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Abstract—To maximize resource utilization and system
throughput in cloud platforms, hardware resources are often
shared across multiple virtualized services or applications. In
such a consolidated scenario, performance of applications run-
ning concurrently in the same physical host can be negatively
affected due to interference caused by resource contention. This
should be taken into account for efficient scheduling of such
applications and performance prediction at user level. Neverthe-
less, resource scheduling in cloud computing is usually based
solely on resource capacity, implemented by heuristics such as
bin-packing. Our previous work has introduced an interference-
aware scheduling model for web-applications considering their
resource utilization profile, and to classify applications we ap-
plied fixed interference intervals based on common utilization
patters. Although this resulted in placements with better overall
results, we observed that some applications with more dynamic
workload patterns were wrongly classified with intervals. In this
paper, we propose an alternative to the use of intervals and
present an interference-aware application classifier for cloud-
based applications that deals better with dynamic workloads.
Our classifier defines automatically interference levels ranges
combining two well-known machine learning techniques: Support
Vector Machines and K-Means. Preliminary experiments evalu-
ated the applied machine learning techniques in three quality
metrics: Accuracy, F1-Score and Rand Index, observing rates
over 80%. The proposed solution creates a workload-aware fine-
grained classification that was compared with previous work over
different workload scenarios. The results demonstrate that our
classification approach improves the placement efficiency by 23%
on average.

Index Terms—Interference-Aware Application Classifier, Re-
source Management, Dynamic Workloads.

I. INTRODUCTION

With the recent core number increment in modern physical
machines, cloud-based services can concurrently run many
diverse applications even when fully allocated to a single
physical machine. In cloud platforms, executing multiple
applications on each host is achieved by sharing resources.
Unfortunately, multiple cloud-services contending for shared
resources generates cross-application interference and can lead
to performance degradation [1]. There are several pieces of
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evidence showing that interference is related to the perfor-
mance penalty of application and it may occur depending on
the application workload and its variation [2]. In this scenario,
cloud-based web services are an example of application type
that has dynamic workload. Such applications present an
unpredictable intensity variation of resource utilization due to
users different usage patterns and periodicity [3].

Traditionally, resource scheduling in cloud computing is
based on heuristics such as bin-packing which consid-
ers resource capacity [4], [5]. In previous work [6], we
have introduced an interference-aware scheduling model for
web-applications. This model applies an attraction/repulsion
method built upon resource usage profile of each application.
However, an interference classification method, which uses
fixed thresholds, has been adopted. Such interference ranges
were empirically defined. Although this resulted in placements
with better overall results, we have observed that applying that
method over some applications with high workload variations
could lead to an unrepresentative classification estimate. Thus,
this approach may disfavor the placement of different types of
applications which have dynamic workloads patterns.

In this paper, we propose an interference-aware application
classifier which does not require a static threshold setting.
Our classification approach defines automatically interference
levels ranges from applications combining the benefits of
two Machine Learning techniques: Support Vector Machines
(SVM) and K-Means. Firstly, it classifies the instances into
segments through a training model, dividing interference mon-
itoring metrics effectively into interference classes. Secondly,
it discovers their proper interference levels ranges as a con-
sequence of the clustering technique. Finally, it determines
application interference levels. This approach combines readily
available classification and clustering algorithms as we will
demonstrate. The main contributions of the current work are
as follows:

• we propose an interference-aware application classifier
based on machine learning techniques which sets inter-
ference levels ranges automatically, considering dynamic
workloads;

• we evaluate the applicability of both machine learning
techniques in this problem with three quality metrics
obtaining results over 80%;
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• we adapt our group’s placement simulator called CIAPA
to work with this new classifier;

• we present experiments comparing our classifier with
previous work based on fixed intervals over different
workload scenarios;

• we show that our classifier has the potential to signif-
icantly improve application placement in consolidated
environments.

The rest of this paper is organized as follows. Section II
summarizes the concepts used in this study. Section III de-
scribes in detail how our proposed solution works and its
functionalities. Section IV presents the evaluation methodol-
ogy adopted to validate our techniques. Section V lists related
work. Finally, Section VI depicts our conclusions and future
directions.

II. BACKGROUND AND STATE-OF-THE-ART

In this Section, we detail the most important areas to
understand the remaining of this study. Firstly, we characterize
interference and its impact on performance. Secondly, we
introduce the interference-aware scheduling concept. Lastly,
we explain the adopted machine learning techniques.

