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Abstract: Roughly a third of the world’s population is estimated to have latent
Mycobacterium tuberculosis infection, being at risk of developing active tuberculosis (TB) during
their lifetime. Given the inefficacy of prophylactic measures and the increase of drug-resistant
M. tuberculosis strains, there is a clear and urgent need for the development of new and more
efficient chemotherapeutic agents, with selective toxicity, to be implemented on patient treatment.
The component enzymes of the shikimate pathway, which is essential in mycobacteria and absent
in humans, stand as attractive and potential targets for the development of new drugs to treat TB.
This review gives an update on published work on the enzymes of the shikimate pathway and some
insight on what can be potentially explored towards selective drug development.

Keywords: Mycobacterium tuberculosis; human tuberculosis; shikimate pathway; enzyme drug target;
enzyme inhibition; rational drug design

1. Introduction

1.1. Tuberculosis

Mycobacterium tuberculosis is the main causative agent of human tuberculosis (TB). In 2018,
approximately 10 million people developed TB, which resulted in 1.3 million deaths in HIV-negative
and 300,000 deaths in HIV-positive patients. This recent report from the World Health Organization
(WHO) indicated that, worldwide, approximately 400,000 people developed multidrug-resistant TB
(MDR-TB), where M. tuberculosis strains are resistant to isoniazid and rifampicin, two of the most
effective TB first-line drugs [1]. Even more concerning was the fact that 8.5% of MDR-TB patients were
infected with extensively drug-resistant strains of M. tuberculosis (XDR-TB), MDR-TB strains that are
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resistant to any of the fluoroquinolones and to at least one of the three injectable second-line drugs.
Hence, TB drug resistance represents a public health crisis and health security threat. The current
treatment recommended by the WHO for cases of drug-susceptible TB is a 6-month regimen of four
first-line drugs (isoniazid, rifampicin, ethambutol and pyrazinamide), with treatment success rates of
at least 85%. MDR-TB requires a longer and more complex treatment regimen, with more expensive
and toxic drugs, and has treatment success rates of 56% [1].

Worldwide, approximately 1.7 billion people are estimated to have latent TB infection (patient
is infected with M. tuberculosis but has no symptoms), caused by the presence of “persisters”, being
thus at risk of developing active TB during their lifetime [1]. Persisters are defined by a quiescent
(non-growing or slow-growing) subpopulation of organisms that survive exposure to a bactericidal
antibiotic, are genetically indistinct from drug-susceptible bacteria and can revive under antibiotic-free
conditions [2]. They are associated with reduced metabolic rate, activated stress response and altered
cell-wall permeability when compared to drug-susceptible bacilli, and are primarily established in
macrophages or granulomatous lesions inside the human host. Besides being associated with latent
infection, persisters are thought to contribute to the requirement for lengthy anti-TB treatment and to
play a significant role in relapse [2]. Patients having latent TB represent a considerable reservoir of
the bacilli.

The two main interventions employed to prevent new M. tuberculosis infections and their
progression to active TB are the treatment of latent TB infection and the vaccination of children with
the bacille Calmette-Guérin (BCG) vaccine [1,3]. Unfortunately, vaccination against sensitive and
resistant strains of M. tuberculosis is not effective in preventing pulmonary TB in adults. Furthermore,
the efficacy of BCG vaccination against pediatric pulmonary TB ranges from no protection to very high
protection (0-80%) [4]. New strategies are thus needed to combat TB worldwide.

1.2. Drug Screening

The publication of the complete M. tuberculosis genome sequence [5] offered opportunities to
implement screening campaigns focused on the identification of low molecular mass chemical
compounds that inhibited the activity of target enzymes. These protein targets were selected
based on gene essentiality and were purified, crystallized and had their binding sites identified.
Although target-based enzymatic assays, which evaluate in vitro inhibition of protein activity and
small chemical compounds with lower inhibition dissociation constant values (larger affinity values),
are selected based on the assumption that they will be translated into target specificity, these efforts
have not yielded new anti-TB agents, as target-based in vitro screening of enzyme inhibitors neglect
essential factors, including cell wall permeability, metabolic stability and target vulnerability [6].
With few exceptions that confirm the norm, current antibacterial drugs and compounds in clinical
trials target well-established functions in macromolecular synthesis, namely, cell wall, protein and
nucleic acids [7]. Indeed, all current TB drugs were discovered in whole-cell screens for inhibition of
M. tuberculosis growth or growth of a surrogate of M. tuberculosis [6].

Accordingly, there has been a revival on the interest of phenotypic drug discovery approaches
based on their potential to address the incompletely understood complexity of diseases, their promise
of delivering first-in-class drugs and major advances in the tools for cell-based phenotypic screening [8].
Ideally, phenotypic drug discovery campaigns utilize physiologically relevant models that are linked to
patient-derived biology, which in turn may self-select small molecule phenotypic hits affecting pathways
and protein targets most relevant to the disease of interest [9]. Although phenotypic drug screening
interrogates a larger molecular target space, primary hits are rarely target-specific [8,10]. It has been
pointed out that the classification of drugs as “phenotypically discovered” is somewhat inconsistent
and that the majority of successful drug discovery programs combine target knowledge and functional
cellular assays to identify drug candidates with the most advantageous molecular mechanism of
action [8]. A balanced approach thus appears to be more appropriate for chemotherapeutic development
of anti-TB agents. Incidentally, a thorough review on target-based whole-cell phenotypic screening
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strategies for anti-TB drug discovery has been reported [6]. Target-based whole-cell screening is
designed to identify compounds that can penetrate the cell envelope and inhibit the target protein
within the cellular environment.

Advantages of the target-based approach to the development of new chemical entities (NCEs)
to treat TB are as follows: 1) the ability of performing in vitro high-throughput screening campaigns,
2) the search and identification of lead compounds with defined molecular mechanisms against a
defined target, 3) the analysis of compounds with a favorable cost/benefit ratio, 4) the development,
even in the initial stages, of compounds with selective toxicity (e.g., enzymes of essential pathways
that are absent from the human host), 5) structural data of the target, when available, help guide
medicinal chemistry efforts to improve pharmacodynamics and pharmacokinetics, 6) the pre-clinical
evaluation of lead compounds and 7) generation of patents if a new chemical scaffold is proposed.
Moreover, phenotypic screening efforts may be followed by identification of target(s) and, if amenable,
heterologous expression, purification, protein assay and structural determination to help guide
medicinal chemistry efforts (closing full circle). In both cases, small molecule prioritization from
target-based drug discovery and phenotypic drug discovery would benefit from a deeper appreciation
of the mode of action and target engagement profile [9].

1.3. Preferable Characteristics of Targets and Enzyme Inhibitors/Anti-TB Agents

Amongst limitations of the target-based approach is that the target may not be relevant in the
disease pathogenesis setting, thus placing a major emphasis on target validation. An ideal target for
antibiotic development should be essential for in vivo growth of the pathogen, be drug vulnerable and
be druggable. A typical first step to establish essentiality of a gene product is genome manipulation of
bacilli (knockout experiments). Interestingly, mycobacterial CRISPR interference has recently been
employed for the rapid validation of target essentiality and compound mode of action [11]. However,
not all essential gene products are equally vulnerable to drug mode of action and the target must be
accessible to chemical inhibition [6]. An essential gene product that requires drug binding to 100% of
intracellular protein target sites is not vulnerable as the required high target engagement to effect a
physiological change is unlikely to be achieved in the intracellular context. Therefore, a druggable
target should be both essential and vulnerable.

A druggable target can be reached and influenced by a particular chemical compound and the
characteristics of its cognate-compound binding sites are as follows—be of reasonable size, enclosure
(not extensively exposed to solvent) and hydrophobic with unexceptional hydrophilicity (sites with
increased polarity are less likely to be druggable). The target site size is an important indicator of
druggability, as the larger the better for opportunities to make chemical modifications to optimize
physicochemical properties (e.g., solubility) without affecting ligand binding affinity to protein
target [12]. It is desirable that a three-dimensional structure of a protein target be available and, in
the case of enzymes, that a direct and continuous method is feasible for in vitro biological activity
determination (assayability) to enable high-throughput screening of chemical compounds [13]. If the
target is an enzyme, it should bind the chemical compound with larger affinity than substrate(s),
the chemical compound should inhibit enzyme activity at concentrations that are compatible with its
physicochemical properties (e.g., solubility) and lead to cell dysfunction (e.g., attenuated growth or
cellular killing).

