COVID-19 infection who 
were being treated at Hospital São Lucas were used. The samples used in the validation phase were tested with 3′ 

Figure 2.   Real-time reverse-transcription amplification curves using master mix with uracil DNA glycosylase 
(UDG) activation. (A) Three dilutions of ssDNA from SARS-CoV-2 positive samples amplified by the 3′ primer 
of the hCOVassay1 set. (B) Three dilutions of ssDNA from SARS-CoV-2 positive samples amplified with the 
hCOVassay2 primer set. (C) Three dilutions of ssDNA from SARS-CoV-2 positive samples produced by the 
random primers methodology and amplified with the hCOVassay1 and hCOVassay2 primers (D). (E) Amplified 
negative controls for the two tested primer pairs. The negative control was from a negative patient.
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primers to generate first-strand DNA, RT-PCR performed with master mix with UDG activation and optimized 
amplification parameters.

Of these 41 samples, 33 were negative and 8 were positive according to this new protocol. All samples were 
also tested through the CDC protocol for SARS-CoV-2. All 33 negative samples were confirmed, and 7 positive 
samples were confirmed by the CDC protocol. Only one positive sample according to the SyBr Green protocol 
was negative in the CDC protocol. The amplification curves of the two set of primers showed a positive signal 
for confirming positive samples and did not show any signal of amplification curve in negative samples. For 
confirmation, some samples were submitted for electrophoresis in 2% agarose showing absence of amplicon 
band. The example of this validation methodology is described in Fig. 8.

Figure 3.   Representation of amplification melt curves after amplification. The melt curves showed a similar 
pattern for all SARS-CoV-2-positive samples using master mix without UDG activation for the hCOVassay1 
(A) and hCOVassay2 (B) and with UDG activation for hCOVassay1 (C) and hCOVassay2 (D) primers. The melt 
curve of the negative samples was quite different from that of the positive samples (arrows). The negative control 
was from a negative patient.
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Figure 4.   Real-time PCR amplicons of SARS-CoV-2-positive samples after separation by 2% agarose gel 
electrophoresis. The 111 bp amplicon generated by RT-PCR with the hCOVassay1 primer set (upper figures) 
and the 102 bp amplicon generated with the hCOVassay2 primer set (lower figures). (A) Amplicons produced 
by RT-PCR without UDG activation. (B) Amplicons produced by RT-PCR with UDG activation. Lanes 1–3: 
500 ng, 100 ng and 50 ng, respectively, of the first-strand DNA synthesized using the 3′ primer followed by PCR 
amplification. Lanes 4–6: 100 ng, 50 ng and 10 ng, respectively, of the first-strand DNA followed by RT-PCR 
amplification. Lanes 7 and 8 are negative controls. The gels were cropped for improving the quality and clarity of 
image. Full gels are presented in Supplementary Figs. S4 and S5.

Figure 5.   Real-time PCR amplification curves and amplicons of SARS-CoV-2-positive and negative samples 
without UDG activation followed by separation with 2% agarose gel electrophoresis. (A) Amplification curve 
produced using the hCOVassay1 primer of SARS-CoV-2–positive (red line) and negative control (green 
and yellow line) samples. (B) Amplification curve produced using the hCOVassay2 primer of SARS-CoV-2-
positive (green) and negative control (indigo and light blue lines) samples. (C) Amplicons after separation on 
a 2% agarose gel by electrophoresis. Lane 1: amplicon of a SARS-CoV-2-positive sample obtained using the 
hCOVassay1 primer (111 bp). Lane 2: SARS-CoV-2-negative sample amplified using hCOVassay1 primer. 
Lane 3: SARS-CoV-2–positive sample amplified using the hCOVassay2 primer (102 bp). Lane 4: SARS-CoV-2-
negative sample amplified using the hCOVassay2 primer. The gels were cropped for improving the quality and 
clarity of image. Full gels are presented in Supplementary Fig. S4.
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The results of the Basic Validation of Qualitative Tests were 100% for positive agreement, 97.1% for negative 
agreement and 96.7% for overall agreement.