A. Performance Interference

With the advent of resource sharing techniques, physical
machines host multiple applications. Even though the use of
resource sharing methods, such as virtualization or container-
ization, provide approaches to fairly share resource between
co-hosted applications, when multiple services intensively use
a source at the same time, a problem of resource contention
will happen. This problem is known as performance interfer-
ence, and it may lead to severe performance degradation [6].

Virtualization technologies and server consolidation are the
main drivers of high resource utilization in modern Data
Centers. Combining virtual machines into the same server
may lead to severe performance degradation. This performance
degradation is known as virtual machine interference. Support-
ing a higher virtual machine interference may result in a higher
consolidation, while strict low interference requirements may
demand more resource. Jersark and Ferreto [7] claim that
applications are affected by other virtual machines, which use
the same resource intensively in the same physical machine.
Furthermore, each resource is affected differently. CPU in-
tensive applications led to performance degradation of 14%.
Memory and disk I/O intensive applications, the performance
degradation were as high as 90%. Therefore, it is clear that
performance interference is a problem, and the performance
degradation varies depending on the most used resource.

Performance interference affects container-based environ-
ments as well. Disk-intensive applications running over con-
tainers promote performance degradation that uses different
resources intensively. Xavier et al. [8] have tested several
combinations of co-hosted workloads. While some of these
combinations led to performance degradation of 38%, they
could also combine the workloads with no interference.

Cluster systems usually run several applications-often from
different users-concurrently, with individual applications com-
peting for access to shared resources such as the file system or
the network. Low application performance may be caused by
interference from different sources. Shah et al. [9] state that
mapping performance data related to shared resources onto
time slices can establish the simultaneity of application usage
across jobs, which can be indicative of inter-application inter-
ference. In some cases, inter-application interference causes
performance degradation by up to 50%.

B. Interference-Aware Scheduling

In cloud computing ecosystem, consolidating multiple user
applications onto multi-core servers generates interference
between co-hosted applications, which impacts application
performance. To minimize interference effects and improve
applications performance, a common solution is to apply a
scheduler which considers interference issues [4], [10]–[13].

Zhu and Tung [10] and Bu et al. [11] present task scheduling
strategies that include interference aspects, based on task per-
formance prediction models to realize better workload place-
ment decisions. Proposed models achieve an average error of
less than 8% and a speedup of 1.5 to 6.5 times for individual
jobs, respectively. Zang et al. [12] and Wang et al. [13] develop
interference-aware job scheduling algorithms to estimate the
effect of interference among multiple instances of virtualized
environments. Results show that proposed scheduling algo-
rithms, on average, reduce the execution time of tasks by 6.5%.

Chen et al. [4] present CloudScope, a system for diagnosing
interference for multi-tenant cloud systems. It (re)assigns vir-
tual machines to physical machines and optimizes the hyper-
visor configuration for different workloads. The interference-
aware scheduler improves virtual machine performance by up
to 10% compared to the default scheduler.

C. Machine Learning Algorithms

Machine learning techniques are mainly grouped into three
categories: (i) reinforcement learning, (ii) supervised and
(iii) unsupervised. Reinforcement learning allows a machine
to learn its behavior from the feedback received through
the interactions with an external environment. Unsupervised
machine learning is used to draw conclusions from a given
dataset consisting of input data without a labeled target.
Supervised machine learning techniques attempt to find out
the relationship between input attributes and a target attribute.
Supervised methods can further be classified into two main
categories: classification and regression. In the regression, the
output variable takes continuous values while in classification
it takes class labels [14]. In this study two machine learning
algorithms have been employed: SVM for classification and
K-Means for clustering.

1) SVM: Support Vector Machine is a supervised technique.
It derives from a hyperplane that maximizes the separating
margin between the positive and negative classes in dimen-
sional space. To achieve this, it considers Support Vectors
nearest to the minimum cost line. To accommodate curved
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lines or polygon regions, it scales the data into higher di-
mensions for predictions. Aiming to minimize performance
degradation in cloud computing, Sotiriadis et al. [15] introduce
a virtual machine scheduling algorithm. It applies SVM to
classify resource usage. As results, performance degradation
has been minimized by 19% and CPU real time has been
maximized by 2%. Sant’Ana et al. [16] present a real-time
scheduling policy selection algorithm. They evaluated the use
of logistic regression and SVM to perform the mapping of
running queue job characteristics and machine states. The
results show SVM reached a classification accuracy by up to
81%.