Enzyme inhibitors and inactivators comprised roughly half of all marketed drugs [14]. A thorough
understanding of the chemical and catalytic mechanisms of a protein target is pivotal to guide efforts
of medicinal chemists to improve target affinity. Understanding the course of an enzyme-catalyzed
chemical reaction can help conceptualize different types of inhibitors and inform the design of screens
to identify desired mechanisms [15]. The determination of the type of inhibition of chemical candidates
is needed as there are preferable modes of action of enzyme inhibitors for hits to move forward in
optimization efforts.
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Ideally, new chemical agents to treat TB should [6,7]: 1) be effective against MDR- and XDR-TB
(preferentially have a novel mechanism of action), 2) shorten treatment time (targeting nonreplicating
bacilli and being effective in sterilizing the diverse subpopulations of M. tuberculosis in the human
host), 3) be compatible with current antitubercular and HIV therapeutics (since TB/HIV co-infection
is prevalent), 4) have favorable pharmacokinetic and pharmacodynamics profiles (manageable host
metabolism profile and good oral bioavailability), 5) be chemically stable, 6) have appropriate
physicochemical properties (e.g., aqueous solubility and absence of polymorphs), 7) have low cost of
synthesis and as ultimate aspiration, 8) achieve a stable and relapse-free cure of TB. Interestingly, it has
been proposed that targeting host lipid droplets in foamy macrophages may enhance efficacy of anti-TB
agents. The lipophilic antibiotics stored in lipid droplets would be transferred to the intracellular
pathogen as M. tuberculosis consumes host lipid droplets as a carbon source for growth [16].

The following section gives a description of the M. tuberculosis shikimate pathway enzymes as
targets for the rational design of chemotherapeutic agents to treat TB. All the data was obtained from
experimental results published in international journals, the great majority of which being indexed to
PubMed. General keywords used for the searches were a combination of “enzyme name”/shikimate
pathway, Mycobacterium tuberculosis, enzyme inhibition, (enzyme) drug target, etc. In this review,
we have covered publications ranging from 1954 to 2019.

2. The Shikimate Pathway

The biosynthesis of aromatic rings from carbohydrate precursors in microorganisms and plants
involves a range of extraordinary chemical transformations that together constitute the shikimate
pathway; through seven enzymatic steps (Figure 1), phosphoenolpyruvate (PEP) and D-erythrose
4-phosphate (E4P) are condensed to the branch point compound chorismate (end product), which leads
to several additional terminal pathways [17].
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(precursor of para-aminobenzoic acid—PABA—which, in turn, leads to tetrahydrofolate synthesis), 
para-hydroxybenzoic acid (precursor of ubiquinone or Coenzyme Q) and isochorismate (common 
precursor of naphthoquinones, menaquinones and mycobactins) (Figure 2). 

Figure 1. The shikimate pathway. The gene coding for each enzyme is in parenthesis. * Spontaneous
cyclization of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP). Pi = inorganic phosphate.

The shikimate pathway is an attractive target for the development of herbicides and
antimicrobial agents because it is essential in algae, higher plants, fungi, bacteria and apicomplexan
parasites but absent from mammals [18–22]. The mycobacterial shikimate pathway leads to the
biosynthesis of chorismic acid, which is converted by distinct enzymes to prephenate (precursor
of phenylalanine and tyrosine), anthranilate (precursor of tryptophan), aminodeoxychorismate
(precursor of para-aminobenzoic acid—PABA—which, in turn, leads to tetrahydrofolate synthesis),
para-hydroxybenzoic acid (precursor of ubiquinone or Coenzyme Q) and isochorismate (common
precursor of naphthoquinones, menaquinones and mycobactins) (Figure 2).
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Figure 2. Chorismate: a metabolic node.

The mycobacterial genetic determinants (the “counteractome”) allow these cells to overcome
the host defense, which attempts to starve mycobacteria of tryptophan by a CD4 T cell-mediated
killing mechanism. M. tuberculosis, however, can synthesize tryptophan (from chorismate precursor)
under stress conditions and, thus, starvation fails [23]. Accordingly, inhibition of any enzyme of the
mycobacterial shikimate pathway should preclude tryptophan biosynthesis and thereby increase the
likelihood of starvation as an efficient mechanism of killing afforded by the human host.

2.1. 3-Deoxy-D-Arabino-Heptulosonate-7-Phosphate Synthase (aroG Coding Sequence; EC 2.5.1.54)

The first component enzyme in the shikimate pathway (Figure 1), 3-deoxy-d-arabino-
heptulosonate-7-phosphate synthase (DAHPS), catalyzes the first committed step in the biosynthesis
of aromatic compounds in plants and microorganisms. This enzyme is responsible for an aldol
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condensation reaction between PEP and E4P to produce 3-deoxy-d-arabino-heptulosonate 7-phosphate
(DAHP) and inorganic phosphate [24,25]. DAHPS enzymes are currently classified into two distinct
families—type I and type II—based on their amino acid sequence and molecular mass. Type I enzymes
have a molecular mass of approximately 40 kDa and can be divided into two sequence subfamilies, Iα
and Iβ. Type II enzymes are larger, with molecular masses over 50 kDa. Although there is less than
10% sequence identity between types I and II, all DAHPS enzymes share a common (βα) TIM barrel
catalytic domain, with extra-barrel elements related to allosteric function [26–28]. DAHPS activity is
allosterically regulated by all three aromatic amino acids produced by the pathway—phenylalanine
(Phe), tyrosine (Tyr) and tryptophan (Trp)—therefore being the major flow control point for the
shikimate pathway [17,26].

In Escherichia coli there are three structural genes—aroF, aroG and aroH—coding distinct type
Iα DAHPS enzymes, each has different extensions on (β/α) barrel domain and an N-terminal barrel
extension, which provide a single allosteric binding site that is selective for either Phe, Tyr or
Trp [17,29,30]. Thermotoga maritima possesses a single DAHPS type Iβ, which contains an N-terminal
domain associated with a single binding site for Tyr. In M. tuberculosis, sequence homology analysis
revealed a single gene predicted as aroG (1389 bp), coding a type II DAHPS enzyme (MtDAHPS) [31].
Overall, the catalytic activity of DAHPS depends on the presence of a divalent metal ion in the
active site. The activity of EDTA-treated apo MtDAHPS could be restored in assays containing
Co2+, Mn2+, Cd2+, Cu2+, Zn2+ and Ca2+, with Co2+ and Mn2+ yielding the best results for restoring
activity [28]. Furdui and coworkers [32] conducted experiments demonstrating that, in the case of E.
coli DAHPS, the metal ion in the active site of the enzyme seems to play a structural role, orchestrating
the arrangement of the active site residues in a position favorable for water activation. In this view,
the geometry coordination of different metal ions may be a valuable factor for rational inhibitor design.

Previous studies have shown that the MtDAHPS reaction follows an ordered sequential mechanism,
similar to those described for P. aeruginosa, Helicobacter pylori and Xanthomonas campestris type II DAHPS
enzymes characterized to date [28,33,34]. The chemical mechanism described begins with a nucleophilic
attack of PEP at the E4P aldehyde moiety, resulting in the formation of an oxocarbenium species A
(Figure 3), which can be attacked by an active site water to form a phosphohemiketal intermediate B.
This water molecule can potentially attack from either face of the oxocarbenium ion A, giving rise to
two possible diastereoisomers of the tetrahedral intermediate phosphohemiketal B, differing in their
absolute configuration at C2. Although this stereogenic center is transient and the stereochemical
formation is lost by the elimination of phosphate in the final step to generate the product DAHP
C, the geometry of the enzyme’s active site is likely to favor stereoselective attack of water to form
one diastereoisomer tetrahedral intermediate phosphohemiketal A, preferentially. Thereby, DAHP
is formed in its acyclic form and cyclizes into its cyclic pyranose form following release from the
enzyme’s active site [35].
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The crystallographic structure of MtDAHPS (PDB 2B7O) revealed a homotetrameric quaternary
structure whose dimeric and tetrameric interfaces are formed by accessory interactions between (β/α)
8 TIM barrel subunits (Figure 4a) [28]. The structure also enabled the identification of possible catalytic
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(and essential) amino acid residues at the active site revealing a network of hydrogen bonds between
phosphate and carboxylate groups from the protein and PEP, which defines the binding site for the
substrate (PEP). The analysis of the structure showed that the PEP phosphate group makes hydrogen
bonds with the NH2 group of Lys306, the δ-guanido groups of Arg284 and Arg337, the amide nitrogen
of Glu283 and with two water molecules (Figure 4b). The PEP carboxylate group forms a double
hydrogen bond with the δ-guanido group of Arg126 and one additional hydrogen bond with the
ε-amino group of Lys306 and one water molecule. Thus, each carboxylate oxygen atom receives two
hydrogen bonds with favorable geometry for the molecular recognition of substrates at the enzyme’s
active site (Figure 4b). Furthermore, a sulfate ion (SO4