This protocol was applied in approximately 3000 samples. We randomized 300 samples tested from April to 
September 2020. From these analyzed samples, 48 were positive in SyBr Green and TaqMan protocol and 252 
samples were negative in both SyBr Green and TaqMan protocol. A large fraction of samples was tested with the 
TaqMan protocol only when they were positive for SyBr Green protocol. The examples of this analysis (amplifica-
tion and dissociation curves) are described in Supplementary Figs. S1 and S2.

Discussion
The SYBR Green and TaqMan techniques are routinely used in real-time PCR. Due to its simple design, easy 
configuration and low cost, the SYBR Green detection methodology is predominantly used for the detection and 
amplification of nucleic acids. However, the TaqMan methodology uses an additional labeled probe, significantly 

Figure 6.   Real-time PCR amplification curves and amplicons of SARS-CoV-2-positive and negative samples 
with UDG activation followed by separation with 2% agarose gel electrophoresis. (A) Amplification curve of 
SARS-CoV-2-positive samples using the hCOVassay1 primer set (arrow). (B) Amplification curve of SARS-
CoV-2-positive samples using the hCOVassay2 primer set (arrow). For both primers (A,B), no amplification 
or cycle threshold curves were produced for SARS-CoV-2–negative control samples. (C) Real-time PCR 
amplicons. Lane 1: amplicon of a SARS-CoV-2-positive sample using the hCOVassay1 primer set (111 bp). Lane 
2: amplicon of a SARS-CoV-2-negative sample using the hCOVassay1 primer set (111 bp). Lane 3: amplicon 
of a SARS-CoV-2-positive sample using the hCOVassay2 primer (102 bp). Lane 4: amplicon of a SARS-CoV-
2-negative sample using the hCOVassay2 primer (102 bp). (D) Amplicons of 4 samples and 4 controls for both 
primers tested in 3 different dilutions of reverse transcriptase produced by the random primers method. Lanes 
1, 2 and 3: amplicons of SARS-CoV-2-positive samples using hCOVassay1 primer dilutions of 100 ng, 50 ng, 
and 10 ng, respectively. Lanes 7, 8 and 9: amplicons of SARS-CoV-2-positive samples using hCOVassay2 primer 
at dilutions of 100 ng, 50 ng, and 10 ng, respectively. Lanes 4, 5, 6, 10, 11 and 12: amplicons of SARS-CoV-2-
negative samples obtained using the two primer pairs. The gels were cropped for improving the quality and 
clarity of image. Full gels are presented in Supplementary Figs. S5 and S6.



8

Vol:.(1234567890)

Scientific Reports |         (2021) 11:2224  | https://doi.org/10.1038/s41598-021-81245-0

www.nature.com/scientificreports/

Figure 7.   Real-time PCR amplification for quantifiable control and detection curves. Four different 
concentrations of quantification control for SARS-CoV-2 (iDT—INTEGRATED DNA TECHNOLOGIES, 
IOWA, USA) using the hCOVassay1 (A) and hCOVassay2 (B) primer sets are represented in grey curves. The 
different sample concentrations (total ssDNA after extraction) from positive patient are represented in red 
curves.

Figure 8.   Real-time PCR amplification curves and amplicons of SARS-CoV-2-positive samples with UDG 
activation using 3′ primer method followed by separation with 2% agarose gel electrophoresis. (A) The results 
obtained by sequencing the amplicons obtained using the hCOVassay1 and hCOVassay2 primer sets showed 
high homology with SARS-CoV-2 sequences. The homology analysis was performed using entire genome 
sequences of strain from Russia (MT890462.1 RUS), the United States (MT642254.1 USA), Italy (MT890669.1 
ITA), China (MT079844.1 CHN) and Brazil (MT827074.1 BRA). (B) Amplification curves for 3 positive 
samples using the hCOVassay1 and hCOVassay2 primer sets. (C) Examples of PCR amplification curves for 6 
samples (5 negative samples and 1 positive sample (red curves). Melt curves dissociation for samples amplified 
using primer hCOVassay1 (D) and primer hCOVassay2 (E). The melt curve dissociation of the negative and 
positive samples was clearly distinct. (F) Electrophoresis in agarose 2% gel of 3 samples and 3 controls for both 
primers tested. Lanes 1–3: hCOVassay1 primer. Lanes: 4–6: hCOVassay2 primer. Lanes 7–9 and 10–12: negative 
controls amplified using the hCOVassay1 and hCOVassay2 primer sets, respectively. The gels were cropped for 
improving the quality and clarity of image. Full gels are presented in Supplementary Fig. S7.
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increasing the sensitivity and specificity of the assay due to the reporter dye’s conjugation to the specific oligonu-
cleotide sequence of the probes, which is capable of emitting fluorescence. The TaqMan assay is considered the 
main method to detect and quantify human pathogens with a low copy number, including viruses13.