2) K-Means: Known as a clustering algorithm, K-means
is an unsupervised method that attempts to split a given
dataset into a fixed number of clusters. Each centroid (k) is
an existing data point in the given input dataset. The process
of classification and centroid adjustment is repeated until the
values of the centroids stabilize. The final centroids will be
used to produce the final clustering. Gill et al. [17] propose
a resource scheduling technique for holistic management of
cloud computing resources. This method uses K-Means for
clustering the workloads for execution on different set of
resources. Results indicate that authors’ proposed technique
is capable of reducing energy consumption by 20.1% while
improving reliability and CPU utilization by 17.1% and 15.7%
respectively. Xu et al. [18] formulate a generic job scheduling
problem for parallel processing of big data in heterogeneous
clusters and design a K-Means based task scheduling algo-
rithm, referred to as KMTS. Simulation results show that
KMTS improves execution performance by 25% and 30% on
average in single job scheduling and parallel job scheduling,
respectively, over existing methods.

III. INTERFERENCE-AWARE APPLICATION CLASSIFIER

Most of the state-of-the-art related studies employ predic-
tion models to address interference scheduling issues in cloud
environments. In previous work, we have presented placement
policies that deal with those aspects. Considering workloads
behavior, we created a static classification to evaluate our
strategies. However, neither our previous work nor earlier men-
tioned studies quantify interference levels from applications
without establishing static ranges. To tackle this topic, we
propose an interference-aware application classifier based on
machine learning techniques. Our classifier receives monitored
metrics from applications and automatically outcomes their
interference levels, without setting thresholds. Figure 1 depicts
a detailed overview of how the classifier works.

To perform the proposed classifier, two machine learning
algorithms have been employed: one for classification (SVM)
and one for clustering (K-Means). First, the interference
metrics collected from the target application are consumed by
SVM and those metrics are separated into resource classes:
Memory, CPU, Disk, Network and Cache. Subsequently, K-
Means quantifies all resource classes and outcomes their
interference levels. Both machine learning algorithms use a
training dataset, previously defined, to support their decisions.

Fig. 1. Overall Classifier Architecture: Block 1 represents interference metrics
collected from the application as input data; Block 2 depicts the Training
Dataset supporting machine learning techniques decisions; Block 3 illustrates
the entire classification process, combining SVM and K-Means as well as
their outcomes.

In this Section, we explain the overall functionality of
how the proposed classifier works, including its dependencies
and capabilities. Firstly, we introduce how the collecting of
interference metrics has been performed. Secondly, we explain
how the training dataset has been built. Lastly, we describe the
classifier process.

A. Collecting of Interference Metrics

To characterize the interference generated by each appli-
cation, we used a tool called IntP [8]. This tool profiles
the application during runtime, returning interference the ap-
plication generates on each resource subsystem. Moreover,
IntP returns the interference metrics, every second, where the
higher the metric is, the more interference the application
being profiled generates. IntP is a tool developed within the
operating system level. It is supported to be executed inside
all low-level components without any intrusion that could alter
the metrics collected. This tool is partitioned in modules that
are responsible for each type of access on a specific resource
inside the infrastructure level. IntP outcomes the percentage
on how much the monitored application uses the hardware
resources like CPU, disk, memory, network, and cache. More
specifically, it returns the percentage interference of following
metrics:

• netp - physical network;
• nets - network queue;
• blk - disk;
• mbw - memory bandwidth;
• llcmr - last-level cache miss rate;
• llcocc - last-level cache occupation;
• cpu - CPU utilization;

B. Training Dataset

To taking advantage of selected machine learning tech-
niques, as mentioned before, it is mandatory to have a variety
of data as input to train the models. However, no available
datasets were found in the literature with cross-application
interference traces. To tackle this issue, a tool called Node-
Tiers1, has been used. It is a multi-tier benchmark that allows

1https://github.com/uillianluiz/node-tiers
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fine-grained personalization of resource utilization. It stresses
the computer system in various selectable ways. It was de-
signed to exercise various physical subsystems of a computer
through web requests. It can be useful to observe performance
changes across different operating system releases or types of
hardware.