2-) is bound in the active site region near its
opening and approximately 10 Å away from PEP. This ion marks the likely position of the phosphate
group from E4P and makes hydrogen bonds with amino acid residues Arg135, Arg284 and Ser136.
Arg284 provides a bridge between PEP and sulfate, where there is one hydrogen bond between the
residue and the PEP phosphate group and another hydrogen bond between the residue and the sulfate
ion. The metal binding site is formed by four ligands—the Sγ of Cys87 (from the β1-α1 loop), Nξ2 of
His369 (from the β7-α7 loop), Oξ2 of Glu411 (from the end of strand β8) and Oδ2 of Asp441 (from the
β8-α8 loop). Cys87 and His369 are the axial ligands, with Glu411 and Asp441 in the equatorial trigonal
plane, leaving one equatorial site available for the binding of E4P or water. An interesting feature of the
metal site is the presence of Cys440 close to the metal ligand Cys87. A simple rotation at Cys440 Cα-Cβ
to another rotamer would allow formation of a disulfide bond with Cys87 precluding metal binding
(Figure 4b). This explains the need for a reducing agent to maintain full activity of the enzyme [28].
However, the importance of the amino acid residues mentioned above for the catalytic mechanism
of MtDAHPS has not been experimentally demonstrated and the knowledge of their identity can be
important not only for understanding enzyme function but also for potential use in drug design.
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generated on PyMOL.

Previous studies have shown that MtDAHPS possesses a highly sophisticated mechanism of
allosteric control due to an N-terminal extension and a loop extension. These extra-barrel elements
provide three distinct binding sites that are selective for either Phe, Tyr or Trp. Site 1, occupied by
Trp, is located on the tetrameric interface and consists mainly of the amino acid residues of the α2β3
loop extension and the helix α1. Site 2 is occupied by Phe and/or Tyr and is on the dimeric interface,
covered by sheet β0 of the TIM barrel N-terminal extension. Site 3 is located between the N-terminal
extra-barrel portion (α0a and α0b helices) and the α3 helix of the main barrel; Phe and/or Tyr occupy
this site at high concentrations (2 mM). Even though not inhibited by individual aromatic amino
acids, binary combinations with Trp and either Phe or Tyr result in significant loss of MtDAHPS
activity and the ternary combination of all three aromatic amino acids completely abolishes the
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enzyme-catalyzed chemical reaction, suggesting synergy in response to these allosteric effectors [36,37].
Furthermore, MtDAHPS also forms a non-covalent hetero-octameric complex with M. tuberculosis
chorismate mutase (MtCM), which acts at the branch point that connects the shikimate pathway to
Phe and Tyr production [26,37,38]. This complex formation not only activates MtCM activity by more
than two orders of magnitude but also allows MtCM to share the allosteric machinery located on
MtDAHPS to direct the shikimate pathway end product—chorismate—towards either Trp or Phe
and Tyr biosynthesis, based on metabolic requirements [39,40]. Interestingly, this remote control
between DAHPS (the first enzyme of the shikimate pathway) and chorismate mutase represents a
novel paradigm for regulation of this pathway [38].

Even though few inhibitor studies have been conducted targeting the mycobacterial enzyme,
based on the crystal structure of MtDAHPS (PDB 2B7O), Reichau and coworkers [35] designed a
bisphosphate molecule as a simplified analogue of the tetrahedral intermediate (Figure 5a) as a novel
lead structure for inhibitors of MtDAHPS. This bisphosphate compound binds with its 2-phosphoryl
and carboxylate moieties in the PEP binding site and in an extended conformation in the phosphate
moiety on C7, located near the proposed E4P phosphate binding site. The bisphosphate forms salt
bridges with Arg284, Arg337 and Lys306 and a hydrogen bond to the backbone N-H of Glu283.
The carboxyl group forms salt bridges with Lys133 and Arg126 and coordinates to the manganese ion
present in the active site. The 7-phosphate moiety extends into the tentative E4P phosphate binding
site, forming salt bridges with Lys380 and Arg135 and hydrogen bonds with the Ser136 hydroxyl group
and backbone N-H. Arg135 and Ser136 interact with the 7-phosphate moiety of the inhibitor, moving
closer into the active site pocket. The side chain of Lys133 and the likely electrostatic repulsion with
the guanidinium group of Arg135 shows the biggest conformational change of all active site residues,
establishing a salt bridge to the carboxylate group of the bisphosphate. Synthesized enantiomer
compounds (R)-bisphosphate and (S)-bisphosphate were used on inhibition assays, where inhibitory
constants of 360 ± 50 nM and 620 ± 110 nM, respectively, were determined. These results provide
valuable insight to a lead structure for novel potent antimycobacterial drugs targeting MtDAHPS [35].
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Furthermore, structure-based approach and E-pharmacophore based virtual screening identified
3-pyridine carboxyaldehyde, α-tocopherol and rutin as lead compounds to inhibit MtDAHPS
(Figure 5). Enzyme inhibition assays against MtDAHPS confirmed their inhibitory potential, suggesting
that their structure could be exploited for future drug development [41]. Desmond stimulation
interaction diagram for α-tocopherol showed its interaction with Ser136, Asp138 and Gln37.
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For 3-pyridine carboxyaldehyde, there was a stable interaction with Arg399 and Lys 306. Rutin showed
constant H-bond interaction with Arg284 andArg337. The percentage of enzyme inhibition for the
lead compounds, α-tocopherol, 3-pyridine carboxyaldehyde and rutin, were 21%, 17% and 16%,
respectively [41]. However, further efforts are needed to show whether these chemical compounds
reach and inhibit MtDAHPS in the intracellular context and target engagement results in arrested
growth of bacilli.

2.2. 3-Dehydroquinate Synthase (aroB Coding Sequence; EC 4.2.3.4)

The second enzyme in the shikimate pathway (Figure 1), 3-dehydroquinate synthase (DHQS), is
responsible for the generation of the first carbocyclic compound of the pathway, converting DAHP
into 3-dehydroquinate (DHQ) [21,42,43]. In M. tuberculosis, DHQS is encoded by the aroB gene,
differing from microbial eukaryotes where this homologue is part of a multifunctional enzyme complex
(encoded by the AROM gene) capable of conducting the five central steps of the pathway [44–46].
The mycobacterial enzyme has the extraordinary ability to conduct six chemical reactions (Figure 6) in
a single active site, which was considered by some a marvel feat, attracting interest on the enzyme’s
structure and chemical mechanism [46–48].
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The cloning and functional demonstration of MtDHQS activity was first reported by Mendonça and
coworkers [49] and studies on its kinetic mechanism were subsequently performed [50]. Initial velocity
measurements and fluorescence binding studies point to a rapid equilibrium ordered mechanism,
with KM values of 6.3 µM for DAHP and 70 µM for NAD+. DHQS is a metalloenzyme, requiring a
divalent cation for its activity. Incubation with EDTA abolishes enzyme activity, which can be restored
by addition of Co2+ into the reaction mixture and by Zn2+, Ca2+, Cd2+, Mg2+, Mn2+, Ni2+ and Ba2+ to
a smaller extent [50]. Although Cobalt seems to be more catalytically relevant, inductively plasma
atomic absorption analysis of recombinant MtDHQS revealed the presence of Zinc in the enzyme
preparation, probably due to the greater bioavailability of Zinc and in agreement with reports related
to the DHQS domain of AROM from Aspergillus nidulans [51,52]. The kinetic constants for the cyclic
reduction and oxidation of NAD+ and NADH, respectively, during the MtDHQS catalyzed reaction,
were determined using a stopped-flow instrument, under single-turnover experimental conditions.
The pre-steady-state kinetic data demonstrated that there is a transient increase in absorbance associated
with NADH formation followed by its oxidation back to NAD+ that occurs only in the presence of
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MtDAHP-catalyzed conversion of DAHP to DHQ. In addition, the rates of NAD+
→ NADH→ NAD+

conversion are not rate limiting, since they are larger than the 0.63 s−1 kcat value [50].
The chemical mechanism of E. coli DHQS was thoroughly investigated, dissecting each of the steps

using substrate analogues to examine the early and late steps of the reaction, which are—binding to the
enzyme, C5 oxidation by enzyme-bound NAD+, C6 enolization, β-elimination of the phosphate group,
reduction at C5 regenerating NAD+, pyranose ring opening, and, finally, an aldol intramolecular
reaction [47,48]. A set of analogue compounds that were uncapable of undergoing β-elimination
revealed that the enzyme binds with higher affinity to shortened side chains and carbocyclic analogues.
For example, a single carbon reduction in the side chain rendered a three order of magnitude
improvement on inhibition, which agrees with a previous report [53]. Carbocyclic compounds seem to
have an increased affinity for the enzyme due to the favored oxidation at C5, as shown by the levels of
NADH found in the enzyme-analogue complexes when in equilibrium. The C6 enolization is proposed
to be carried out by the attack of one of the phosphate oxygens present in the substrate (DAHP), acting
as a base and extracting a proton from C6, preparing the group for the subsequent elimination step
and giving evidence for a stepwise reaction [47].