Nonspecific primer binding, which results in the production of unwanted PCR products and the formation 
of primer dimers, can significantly influence the sensitivity and reliability of the PCR signals. Therefore, the 
choice of specific primers and their in silico validation, followed by RT-PCR parameter optimization, plays a 
fundamental role in the success of an RT-PCR assay when SYBR Green is used.

The hCOVassay1 primer set used in this study, given its complementary to the SARS-CoV-2 sequence, had 
a high specificity index and generated a 111 bp PCR amplicon. This primer has no homology with the genomic 
sequences of other viruses from the Coronaviridae family or other known human respiratory viruses except 
rhinoviruses/enteroviruses, which possess a 5 base-pair mismatch with the forward primer and 4 distinct 
nucleotides on the reverse primer but would generate an amplicon of 409 bp. The forward primer also has five 
nucleotides homologous to the Legionella spp. genome, and the reverse primer has four mismatches, capable 
of generating an amplicon of 3591 bp. The hCOVassay2 primer set has four and three nucleotides homologous 
with the Legionella spp. genome in the forward primer and the reverse primer, respectively. This set of primers 
can produce amplicons of 3243 bp and 500 bp, respectively.

The primer annealing temperature and TAQ DNA polymerization time were optimized based on informa-
tion obtained from the Primer Blast (NCBI) data for each sequence, which allowed an increase in amplification 
specificity for the PCR products. Annealing temperatures of 54 °C were calculated according to the number of 
CG/AT bases in each primer pair. In addition, the 20-s polymerization time reduced the possibility of unspecific 
signals generated by partial primer annealing and/or primer dimers.

The standard WHO methodology uses the TaqMan probe technique to detect SARS-CoV-2. This methodol-
ogy is extremely effective and can even accurately discriminate between SARS-CoV-2 and SARS-CoV infections. 
The Charité Protocol, developed at the University of Charité, Berlin, uses four different probes to identify SARS-
CoV-2. This test is very expensive, which limits its large-scale application. The U.S. Centers for Disease Control 
and Prevention (CDC) also has a standardized protocol with four different TaqMan probes that can accurately 
determine SARS-CoV-2 infection. Both the Charité and the CDC protocols involve reagents and probes that are 
now scarce and expensive on the world market.

The present study established a screening strategy for SARS-CoV-2 through a molecular assay using the SYBR 
Green methodology. The proposed method harbors a low cost with the potential for large-scale screening of 
symptomatic and/or asymptomatic individuals. This screening strategy will allow communities or companies to 
screen for SARS-CoV-2-negative individuals on a large scale. However, when the test shows a positive result, it is 
advised that the patient undergo the molecular tests established by the WHO or CDC or even a serological test 
after the period required to detect antibodies, seven to fourteen days. Therefore, the most scarce and expensive 
tests could be applied only to a fraction of the target population (Supplementary Fig. S3).

In this study, we established a fast and low-cost method for negative SARS-CoV-2 screening. We suggest 
that negative by both sets of primers in RT-PCR signal analysis in linear mode can certify the absence of virus. 
Samples whose signal is compatible with the positive control in one of the two tested primers must be repeated 
and/or treated as indeterminate. Double-positive samples for the tested primers should be confirmed according 
to WHO or CDC protocols.

Double-negative patients can resume normality regarding social isolation, while patients who are positive 
for one or both proposed primers should be immediately tested according to recommended protocols or wait 7 
to 14 days for serological tests, also known as rapid tests.

Due to its low cost and processing speed, this methodology can be applied on a large scale, providing peace 
of mind for those being tested and their peers, as well as guidance for social isolation protocols.