In order to keep a data history from each class of interfer-
ence, we need to stress the main resource classes and store
interference metrics from it. To better explain, let us take
an example: To collect CPU interference metrics, Node-Tiers
has been set with cpu parameter, which means only the CPU
will be stressed. To collect Cache class, the cache parameter
has been set, and so on. We have created five major classes
of interference: Memory, CPU, Disk, Network and Cache.
Thus, 10,000 samples have been collected from each class
of interference, resulting in a dataset with 50,000 samples.

The interference collecting phase has been performed over
a Dell PowerEdge R740xd equipped with: 2x Intel Xeon Gold
5118 Processor, 300GB of DDR4 RAM Memory, 1TB Hard
Drive and 4x Gigabit Ethernet Interface. The adopted operating
system is Ubuntu Server 16.04 LTS (Xenial Xerus).

C. Classifier Process

The main idea of the proposed classifier is to discover inter-
ference levels from a given application based on its workload
behavior, within a given period, without user intervention.

The target application is monitored with the IntP tool,
every second. After a while, the classifier gets interference
metrics collected from IntP and uses as input data. IntP returns
the percentage of seven resources (seen in Subsection III-A)
that receive interference from an application every second.
Subsequently, the SVM technique trains the model with the
dataset previously mentioned and returns the classification
results. Since SVM is a supervised technique, it uses labeled
data from a training dataset to label the new data. After
classifying that application into target classes (Memory, CPU,
Disk, Network, and Cache), those classes are stored in queues
and become K-Means input data. We have set four possible
levels: Absent, Low, Moderate, and High. When there is no
interference activity over some of the classes, the classifier
understands it as Absent. When there is interference activity,
it is sent as input data to K-Means.

K-Means, previously trained, defines the interference levels
of each resource class. K represents classes division: Low,
Moderate, and High. Hence, its value has been set to 3 (k=3).

When a cycle of monitoring ends, interference metrics are
fed into the classifier as input and, as an outcome, it returns the
level of application’s interference over each hosted resource.
Those interference metrics refers to the interval of time that
was previously monitored, considering the target application
has dynamic and not known workload (i.e. web services).

Since interference is classified from a given time slice, every
monitoring cycle is repeated, and the classification occurs
based on the training dataset. SVM technique trains its model
in the first monitoring cycle. After that, the model does not
change, once the training dataset is always the same. K-Means

algorithm finds its centroids based on training dataset at the
beginning of its execution. Once its centroids are found, they
are always the same since training dataset is the same, as well.
The proposed classifier has been implemented adopting the
free statistical software tool R2. Table I lists the R packages
adopted to execute each of the algorithms discussed in this
paper.

TABLE I
MACHINE LEARNING TECHNIQUES AND THEIR R PACKAGES.

Technique Package Citation

SVM e1071 Meyer et al. [19]
K-Means stats R Core Team [20]

Even though R has been chosen in this study, the model
design is not limited to this specific tool, other software tools,
such as Keras3 for Python or Weka4 for Java, could also
potentially be used. One factor in choosing (or dismissing)
a machine learning platform is its coverage of existing algo-
rithms [21]. R provides flexibility for implementing several
types of model architectures.

Considering there are different machine learning techniques
in the literature, depending on the chosen one, there are
different parameters to be set. In order to: (i) not over- or
under-fitting the training model; (ii) to eliminate the user
responsibility of setting these parameters; and (iii) to find the
best set of parameters for machine learning techniques, caret5

package has been used. This package provides a standard
syntax to execute a variety of machine learning methods, thus
simplifying the process of systematically comparing different
algorithms and approaches.

Since our classifier uses application behavior through inter-
ference metrics, this model can be executed with a diversity
of interference input data. In this case, we have elected IntP,
but it is not the only tool that could be used. If for some
reason, we decide to use a different tool as interference-profiler
(i.e. PAPI6), some modifications have to be carried out. It
is important mentioning that a machine learning technique
may outcome better results than another, depending on the
data quality. All files, including source codes and results, are
available in a GitHub7 repository.

IV. EVALUATION

In this Section, an analysis is performed over the training
dataset, as well as the model validation with quality metrics
and a comparison with previous work.