Another set of analogues, uncapable of interconverting between the hemiketal and acyclic ketal
proposed intermediates, was used to demonstrate that the enzyme is able to use a 2-deoxy analogue
of DAHP as substrate, which generates a product that does not go through the last two reactions
(pyranose ring opening and aldol intramolecular reaction). Additionally, the enzyme does not seem
to be able to bind to acyclic analogues of DAHP. This data implicates that the enzyme may not be
actively involved in these last two steps and that, instead, they occur spontaneously (either in solution
or in the active site) [48]. Altogether, these data suggest that the enzyme is probably specialized in the
redox reaction at C5, which triggers a cascade of spontaneous events that generate DHQ, opposing an
alternative hypothesis that this enzyme would have evolved to gather six catalytic groups into a single
active site to carry out all the steps of the reaction. In fact, the structure of the AROM DHQS domain
from A. nidulans shows that the enzyme coordinates a proton shuffling from the C5 hydroxyl group to
a water molecule and then to His275 in a concerted manner while the hydride transfer to NAD+ occurs.
A phosphate binding pocket positions the phosphate group so that one of the phosphate oxygens
from DAHP can extract the proton from C6, resulting in the elimination of phosphate. There is little
evidence for enzyme participation in the last two steps, corroborating the data from the study with
substrate analogues [46].

Most of the analogues synthesized in the aforementioned studies [47,48] turned out to be
competitive inhibitors of MtDHQS, although there is no report on probing their potential as drugs to
target bacteria. Nonetheless, a recent publication revealed that DHQS is the main target of IMB-T130
(Figure 7) [54]. This promising molecule exhibited an IC50 of 2.7 µM and a MIC of 312 ng/mL
against M. smegmatis, a 1.36 log reduction in the growth of intracellular mycobacteria infecting mouse
macrophages, with low toxicity towards human embryonic kidney 293 and HeLa cells [55], showing
this enzymes’ potential as a druggable candidate.
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2.3. 3-Dehydroquinate Dehydratase (aroD Coding Sequence; EC 4.2.1.10)

Dehydroquinate dehydratase—also known as dehydroquinase (DHQase)—was originally
identified in E. coli and is the third enzyme in the shikimate pathway (Figure 1), catalyzing the
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dehydration of DHQ into 3-dehydroshikimate (DHS) [56]. This enzyme possesses two distinct classes
(types I and II) often correlated with the role in two different pathways—type I is present in the
chorismate biosynthetic pathway from fungi, plants and some bacteria, while type II was considered
part of the catabolic quinate pathway of fungi and in the shikimate pathway of most bacteria [57].
MtDHQase is one of the enzymes that indicated this classification could be misleading, as it is in fact
a type II DHQase and part of the biosynthetic shikimate pathway [58]. Interestingly, types I and II
DHQases seem to have evolved independently and are not related in sequence, structure or chemical
mechanism [57–61].

Each type has its own stereospecificity [59,60,62,63]. Type I DHQases catalyze the dehydration
with loss of the less acidic pro-R hydrogen bound to C2, with a covalently bound intermediate, a Schiff
base formed between the C3 carbonyl group from the substrate and a conserved active site lysine
followed by an enamine formation. A general base in the enzyme then extracts the proton from C2 and
accepts the hydroxyl group in C1 leading to a syn-elimination [60,64,65]. In contrast, type II removes
the more acidic pro-S hydrogen in accordance with the favored anti-elimination observed in acid or
base catalyzed conversion of DHQ into DHS [60,62,64]. There is no covalent intermediate formed
in this mechanism. A first proposition of an enolate intermediate was suggested by isotope effects
studies [66] but new evidence of a structural water molecule would favor the formation of an enol
intermediate before the exit of the C1 hydroxyl group [61].

Structurally, type I enzymes are homodimers in solution, with an eight stranded α/β-barrel
topology, a fold observed in other enzymes that form an imine intermediate [57,65,67,68].
MtDHQase displays a five-stranded parallelβ-sheet core flanked by fourα-helices with a flavodoxin-like
overall topology, being an homododecamer in solution (a tetramer of trimers) with 23 symmetry [57,69],
in accordance with other type II DHQases from Streptomyces coelicolor, H. pylori, Acinetobacter baumannii
and P. aeruginosa [61,70–72]. Tyr24 (M. tuberculosis numbering) is conserved amongst type II enzymes
and is proposed to be the base responsible for the extraction of the axial pro-S hydrogen [61,73].
Site-directed mutagenesis experiments showed that Arg23 (S. coelicolor numbering, equivalent to
Arg19 in MtDHQase) is an essential amino acid for catalysis [74], although its role is not totally
clear as it is present in a flexible loop composed by residues 19-24 (MtDHQase numbering) and it
seems to approximate Tyr24 after substrate-binding, lowering its pKa and starting the reaction [75].
It is worth noting that MtDHQase classification as type II is based on structural and theoretical
predictions. Enzyme kinetic studies (steady-state, pre-steady-state, pH-rate profiles, isotope effects,
surface plasmon resonance, spectrofluorimetry, microcalorimetry, mass spectrometry, borohydride
trapping) on M. tuberculosis aroD-encoded (Rv2537c) DHQase should be pursued to offer a solid
support for a chemical mechanism proposal and, consequently, for an adequate classification type to
which this enzyme belongs.

An accurate distinction between types I and II is of critical importance in the design of inhibitors
as the differences in active site and mechanism can be explored to develop highly specific inhibitors.
Several reports on MtDHQase inhibition presented molecules displaying Ki vales in the nanomolar
range [73,76–80], all of them being competitive analogues of DHQ substituted in either C2, C3 or both.
The interactions of these compounds with the active site of MtDHQase are driven mostly by two main
features: (1) the presence of groups capable of forming π-staking interactions with Tyr24, like benzyl
and benzothiophene groups attached to C2 or C3 and (2) groups that displace Arg19 outside the active
site, blocking its interaction with Tyr24 [75,80].

While the number of promising compounds with low Ki values is high and a solid support
from structural data is available, the number of articles reporting effective inhibition on growth
of M. tuberculosis is reduced. In a series of compounds generated by virtual screening with no
resemblance to DHQ, two lead molecules were identified with IC50 values of 17.1 and 31.5 µM and
MIC values against M. tuberculosis H37Rv of 25.0 and 6.25 µg/mL, respectively [69]. In another
effort, a pharmacophore model was developed and screened against a library of natural compounds.
Two molecules selected from the library that fulfilled all the characteristics of the model displayed
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some inhibition on M. tuberculosis growth with MIC values of 100 µg/mL [81]. Finally, another series of
compounds based on DHQ monosubstituted on C3 or disubstituted on C2 and C3 generated nanomolar
Ki values but had to be transformed into esters to display low µg/mL MIC values [79]. The authors
propose that increased hydrophobicity helps molecules cross the mycobacterial cell wall. Examples of
these compounds are given in Figure 8.
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2.4. Shikimate 5-Dehydrogenase (aroE Coding Sequence; EC 1.1.1.25)

The NADPH-dependent reduction of DHS is carried out by shikimate dehydrogenase (SD),
the fourth enzyme in the shikimate pathway (Figure 1), generating the central metabolite shikimate
(SHK). In some organisms, this point of the pathway intersects with the quinate catabolic pathway,
where a second enzyme of the SD family is found, quinate dehydrogenase (QD), which catalyzes the
reduction of both quinate and SHK, with first reports of the activity of the two enzymes from E. coli (SD)
and Aerobacter aerogenes (QD) dating from about the same year (1955 and 1954, respectively) [56,82].
The presence of QD gives microorganisms the ability to use quinate as a carbon source, generating
protocatechuate and proceeding to the β-ketoadipate pathway [83].