We aimed to develop a low-cost diagnostic test capable of detecting SARS-CoV-2 in the oropharyngeal 
mucosa of both symptomatic and asymptomatic patients to help reestablish normal work routines as well as to 
remove SARS-CoV-2-negative individuals from isolation (with appropriate medical follow-up).

Methods
Clinical samples.  This study was approved by the Research Ethics Committee of Pontifical Catholic Univer-
sity of Rio Grande do Sul (PUCRS) with approval number 3.977.510. All participants provided written informed 
consent prior to inclusion in this study. All methods were performed in accordance with relevant guidelines and 
regulations. To determine the specificity of the primer set, the detection curve and possible cross-reactions, a 
sample obtained from the Clinical Analyses Laboratory of the Hospital de Clínicas de Porto Alegre, RS, Brazil 
was used. The sample was collected from an inpatient with suspected COVID-19 who attended the São Lucas 
da PUCRS hospital. The sample was sent to the Laboratório Central de Saúde Pública do Rio Grande do Sul 
(LACEN) and Fleury Laboratory for determination of SARS-CoV-2 positivity through the Center of Control 
Disease and Prevention (CDC) protocol.

In silico study of primer specificity.  Two pairs of primers complementary to two different regions of 
the viral RNA sequence of the isolated coronavirus (Whuan-H1/NC_045512.2) were tested (Supplementary 
Table  S1). First, the primers were input into Beacon Designer Software (PREMIER BIOSOFT INTERNA-
TIONAL) to search their molecular structures based on test type. The SYBR Green option was selected, and the 
parameters were adjusted accordingly. The primers were then input into the Prime-BLAST platform (NCBI) 
and evaluated for their specificity with the sequence of the SARS-CoV-2 genetic material. Searches were also 
performed for similarities within regions of the human genome and of the main respiratory and opportunistic 
viruses and pathogens to determine whether the primers flanked the regions of interest and amplified only the 
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SARS-CoV-2 genetic material. The input SARS-CoV-2 primers were compared with the genomes of the micro-
organisms shown in Supplementary Tables S1 and S2.

RNA extraction and reverse transcription for first‑strand DNA synthesis.  Nasopharyngeal and 
oropharyngeal (throat) specimens were collected by a healthcare professional following the CDC instruction 
guidelines. RNA was extracted from 300 μL of both patient nasopharyngeal and oropharyngeal swab samples 
3 to 6  h after sample collection using an SV-Total RNA kit (PROMEGA, MADISON, WISCONSIN, USA). 
Reverse-transcriptase first-strand DNA synthesis was performed by two methods: (1) a random primer tech-
nique using GoScript Reverse Transcription Mix, Random Primers (PROMEGA, MADISON, WISCONSIN, 
USA), and (2) the 3′ primer technique using M-MLV reverse transcriptase (THERMO FISHER SCIENTIFIC, 
WALTHAM, MA, USA) with two distinct reverse primers (hCOVassay1 R: 5′AGC​AGC​ATC​ACC​GCC​ATT​G 
3′ and hCOVassay2 R: 5′ CCG​CCA​TTG​CCA​GCC​ATT​C 3′). After the transcription reaction, the product was 
quantified in a NanoDrop fluorometer (THERMO FISHER SCIENTIFIC, WALTHAM, MA, USA).

Sample preparation and concentration curve.  To determine the specificity and sensitivity of SARS-
CoV-2 detection, after reverse transcription, different concentration curves were obtained for the ssDNA of the 
RNA extracted from SARS-CoV-2-positive samples. The ssDNA was produced through the random primer 
technique, and amplification was performed using 100 ng, 50 ng and 10 ng dilutions per reaction. First-strand 
DNA synthesis was performed using the 3′ primer technique, and 500 ng, 100 ng and 50 ng dilutions per reac-
tion were used. Additionally, RNA samples extracted from human skin and brain tissue, previously collected in 
2018, were reverse transcribed with random primers for use as a negative control (to ensure potential SARS-
CoV-2 negativity).