2https://www.r-project.org/
3https://keras.io/
4https://www.cs.waikato.ac.nz/ml/weka/index.html
5https://cran.r-project.org/web/packages/caret/index.html
6https://icl.utk.edu/papi/
7https://github.com/ViniciusMeyer/pdp2020
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A. Dataset Analysis

For data analysis, the machine learning technique processes
the fed dataset to the system and generates a set of descrip-
tive statistics on the included features (interference metrics).
Besides several metrics, these techniques support statistics on
configurable slices of the data and cross-feature statistics such
as Correlation between features. Here, Correlation refers to
the statistical measure of the relationship between interference
metrics.

Fig. 2. Correlation of Dataset Interference Classes.

Figure 2 presents Correlation between interference metrics
collected with IntP, above mentioned. By looking at these
feature statistics, users can gain insights into the shape of the
dataset, such as:

• Different assets moving in the same direction are posi-
tively correlated; if they move together exactly, they are
perfectly positively correlated.

• Negatively correlated returns move in opposite directions.
Series that move in exactly opposite directions are per-
fectly negatively correlated.

• Uncorrelated returns have no relationship to each other
and have a correlation coefficient of close to zero.

In our dataset, there are strong positive correlations between
some metrics, such as llcocc and mbw. On the other hand, there
are negative correlations between metrics, such as cpu and blk.
It means that: (i) while Cache is used, memory bandwidth is
used as well; and (ii) while CPU is consumed, the disk is
almost not used. This information is important for K-Means
(clustering phase) since it uses those data to train and find the
optimal centroids arrangement (interference interval levels).
It is worth noting that information comes from the training
dataset, and if we change it, the correlation between resources
probably will have different behavior, strongly depending on
the data.

B. Model Validation

A model, which benefits from machine learning techniques,
has a validation step that is used to ensure the proposed models
have a good quality of classification or clustering. We validate
that a model is safe to serve when a simple premise is reached:
the quality metrics have to achieve reasonable rates.

For this purpose, we have determined two classification
quality measures [22]: (i) Accuracy is the most common
and simplest measure to evaluate a classifier. It is defined
as the degree of right predictions of a model (or conversely,
the percentage of miss-classification errors) and (ii) F1-Score
(or F-Measure), that makes a relation between Precision and
Recall metrics. We evaluate the SVM algorithm repeating
a 5-fold stratified cross-validation 10 times, with different
randomly-selected partitions. This process chooses the model
with the best validation score.

For clustering, we have defined Rand Index [23] (or Rand
Measure) as a quality measure. Rand Index is a measure of
the similarity between two data clustering. It has become the
index of choice in comparing the agreement between two sep-
arate partitions of the same dataset. This measure adjusts for
chance agreement and is not restricted to comparing partitions
with the same number of segments. Complete independence
between the two partitions yields a Rand Index of essentially
zero. Complete association yields an index of 1.0. From a
mathematical standpoint, this index is related to the accuracy
but is applicable even when class labels are not used.

All quality measures range between 0 and 1. The higher
the measured value, the better their quality. These metrics are
shown in Table II.

TABLE II
QUALITY MEASURES OF MACHINE LEARNING TECHNIQUES.

(- NOT APPLICABLE)

Measure SVM K-Means

Accuracy 0.97 -
F1-Score 0.98 -
Rand Index - 0.82

Within our study case, all quality metrics have a good
rate. This means that both machine learning techniques of the
proposed classifier induces a good training quality.

C. Comparison Against Previous Work

To evaluate the proposed classifier, we have compared it
against previous work [6], using a tool called CIAPA 8. This
tool uses an interference cost function to analyze the placement
of the applications. This function gives the total interference
cost of running an application, represented by their interfer-
ence set I′. The interference level for each resource is denoted
as follows:

g(I′res) = {I | I ∈ I′res, I > 1} (1)

Where res = {CPU,memory,disk,cache,network}. The
function g denoted in Equation 1 returns a set of values that are
greater than 1. All resource interference metrics are measured
and allocated into an interval. Depending on the interval which
they are set, the cost value varies according Table III.