In most bacteria, SD is encoded by the aroE gene, like in E. coli, M. tuberculosis and
Methanococus jannaschii [83–86], while QD is encoded by yidB in E. coli [83], qsuD in Corynebacterium
glutamicum [87], QA-3 in Neurospora crassa [88] and qutB in A. nidulans [89]. In some fungi, such as
A. nidulans, N. crassa and Saccharomyces cerevisiae and in the apicomplexan parasite Toxoplasma gondii,
SD is part of the multifunctional AROM enzyme complex, while in some plants like Arabidopsis thaliana
and Populus trichocarpa, the enzyme is found in a bifunctional enzyme complex, with the third step of
the pathway DHQase [90]. Three other members of the SD family were identified as aminoshikimate
dehydrogenase [91,92], SD-like enzymes [87,93] and AroE-like enzymes [94], though limited data is
available on their mechanisms and substrate specificity. It is noteworthy that one pursuing the design of
inhibitors for SD should be aware of the variety of members in this family and the possible mechanisms
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of resistance that may have already evolved in bacteria and plants as a result of either redundant
activity or substrate preference, the latter of which cannot be translated into substrate specificity.

While sequence identity varies between family members, the structure is well conserved amongst
them [90]. The structure of SD is comprised of two α/β architecture domains connected by a pair of
α-helices. The substrate biding site is located at the N-terminus of the protein, shaped by a β-sheet
(usually composed by six mainly parallel β-strands) surrounded by α-helices. The dinucleotide biding
site located at the C-terminus displays a classic Rossmann fold. A comparison between the aroE
and ydiB gene products from E. coli revealed small differences in the amino acid composition of the
dinucleotide binding pocket that could explain variability of cofactor specificity found in the SD and
QD enzymes and amongst other members of the family. NAD+ binding in YdiB (PDB 1O9B) is favored
by two amino acid substitutions compared to AroE (PDB 1NYT), which create in YdiB a more neutral
environment compared to the basic binding pocket found in AroE [83]. In the MtSD models generated
by our group, Arg149, Asn150 and Lys153 are present in equivalent positions to E. coli AroE Arg150,
Thr151 and Arg154, which would explain the mycobacterial’s enzyme preference for NADPH [95,96].
In Thermus thermophilus crystal structures, the DHS/SHK binding pocket (in the deep groove created
between the two domains) reveals a set of polar amino acids capable of making hydrogen bonds with
the hydroxyl groups of C3, C4 and C5 and, likewise, the carboxyl group at C1 [97]. The contacts with the
C1 carboxyl and C4 hydroxyl groups are considered to be the most important for substrate recognition
and catalysis, as mutations in the A. thaliana bifunctional enzyme DHQase-SD and S. epidermidis AroE
enzymes showed a marked increase in KM and decrease in kcat [98,99]. These residues where found to
be conserved in the MtSD structure model [95,96].

A few reports on the kinetic mechanism of SD are available. Three independent studies revealed
a consistent finding that SD enzymes follow a sequential bi-bi mechanism—ordered for Pisum sativum
and M. tuberculosis [95,100] and random for S. aureus [101]. However, kinetic data from the P. sativum
enzyme suggests the binding of NADPH first, which is in contrast with the data from MtSD where
DHS is proposed to bind first. The reported KM values for SHK and cofactor are typically in the range
of 50 and 200 µM for bacterial SD enzymes (MtSD SHK KM = 50.2 µM) [85]. Turnover rates can vary
greatly depending on the species, ranging from 361 s−1 in AroE from Archaeoglobus fulgidus to 1.5 s−1

in AROM from A. nidulans (MtSD kcat = 8.2 s−1) [85,102,103]. However, a better consensus is found
considering the chemical mechanism. The hydride transfer from NADPH C4 to the DHS hydroxyl
group on C3 is mostly conducted by two well conserved Lys and Asp residues, while a conserved Tyr
seems to be important to position the cofactor in a catalytic competent manner [90,95,96,98,104,105].
Site-directed mutagenesis data suggest an important role in catalysis for both residues, as an impact
on kcat was observed in A. thaliana [98] and on M. tuberculosis [105]. Data from pH-rate profiles and
isotope effects on MtSD also indicates that the deprotonation of a residue with pKa ~8.9 abolishes the
activity of the enzyme [95]. Similar results were observed for Aquifex aeolicus [104]. Both research
groups refer the conserved Lys or Asp as possible residues to explain the results. Solvent isotope effects
also corroborate the transfer of a proton from solvent as being important for catalysis, indicating a
probable acid-base catalysis mechanism, with a stereospecificity of the pro-S hydride from NAPDH C4
being transferred in a concerted manner [95], in contrast with SD partially purified from E. coli, which
showed a preference for the pro-R hydrogen [106]. Figure 9 presents the (a) kinetic and (b) chemical
mechanisms of MtSD.
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Multiple SD inhibitors have been reported with IC50 values ranging from ~3 to
~900 µM [101,107–110], with only two reports showing MIC values of ~500 µM for a polyphenolic
compound against P. putida [108] or shikimic acid derivatives against E. coli [109] and virtual screening
derived compounds against S. aureus SD with Ki values ranging from ~8 to ~100 µM [101,110]. There
are three other reports on triazolothiadiazole inhibition of MtSD presented IC50 values ranging from
~7 µg/mL to ~5 mg/mL and MIC values ranging from 0.25 to 8 µg/mL [111–113]. One of the drugs
(named IMB-SD62) showed in vitro activity against MDR-TB and in vivo anti-TB activity with a 1.7 log
reduction in the CFUs in lungs and a preliminary pharmacokinetic study was performed demonstrating
some potential for this class of molecules [113]. They display different inhibition mechanisms, which
is valuable as they can turn into scaffolds for the design of several inhibition strategies against SD
enzymes. A recent effort to identify potential molecules that bind to MtSD through virtual screening
found three molecules (out of a library of 13,000 compounds) with favorable binding energies compared
to SHK [114]. However, no experimental evidence of inhibition was presented to date. Examples of
the different inhibitors are provided in Figure 10.
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2.5. Shikimate Kinase (aroK Coding Sequence; EC 2.7.1.71)

Shikimate kinase (SK), the fifth enzyme in the shikimate pathway (Figure 1), catalyzes the
conversion of SHK into shikimate-3-phosphate (S3P) using adenosine 5′-triphosphate (ATP) as the
co-substrate. The binding of ATP and SHK in the active site is guided by a conformational change of
the flexible loop, promoting an open-to-closed conformation, followed by a rearrangement of domain
movement for SK enzymes [115,116]. The release of S3P from the active site depends on the interaction
with three conserved arginine residues—Arg117, Arg136 and Arg58. Arg117 triggers the process by
forming a strong electrostatic interaction with the C3 phosphate group of S3P. The product undergoes
a destabilization in the active center and a conformational change occurs, which in turn leads to a large
opening of the extended SHK binding (ESB) and LID domains [117]. The catalytic turnover between
SHK and ATP was studied in the crystalline environment. Based on a series of crystallographic studies
with the enzyme in the apo form, binary and ternary complex, this study suggested that the random
sequential binding of SHK and nucleotides is correlated with domain movements [115].

In E. coli, SK exhibits two isoforms that are encoded by different genes—aroK encodes for a
shikimate kinase type I (SK I) and aroL encodes for a shikimate kinase type II (SK II). These enzymes
have low sequence identity when compared to the mycobacterial enzyme, presenting 30% and 46%
for SK I and II, respectively [118]. Other microbial genomes indicate a single SK coding sequence.
In M. tuberculosis, SK is encoded by the aroK gene, producing an 18.6 kDa protein with 176 amino
acids. Two significant differences were observed by Gu and coworkers [119] in the substrate-binding
(SB) domain between SK I and SK II. The first is the replacement of a phenylalanine residue (Phe49
in M. tuberculosis SK; MtSK) in SK I by a valine residue in SK II. The second difference is a shift of a
glutamate residue (Glu54 in MtSK) in SK I by a tryptophan in SK II. It is important to observe that
Glu54 (in MtSK) forms a hydrogen bond and a salt bridge with arginine (Arg58) and can help position
the Arg58 guanidine group for SHK binding.