Real‑time PCR (RT‑PCR).  For each reaction, 60 ng of cDNA from the negative controls was used. The 
samples were amplified using two different master mix compositions, with and without uracil DNA glycosylase 
(UDG) activation. The GoTaq qPCR Master Mix kit (PROMEGA, MADISON, WISCONSIN, USA) was used for 
the methodology without UDG activation, while the PowerUp SYBR Green Master Mix kit (THERMO FISHER 
SCIENTIFIC, WALTHAM, MA, USA) was used for the methodology with UDG activation. The thermal cycles 
followed manufacturer recommendations and were optimized according to the size of the PCR product and the 
primer annealing temperature (Supplementary Table S3). Real-time PCR was performed using StepOne Plus 
equipment (THERMO FISHER SCIENTIFIC, WALTHAM, MA, USA).

Confirmation of SARS‑CoV‑2‑derived amplicons in 2% agarose gel electrophoresis.  The RT-
PCR products were separated under electrophoresis in a 2% agarose gel containing ethidium bromide at 100 V 
for 30 min and analyzed in an automated Gel Doc EZ Gel Imager (BIO-RAD LABORATORIES, INC, CA, USA).

ssDNA sequencing.  Sequencing of samples was performed by ACTGene Análises Moleculares Ltd. 
(CENTER FOR BIOTECHNOLOGY, UFRGS, PORTO ALEGRE, RS, BRAZIL) using an AB 3500 Genetic Ana-
lyzer automatic sequencer equipped with 50  cm capillaries and POP7 polymer (THERMO FISHER SCIEN-
TIFIC, WALTHAM, MA, USA). DNA templates were labeled with 2.5 pmol of the specific primer and 0.5 μL 
of BigDye Terminator v3.1 Cycle Sequencing Kit (THERMO FISHER SCIENTIFIC, WALTHAM, MA, USA) 
in a final volume of 10 μL. Labeling reactions were performed in an LGC XP Cycler with an initial denatur-
ing step of 96 °C for 3 min followed by 25 cycles of 96 °C for 10 s, 55 °C for 5 s and 60 °C for 4 min. Labeled 
samples were purified by 75% isopropanol precipitation followed by 60% ethanol rinsing. Precipitated prod-
ucts were suspended in 10 μL Hi-Di formamide (THERMO FISHER SCIENTIFIC, WALTHAM, MA, USA), 
denatured at 95 °C for 5 min, ice-cooled for 5 min and electroinjected into the automatic sequencer. Sequenc-
ing data were collected using Data Collection 3 software (THERMO FISHER SCIENTIFIC, WALTHAM, MA, 
USA) programmed with the following parameters: Dye Set “Z”; Mobility File “KB_3500_POP7_BDTv3.mob”; 
BioLIMS Project “3500_Project1”; Run Module 1 “FastSeq50_POP7_50cm_cfv_100”; and Analysis Module 1 
“BC-3500SR_Seq_FASTA.saz”. The resulting Data Collection files (.ab1; electropherograms) were converted into 
FASTA files (.seq; text) by Sequence Analysis Software v.6 (THERMO FISHER SCIENTIFIC, WALTHAM, MA, 
USA) with standard parameters.

Dilution and detection curve.  A dilution curve was performed using quantifiable SARS-CoV-2 Control 
(iDT—INTEGRATED DNA TECHNOLOGIES, IOWA, USA). Serial dilutions of 20,000, 2000, 200, 20 and 2 
copies of the virus were tested. To establish detection capacity, serial dilutions of the ssDNA of a positive sample 
for SARS-CoV-2 were performed at the following concentrations: 200 ng, 20 ng, 2 ng and 0.2 ng.

Protocol validation.  After establishing the best concentration criteria and methodology for diagnosis, a 
validation step was performed with samples from 15 patients with suspected SARS-CoV-2 infection treated at 
Hospital São Lucas. Reverse transcriptase using random primers followed by the RT-PCR methodology with 
UDG activation and sample concentrations above 100 ng per reaction (Supplementary Table S3) were applied 
to confirm the specificity of this new method. The protocol was validated using a Basic Validation of Qualitative 
Tests through WestgardQC software (https​://www.westg​ard.com/valid​ating​-quali​tativ​e-tests​.htm).

https://www.westgard.com/validating-qualitative-tests.htm


11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2224  | https://doi.org/10.1038/s41598-021-81245-0

www.nature.com/scientificreports/

Data availability
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