8https://uillianluiz.github.io/ciapa
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TABLE III
PERFORMANCE DEGRADATION GENERATED BY RESOURCE INTERFERENCE

INTRODUCED BY LUDWIG ET AL. [6]

Level CPU Memory Disk Network Cache

Absent 1.00 1.00 1.00 1.00 1.00
Low 1.03 1.07 1.12 1.05 1.07
Moderate 1.15 1.62 1.82 1.32 1.18
High 1.33 1.74 2.25 1.57 1.26

The total interference cost is finally given by the multiplica-
tion of the cost of each resource, which is calculated by using
the function seen in Equation 2.

fi(I′) = fi′(I
′
cpu)∗ fi′(I

′
mem)∗ fi′(I

′
disk)∗ fi′(I

′
cache)∗ fi′(I

′
net) (2)

CIAPA tries to minimize the total cost by testing all possible
combinations of applications per host. Moreover, the total cost
of a placement is given by the average costs of each host.

To execute dynamic workloads, we have elected three
different applications which can perform workload variations.
The first one is a QoS-oriented e-commerce benchmark called
Bench4Q [24]. This application has features to deduce a
controllable and flexible representation of complex session-
based workloads and to simulate authentic customer behavior.
The second application is a database benchmark developed to
evaluate database performance for workloads similar to those
of Facebook’s production, named LinkBench 9. LinkBench is
highly configurable and extensible. It can be reconfigured to
simulate a variety of workloads and plugins can be written for
benchmarking additional database systems. Last application is
a decision support benchmark called TPC-H 10. It evaluates
the performance of various decision support systems by the
execution of sets of queries against a standard database under
controlled conditions.

Different workload variations can change the application’s
behavior in terms of resource usage and performance. In order
to variate applications behavior, four workload patterns have
been set for each application. We have set up the following
workloads: Increasing, Periodic, Decreasing and Constant.
This idea has been inspired by Iqbal et al. [3] study, where
Increasing starts with a low load and gradually goes to a high
load. Periodic has continuously high-to-low and low-to-high
variations loads. Decreasing is the opposite of Increasing, it
starts with a high load and gradually goes to a low load.
Constant keeps always the same workload.

Figure 3 presents the execution of Bench4Q with increasing
workload jointly with its corresponding classification of inter-
ference levels. Note that while CPU (A) and cache (C) are
more stressed, memory (B), disk (D) and network (E) are less
stressed. Disk and network resources undergo low interference
rates, on average less than 2% and 5%, respectively. In this
case, network classification is lead to absent-level while disk is

9http://github.com/facebookarchive/linkbench
10http://www.tpc.org/tpch/

categorized as low-level. However, although memory generates
low interference rates as well (less than 25% on average), its
usage is classified as high-level. It means that not only each
isolated resource is considered in the classification, but their
entire combination.

To evaluate our proposed classifier, two tests scenarios were
created:

• Scenario 1: Each of the three applications was submitted
to 4 workload patterns, resulting in 12 different variations.
These variations have been tested over different numbers
of hosts, as follows: 4, 6, 8, 10 and 12.

• Scenario 2: In this scenario, the variations from scenario
1 were duplicated, resulting in 24 variations. These work-
loads have been tested over different numbers of hosts,
as follows: 8, 10, 12, 16 and 24.

We have applied two classification methods on each work-
load: (i) Our classifier and (ii) Ludwig et al. classification.
Classification outcomes from each scenario were inserted
into CIAPA and the results are presented in Figure 4. It
is interesting to note that in all experiments our solution
reaches lower placement costs, creating a workload-aware fine-
grained classification. In both scenarios, with the smallest
number of hosts, the largest cost difference has occurred.
These were the cases that happened more cross-application
interference. Resulting in greater performance degradation
among co-located applications. As long as the number of
hosts grows, the difference between placement costs decreases.
Therefore, resource concurrency among co-hosted applications
tends to decrease as well. Only with the largest number of
hosts, both classification methods, in both scenarios, have
achieved the same values. This happened because each host
ran only one application instance. Since there is no incidence
of cross-application interference, the cost function has been
led to the minimum.

Fig. 4. Comparison of Average Placement Costs.

V. RELATED WORK

Consolidating multiple applications in physical machines,
with virtualization techniques, has become a standard to
cloud providers. This consolidation, however, may result in
performance-related problems such as resource interference.
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Fig. 3. Bench4Q execution with increasing workload. Interference levels classification: CPU-moderate, Memory-high, Cache-high, Disk-low, Network-absent.

In order to reduce the effects of such problems, Ludwig et
al. [6] propose placement algorithms based on interference
and affinity policies and evaluate them for different workload
scenarios. As results, they achieve a reduction in response time
of 10% when compared to interference strategies and up to
18% when considering only affinity strategies.