This enzyme belongs to the family of nucleoside monophosphate (NMP) kinases, a subfamily of the
P-loop including the nucleoside triphosphate hydrolase superfamily [120,121]. This family undergoes
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large conformational changes during catalysis. A comparative study between Erwinia chrysanthemi SK
(apo) and MtSK bound to ADP (binary complex) structures suggested that significant conformational
changes occur upon nucleotide binding [119]. It was proposed by Dhaliwal and coworkers [122] that
the binding of ADP induces a large hinged movement of the LID domain over the active site with
Arg110 and Arg117, which is essential for the interaction with the nucleotide and repositioning of the
SB domain observed.

MtSK presents an α/β architecture, showing five central parallel β-strands flanked by α-helices.
The overall structure is divided into four domains [115]: (i) the ESB domain (residues 32-93),
which enables rigid body movements, including the SHK binding (SB) subdomain (residues 32-61)
that corresponds to the binding of NMP in NMP kinases, (ii) the nucleotide binding (NB) domain,
responsible for the flexible regions constituting the nucleotide binding, formed by the phosphate binding
P-loop (Walker-A motif; residues 9-17), adenine-binding (AB)-loop (residues 148-155) and the segment
corresponding to residues 11-110, including α6 (residues 104-110), (iii) the LID domain (residues
Gly112 to Asp124), responsible for opening and closing the catalytic site, allowing the interaction of the
enzyme with substrates and products and (iv) the reduced core (RC) domain, covering NB domain and
ESB segment (residues 62-93). Amongst all, the RC domain is the most rigid portion of the enzyme,
whereas the LID and NB domains are the most flexible regions (Figure 11) [119,120,123].
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Based on crystallographic studies, Hartmann and coworkers [115] described two distinct
conformational states for MtSK—open and closed. In the open conformation (open LID), SHK
or ATP can bind to the enzyme independently, thereby inducing LID closure. SHK has the same
orientation in all complexes with MtSK. The SHK binding site is characterized by a surface, usually
hydrophobic, with some residues that align into the cavity. Pro11, Phe49, Phe57, Gly79, Gly80, Gly81,
Pro118 and Leu119 form a lipophilic part of the pocket. The carboxylate group of SHK is anchored by
a salt bridge with the guanidinium group of Arg136 and the side chain of Asp34 forms a bidentate
hydrogen bond with the O12 hydroxyl group of SHK.
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Kinetic studies of fluorescence quenching on E. chrysanthemi SKII demonstrated that the binding
of the first substrate (nucleotide) enhanced the affinity for SHK as second substrate [124]. Based on
steady-state kinetics, fluorescence spectroscopy and isothermal titration calorimetry data for monomeric
MtSK, it was suggested that this enzyme follows a rapid-equilibrium random order of substrate binding
(SHK or ATP) and ordered product release, in which S3P is released first, followed by ADP dissociation
(Figure 12) [125]. Hartmann and coworkers [115] identified conformational changes in MtSK complexes
that suggest synergic effects in the random sequential binding of SHK and ADP.
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Experimental and computational studies have shown that catalysis may occur under specific
conditions. The LID and SB domains are tightly closed presenting two possible arrangement: (a) the
guanidinium group of the essential arginine, located in the LID domain, is close of the γ-phosphate of
ATP for its activation and (b) the two substrates are very close together but isolated from the solvent
environment for the reaction. The release of products requires a large conformational change involving
the LID and SB domains, where the hydrogen bonds amongst the essential arginines (Arg117, Arg136
and Arg58) and the products need to be disrupted to release S3P [117,126].

MtSK is an interesting target for the development of inhibitors, since its function is essential for the
survival of M. tuberculosis [31]. Different researches have been making efforts to find a potent molecule
against this enzyme, which could help in the treatment of TB. Recently, six new compounds were
characterized as MtSK inhibitors—manzamine A, 8-hydroxymanzamine A, manzamine E, manzamine
F, 6-deoxymanzamine X and 6-cyclohexamidomanzamine A. Inhibition studies demonstrated that
these molecules show a mixed noncompetitive type of inhibition [127]. Another study showed a
collection of 14 hits (out of 404 compounds) containing oxadiazole-amide and aminobenzothiazole
scaffolds, which displayed >90% inhibition at concentrations below 50 µM against MtSK [123,128].
Compounds with aromatic modifications at the C5 hydroxyl group of shikimic acid present different
inhibition constants against the MtSK and H. pylori SK (HpSK). The most potent inhibitor, with an
O-benzyl moiety, showed Ki values of 10 µM and 460 nM against MtSK and HpSK, respectively [126].
Rajput and coworkers [129] identified 20 inhibitors, amongst which 5 showed IC50 values below 10 µM.
The best molecule in the series exhibited an IC50 value of 5.1 µM, non-toxic (SI > 10) in vitro cytotoxicity
against HepG2 cell line and mitochondrial toxicity; synergistic with rifampicin and bactericidal against
M. tuberculosis (MIC and Minimum bactericidal concentration of 4 µg/mL each) (Figure 13). Given the
promising results for inhibitors of MtSK and the enzyme’s essentiality in the survival of the TB bacillus,
more effort should be made on the research of such an attractive target for the development of potential
new molecules acting against TB.
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2.6. 5-Enolpyruvylshikimate-3-Phosphate Synthase (aroA Coding Sequence; EC 2.5.1.19)

The enzyme 5-enolpyruvylshikimate-3-phosphate synthase from M. tuberculosis (MtEPSPS),
responsible for the penultimate step in the shikimate pathway (Figure 1), is encoded by the aroA
sequence [130]. The cloning, recombinant expression and (one-step) purification protocols, as well
as mass spectrometry analysis and N-terminal sequencing have been reported [130,131]. It has a
molecular mass of 47,184 Da and belongs to the enolpyruvyl transferase family that does not require
cofactors or metals for catalysis [132].

X-ray diffraction data at 1.81 Å resolution (PDB 2O0E; Figure 14) showed that this monomeric
enzyme is an α/β protein consisting of a mixed β-sheet surrounded by α-helices. It is shaped by two
domains and with the catalytic/active site near the interdomain crossover segment. Each domain is
composed of three copies of a βαβαββ folding unit, with a particular β-sheet in the fourth-strand,
which contains parallel and antiparallel strands and all the α-helices are parallel [132–134].
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Figure 14. Graphical representation of MtEPSPS tertiary structure in complex with S3P and PEP.
The image was generated on PyMOL.

Stallings and coworkers [135] deciphered the structure and topological symmetry of the E. coli
enzyme. They found that each two-domain structure is composed of 6-folding protein units, each one
being formed by four-stranded sheets and two parallel α-helices. It was also found that the symmetry
and orientation of the two domains make a direct effect on the binding of substrates and inhibitors by
a helix macrodipole in MtEPSPS enzyme [133,134].

The catalytic mechanism of MtEPSPS involves the transfer of the enolpyruvyl moiety of PEP to
the O5 of S3P [136], through an addition-elimination mechanism. Regarding the addition, it consists
on PEP activation by C3 protonation associated with a nucleophilic attack on C2 with a tetrahedral
reaction intermediate (THI) that (for a phosphate elimination) leads to a cationic intermediate and
finally to 5-enolpyruvylshikimate-3-phosphate (EPSP) (Figure 15) [136–138].
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Lou and coworkers [138] studied the transition-state for the enzyme-catalyzed hydrolysis reaction
measuring kinetic isotope effects. Based on these studies, three possible mechanisms were suggested for
EPSP hydrolysis to form S3P and pyruvate catalyzed by E. coli EPSPS (assuming that the mechanisms for
enzyme-catalyzed hydrolysis are the same as for the acid-catalyzed reaction), in which the reaction could
start with: (a) C3 of PEP protonation in a stepwise AH*AN mechanism (proton and nucleophile addition
occurring in distinct steps with a short-lived cationic intermediate that diffusionally equilibrates with
solvent), (b) concerted C3 of PEP protonation and nucleophilic attack on C2 (ANAH: nucleophile and
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proton addition occurring simultaneously) or (c) nonactivated nucleophilic attack at C2 in a stepwise
AN*AH mechanism. Hybrid quantum mechanical/molecular mechanical studies for E. coli EPSPS [139]
suggest a stepwise mechanism in which protonation of PEP C3 by Glu341 precedes the nucleophilic
attack on PEP C2 in the addition mechanism; the breaking of C-O bond of THI to release HPO4

2- and
form the EPSP cation intermediate occurs before proton transfer from PEP C3 to Glu341 (acid/base
enzyme catalyst) in the elimination mechanism to form the EPSP product (Figure 16).
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EPSPS is the cellular target of N-[phosphonomethyl] glycine, the active ingredient of the
broad-spectrum, nonselective herbicide glyphosate [140]. The binding of glyphosate to MtEPSPS
results in rearrangements of the enzyme’s secondary structure, which are accompanied by a large
decrease in solvent access to different regions of the protein [134]. A mechanism for MtEPSPS inhibition
by glyphosate was proposed in which inhibitor-induced conformational changes cause a synergistic
effect in preventing solvent access to the enzyme’s active site. MtEPSPS exists in an open conformation
in the apo form but in a closed conformation when bound to PEP. These conformations were studied
by assessing the hydrogen/deuterium exchange properties of free MtEPSPS and MtEPSPS-PEP binary
complex using electrospray ionization mass spectrometry (ESI-MS). The enzyme undergoes extensive
conformational change upon formation of the PEP binary complex, which seems to favor solvent
access at domain 1, while they partially prevent solvent access to domain 2. This may be part of the
mechanism of catalysis of the enzyme, which favors both hydration of the substrate-binding site in
domain 1 (stabilizing S3P binding) and inducing cleft closure (which controls the entrance of substrate
molecules) [132].

Multiple strains resistant to glyphosate were identified not long after the compound’s inhibitory
activity was demonstrated in plants [140,141]. Examples in prokaryotes include E. coli, in which G96A
and A183T mutations in the enzyme rendered the bacteria insensitive to glyphosate [142]. In 2013,
Ramachandran and coworkers [143] studied the inhibition of EPSPS in E. coli and M. tuberculosis with
glyphosate, observing that the inhibition values for MtEPSPS were about two orders of magnitude
higher (IC50 = 260 µM) than for the E. coli ortholog (3 µM), suggesting a lower affinity for the
mycobacterial enzyme.

The importance of glyphosate in the study of this enzyme has been remarkable; based on the
structure of this molecule, hundreds of analogue compounds were developed as candidates to inhibit
this protein [139]. Studies proved the capacity of the enzyme to change its natural conformation in
the presence of different analogues of glyphosate. Based on that, it was understood that EPSPS could
change between open and closed conformations, which seems to be characterized by a decrease in the
percentage of β-sheets and increase of the percentage of α-helices [134].

The effects of inorganic phosphate (a product of the reaction) binding to MtEPSPS were assessed by
analytical ultracentrifugation, small angle X-ray scattering and circular dichroism techniques, showing
that MtEPSPS is in a closed conformation in the presence of inorganic phosphate and in an open
conformation in the absence of inorganic phosphate [144]. Replica-exchange metadynamics simulations
were employed to assess the effect of structural flexibility on MtEPSPS enzyme function [145].
The authors concluded that these results point to a classical model of conformational selection, in which
apo MtEPSPS adopts a conformation that can bind strongly to a ligand and, on the other hand, ligand
binding does not induce the enzyme to adopt an appropriate conformation for binding. This structural
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flexibility is important as a mechanism to adapt to different types of ligands and may be part of the
rapid interconversion between different conformations of this protein through the rearrangement of the
secondary structure. For example, the enzyme requires the complexation of three water molecules to
stabilize the S3P into the binding site [134]. However, the available crystal structure for apo MtEPSPS
(PDB 2BJB; manuscript to be published) is likely not the best representative of the conformational states
of free enzyme present in solution, because the restricted condition of the crystal generation could
produce a flexibility reduction, trapping the protein in a particular state, not in the natural solution
state [145].

Numerous compounds that inhibit EPSPS have been proposed for different bacteria, such as E. coli,
S. aureus and Bacillus cereus [136,146,147]. Although the sequence similarity between these organisms
and M. tuberculosis varies between 21-28%, none of these molecules have been tested in MtEPSPS.
Kinetic and computational studies are necessary in order to evaluate the susceptibility of MtEPSPS to
those compounds.

2.7. Chorismate Synthase (aroF Coding Sequence; EC 4.2.3.5)

Chorismate synthase from M. tuberculosis (MtCS), the seventh and last enzyme in the shikimate
pathway (Figure 1), is encoded by the aroF (Rv2540c) gene. This protein has a molecular mass of
41,804 Da [148,149] and belongs to the family of carbon-oxygen lyases. The MtCS structure was
determined by X-ray diffraction at 1.72 Å resolution in complex with flavin mononucleotide (FMN)
(PDB 2O12) (Figure 17). MtCS is a tetramer composed of two dimers (dimer of dimers) and the
monomers belong to the structural α/β class, each monomer containing 13 α-helices and 17 β-sheets
and each of them is in contact with the others creating an intricate packing arrangement shaping a core
domain composed of a topology of β-α-β sandwich, shown in Figure 17 [150,151].
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MtCS catalyzes an unusual 1,4-anti-elimination of the 3-phosphate group and the C-(6proR)
hydrogen from EPSP forming chorismate and phosphate [150,151]. Circular dichroism spectroscopy,
gel filtration and analytical ultracentrifugation results suggest that MtCS exists in a dimer-tetramer
equilibrium with a large value for the dissociation constant (50 M), indicating that the enzyme is
predominantly in the dimeric form in solution [150].

An interesting feature of CS from different organisms is how reduced FMN (FMNred) is obtained,
which divides these enzymes into two classes—monofunctional and bifunctional [152]. The CS enzymes
from fungi are bifunctional as they display a second enzymatic activity, an NAD(P)H-dependent flavin
reductase, which confers them an intrinsic ability to reduce flavin using NAD(P)H. The CS enzymes
from plants and E. coli are monofunctional as they do not possess this activity and are active only in
anaerobic conditions in the presence of either chemically or enzymatically reduced flavin. Data on
molecular cloning of aroF-encoded MtCS, heterologous protein expression and purification, N-terminal
amino acid sequencing and mass spectrometry of the recombinant protein indicate the bifunctionality
of dimeric MtCS [149].

The enzyme’s flavin reductase activity was characterized, showing the existence of a complex
between FMNox and MtCS. Equilibrium binding of FMNox pointed to an upper limit of 20 µM for the
dissociation constant. NADH binding to MtCS results in a quench in protein fluorescence and a value
of 156 µM was obtained for the dissociation constant for binary complex formation. Furthermore,
solvent isotope effects and proton inventory results indicated that proton transfer from solvent partially
limits the rate of FMN reduction and that a single proton transfer gives rise to the observed solvent
isotope effect. Multiple isotope effects suggested a stepwise mechanism for the reduction of FMNox

(distinct steps for hydride and proton transfers) [149].
A new discontinuous method for measuring CS activity has been proposed to be applicable to

both monofunctional (anaerobic) and bifunctional (aerobic) enzymes [153]. In short, the method is
comprised of in situ production of EPSP by recombinant MtEPSPS, ultrafiltration, addition of FMN,
NADH and recombinant MtCS, filtration and detection of chorismate by liquid chromatography
coupled with negative electrospray ionization high-resolution tandem mass spectrometry (ESI-HRMS).
Although this method allows for determination of activity of a variety of CS enzymes, it would be
somewhat difficult to be applicable to the identification of enzyme inhibitors in screening efforts of
chemical compound libraries. Structural comparisons of MtCS and other CS enzymes performed by
Arcuri and coworkers [151] found that conserved residues (such as His17 and His106) in the active
binding site of the bifunctional enzyme are highly conserved amongst the species due to the fact that
His106 is near C(2)_O of the Flavin ring and because His17 is near the phosphate group of EPSP,
which could probably assist the protonation of the leaving group upon cleavage of C-O bond.