Jersak et al. [7] devised a simple interference model to be
used as a proof of concept with its proposed virtual machine
placement strategy. In this model, the level of interference
is defined as a function of the number of virtual machines
co-executing in a physical machine. So, the model considers
that the higher the number of virtual machines, the higher the
interference level will be. They also have verified that each
resource is affected differently. An example is the addition
of many CPU intensive applications generates performance
degradation of 14%. On the other side, for memory and disk
I/O intensive applications, the performance degradation was
as high as 90%.

Hood et. al. [25] quantified the costs of contention for
resources in the memory hierarchy by utilizing a differential
performance analysis methodology. Intending to measure the
impact of shared multicore resources and to consider how
contention affects running applications it was compared MPI
processes running in different patterns, thus isolating the ef-
fects of resource sharing. Considering the Non-Uniform Mem-
ory Access (NUMA) and Uniform Memory Access (UMA)
processors core configurations, the performance difference
between two configurations is translated into a ”penalty” for
increased sharing of a resource.

Performance degradation and predictability may be caused
by running multiple applications with multiple cores shar-
ing the last level on-chip cache (LLC). Aiming to mitigate
these problems C.-J. Wu and Martonosi [26] quantified the
significant degree of intra-application interference in current
workloads and systems. The authors propose insertion policies
strategies for reducing each major sources of LLC interference
which improves user IPCs in 19%. Furthermore, the authors
propose a prefetch manager which eliminates as many as 25%
of LLC misses compared to the system default.

Dorier et. al. [27] proposed the Cross-Application Layer
for Coordinated I/O Management (CALCioM) framework.
This framework integrates the interfering, serializing, and

interrupting coordination strategies aiming to mitigate the I/O
interferences in HPC systems by exploiting cross-application
coordination. Through CALCioM, the most appropriate one
for a targeted machine-wide efficiency, which means that an
application will pause its I/O activity for the benefit of another
application.

Jin et al. [28] classified applications in three SLLC access
classes called (i) cache-pollution, (ii) cache-sensitive and (iii)
cache-friendly. These classes were further used to propose a
virtual machine placement strategy to alleviate interference by
co-locating applications with compatible SLLC access profiles.
Their work claimed that cache-pollution applications should be
preferably co-located with cache-friendly applications rather
than being co-located with cache-sensitive ones.

Alves et al. [29] propose a multivariate and quantitative
model able to predict cross-application interference level that
considers the number of concurrent accesses to SLLC, DRAM
and virtual network, and the similarity between the amount
of those accesses. An experimental analysis of proposed
prediction model by using a real reservoir petroleum simulator
and applications from a well-known HPC benchmark showed
that this model could estimate the interference, reaching an
average and maximum prediction errors around 4% and 12%,
and achieving errors less than 10% in approximately 96% of
all tested cases. The authors claim that the cross-application
interference problem is related to the amount of simultaneous
access to several shared resources, revealing its multivariate
and quantitative nature.

VI. CONCLUSION AND FUTURE DIRECTIONS

Previous and related work show that interference generated
by co-hosted applications concurrently accessing shared re-
sources in virtualized cloud environments can lead to sig-
nificant performance degradation. Detecting the interference
source is the first step to reduce resource contention. In this
study, we have presented an interference-aware application
classifier, focusing on dynamic workloads. Our solution com-
bines two well-known machine learning techniques, namely
Support Vector Machines (SVM) and K-Means, to automat-
ically identify stressed resources by an application without
the need of predefined intervals, that have to be empirically
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tuned, and are unable to properly handle applications which
have dynamic workloads patterns.

In preliminary experiments, we evaluated the proposed
machine learning techniques in three quality metrics: Accu-
racy, F1-Score and Rand Index, observing rates over 80%.
Therefore, these techniques are able to effectively indicate the
level of interference the application generates for each resource
so that the proposed classifier creates a workload-aware fine-
grained classification. In addition, we have compared our
solution with a different classification approach, from previous
work, and have verified that our classification method results
in more efficient placement decisions. For the tested scenarios,
placement efficiency improved by 23% on average, reducing
resource consumption and also performance degradation at
application level.

In future work, we expect to evaluate the influence of
applications interference over time. We are interested in inves-
tigating the use of time-series segmentation algorithms, such
as sliding windows, to find the best intervals to dynamically
make placement decisions.
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