Numerous mechanisms have been proposed to explain the enzymatic reaction that converts EPSP
into chorismate [154]. Nevertheless, a three-step mechanism for the CS reaction has been proposed
based on quantum mechanics calculations combined with molecular mechanics (QM/MM) [155].
Considering that this reaction has an unusual stereochemistry of the trans-1,4-elimination of phosphate,
having a proton involved in a non-concerted reaction and a cleavage of an inactivated C-H bond,
the mechanism starts with a proton transfer of FMNH2 to D339 (RH3 transfer), followed by a proton
transfer to FMNH (RH8 transfer) from EPSP and finally the elimination of phosphate (RPO elimination),
as shown in Figure 18 [155,156].
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The importance of a deeper understanding of chemical mechanisms is that, based on the
structure of some important steps of the reaction, it is possible to developed analogues that can
act as competitive or non-competitive inhibitors of the enzyme, blocking catalysis and preventing
the formation of the product (chorismate), which is an essential precursor of aromatic amino acids,
mycobactins, menaquinones and naphthoquinones. Some strategies based on these studies have
proposed analogues, such as (6S)-6-fluoro shikimate, (6R)-6-fluoro shikimate, (6S)-6-fluoro EPSP
and 2-(3-(3-((R)-3-((S)-1-Amino-3-(3-chlorophenyl)-1-oxopropan-2-ylamino)-2-(3-hydroxy-4-methyl-2-
nitrobenzamido)-3-oxopropylthio) propylcarbamoyl)phenoxy) acetic acid and other analogues of
flavin, such as 2(Z)-2-benzylidene-6,7-dihydroxybenzofuran-3[2H]-ones and the 2′-hydroxy-4′-pentoxy,
which inhibited the activity of bifunctional CS enzymes, such as N. crassa, Plasmodium falciparum,
Salmonella typhimurium and Streptococcus pneumoniae [157,158].

To date, no publication has presented a single compound with an inhibitory capacity against MtCS.
In 2007, Fernandes and coworkers [159] compared the three-dimensional structure and the geometric
docking of the coenzyme FMN and the substrate EPSP amongst A. aeolicus, S. cerevisiae, H. pylori and S.
pneumoniae (as a model of M. tuberculosis) and identified new possible interactions involving Arg111,
Gly113 and Ser317 with the EPSP substrate. Since the structure of MtCS was determined a couple of
months after this publication, the published analysis did not consider the actual structure of MtCS.
For this reason, it is important to rationally develop compounds capable of interfering with Arg111,
Gly113 and Ser317 and test them against the enzyme and the organism.

3. Future Prospects

The shikimate pathway is essential for the survival of mycobacteria [31]. Given the fact that
this metabolic pathway is absent in humans, a better understanding of its component enzymes in
M. tuberculosis and their chemical mechanisms of action, as well as their three-dimensional structures,
should provide a framework on which to base the rational design of selective antimycobacterial agents.
Overall, some advances were achieved within the last decade considering the shikimate pathway.
Promising inhibitors were developed for some of these enzymes, with attractive MIC values and data
on pharmacokinetic properties. This may give one a glimpse on what can be expected as we advance
further into drug development. Although not necessarily applicable to the mycobacterial shikimate
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pathway, a combination with recent and alternative strategies could be explored beyond the ones
presented above to target TB.

A multichannel device (iChip), which can simultaneously isolate and grow uncultured soil
bacteria, was employed to identify teixobactin, which showed inhibition of M. tuberculosis in vitro
growth; no drug-resistant strains could be selected [160]. Teixobactin blocks cell wall biosynthesis
by binding to peptidoglycan precursors—lipid II (precursor for peptidoglycan biosynthesis) and
lipid III (precursor for wall teichoic acid biosynthesis). Its interactions with decaprenyl-coupled lipid
intermediates of peptidoglycan and arabinogalactan and its binding to wall teichoic acid precursor
contributes to efficient lysis and killing due to digestion of the cell wall by liberated autolysins [160].
It has been pointed out that scale-up synthesis and cost-effective protocols of synthetic teixobactins,
a better understanding of its pharmacokinetic properties, extensive in vivo evaluation of efficacy and
toxicity and increased barrier to resistance could provide a robust platform for developing a new class
of antibiotics for combatting multidrug-resistant bacterial infections [161]. The iChip platform grows
and cultures bacteria within a natural environment, in which a soil sample from the environment is
sandwiched between two semipermeable membranes and the sample is returned to the environment a
short time later. As only approximately 1% of the billions of bacterial species in nature will grow in the
lab, the iChip platform can unveil new natural compounds with antibacterial activity.

Cloudbreak is an antibody-drug conjugate platform that combines surface-acting antimicrobial
agents with immune engagers in a single molecule that is developed by Cidara Therapeutics
(www.cidara.com). The immune system is targeted by stably fusing multiple copies of the antimicrobial
agent to the Fc domain of the human IgG1 antibody. The antimicrobial agents are engineered to target
conserved regions of the pathogen where mutations often incur major fitness costs. Notwithstanding,
the Cloudbreak platform has been used to develop antiviral Fc-conjugates (AVCs) against influenza
and, moreover, reports for the development of antibacterials based on this platform are still lacking.

Extracellular M. tuberculosis in human TB lesions form biofilms (pellicles) in which
the high cell density, cell-cell contacts and different nutrient and oxygen gradients within
their interiors result in unique phenotypes, including drug tolerance [162]. A modified
version of the culture-based hypoxia model in airtight containers (a phase in which
drug-tolerant bacilli evolved) followed by aeration of cell cultures resulted in formation
of a pellicle biofilm at the air-liquid interface. Flentie and coworkers [163] identified
R-8-cyclopropyl-7-(naphthalen-1-ylmethyl)-5-oxo-3,5-dihydro-2H-thiazolo [3,2-a]pyridine-3-carboxylic
acid, which inhibited hypoxia-induced tolerance to isoniazid (INH) in M. tuberculosis, prevented
selection of drug-resistant strains and reversed INH resistance in katG mutants. However, further
efforts should be pursued to translate this chemical compound into a chemotherapeutic agent to treat
TB infection in human hosts infected with INH-resistant strains of M. tuberculosis harboring katG
mutations [164]. Although the elucidation of the mode of action of this chemical compound may
unveil novel targets that can be valuable for the development of new chemotherapeutic agents to treat
TB, it has limited therapeutic scope at the present time.

Host-directed therapies have emerged as a novel and promising approach to treat TB, whose
modulation of host response is likely to avoid the development of bacterial resistance [165,166].
Unlike conventional antibiotics aimed at targeting the bacteria, host-directed therapy aims at targeting
the host immune response either by directly boosting its ability to effectively eliminate the bacterial load
or reduce the lung damage associated with granulomatous disease. This strategy has the advantage
that molecules would be active against infections taking shelter in the host immune cells and are
difficult to target and so might be able to shorten treatment regimens or be effective for individuals with
latent TB. Host-directed therapy may be regarded as an adjunct TB therapy to improve the clearance
achieved by antibiotics in M. tuberculosis.

A new strategy termed PROSPECT (primary screening of strains to prioritize expanded chemistry
and targets) was developed in which large chemical libraries (50,000 compounds) are screened
against pools of mutant strains depleted in essential bacterial targets (100-150 hypomorphs) and their

www.cidara.com
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hypersensitivity are exploited to generate large-scale chemical-genetic interaction profiles (CGIPs).
The PROSPECT strategy simultaneously identifies whole-cell active compounds and predicts their
mode of action from the primary screening data, which provides putative target information that can
help guide hit prioritization [167]. Moreover, a larger target space and new chemical scaffolds may be
unveiled by this strategy as compared to whole-cell screening. Using primary CGIPs, it was possible
to identify and validate more than 40 new scaffolds against established targets including DNA gyrase,
RNA polymerase and the biosynthesis of mycolic acids, folate, tryptophan and the new essential
efflux pump EfpA target. Johnson and coworkers [167] have made primary data publicly available
(https://broad.io/cgtb) to, in their words, accelerate the discovery of new inhibitor chemotypes and
their targets.

In this section we have attempted to give a broad view of expanding experimental strategies
to devise new therapies to treat TB. There is also an increased need for expanding the variety and
complexity of cell-based assays for biological research and drug discovery. Stem cell-derived cells
and tissues have become an increasingly attractive alternative to traditional in vitro and in vivo
testing in pharmaceutical drug development and toxicological safety assessment. The Japanese
Global Health Innovative Technology Fund proposed a set of criteria for hits and leads identified in
screening campaigns of chemical compounds to treat neglected tropical diseases, including TB [168].
These criteria provide clear guidelines for decisions on whether progress from hit to lead and then on
into lead optimization. To wrap it up, the concept of focusing on science was exemplified recently
when AstraZeneca published a framework founded on project quality and depth of understanding as a
key driver of success. This ‘5 Rs’ framework (the right target, the right tissue, the right safety, the right
patient and the right commercial potential) can be modified to encompass the influence of mechanistic
enzymology in the early stages of drug discovery—right target + right reagents + right assay + right
mechanism = right compound [15].
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