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Abstract—Blockchain technology has been applied to various
applications (e.g., smart buildings and smart cities) that typically
run in an environment of smart devices, known as Internet-of-
Things (IoT). To support these applications, different blockchain
architectures, data structures and consensus algorithms have
been proposed, tailored to IoT. One such proposal, appendable-
block blockchain, is a promising blockchain framework for use
in IoT environments. It provides a scalable data structure that
allows parallel insertions between independent nodes. However,
it has some limitations, in particular related to the possible
eclipse attack by malicious gateways and the lack of consensus
for transactions insertion. To solve these issues, we propose a
new consensus mechanism for appendable-block blockchains,
called context-based consensus. Using context-based consensus,
information can be inserted in parallel across devices (called
context) while ensuring that light-weight consensus is performed
to guarantee that a transaction is well-formed and it is placed in
the correct order. We implemented context-based consensus and
show that using multiple contexts reduces latency and increases
the throughput of transaction insertions when compared to
consensus without contexts or using single transaction consensus.

Index Terms—Consensus, Blockchain, IoT, appendable-block

I. INTRODUCTION

Blockchain technology is being adopted to facilitate decen-

tralization and ensure security in areas such as education [1],

healthcare [2], general Internet-of-Things (IoT) [3], real estate

registries [4] or supply chains [5]. The underlying infrastruc-

ture in these applications is the Internet of Things and different

blockchain architectures [6] [7] and data structures [8] [9]

have been proposed to deal with the challenges offered by

IoT, including security challenges such as limitations to the

hardware capacity, sensitivity of device information, or the

use of devices in botnets [10].

Appendable-block blockchain [11] is such a blockchain

proposal for IoT, proposed for permissioned and private IoT

environments. Appendable-block blockchains use an hierarchi-

cal architecture and a bespoke data structure (with separated
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insertion of blocks and transactions), which allows to insert

transactions in parallel across nodes. In appendable-block

blockchains, consensus is only performed when creating and

inserting a new block for a node [12]. Once the block is created

for a specific node, the node can attach transactions to the

block. There is no consensus to insert such transactions in

appendable-block blockchains. That is, nodes have to trust

its gateway - a full node that controls the access to other

nodes to the blockchain - to insert valid transactions in their

blocks. In addition, appendable-block blockchains assume that

devices connect to only one gateway at a time. Consequently,

appendable-block blockchains are susceptible to misuse and

attacks through malicious or tampered gateways. Such gate-

ways can compromise the insertion of information (e.g., insert

an invalid execution of a smart contract) and can eclipse

devices or hide devices information (not inserting that into

the blockchain).

To tackle these problems, we propose a new consensus

mechanism for appendable-block blockchains called context-
based consensus. This mechanism allows parallel insertion

aggregated in independent contexts. Each context can have

different nodes and can be defined by the consortium of

organizations that control the blockchain. Every transaction

inserted in the blockchain has to pass through a validation pro-

cedure and agreement between nodes, providing trust among

nodes. Additionally, by using a parallel approach (separated

in contexts), this context-based consensus can increase the

throughput of inserted transactions when compared to single

context insertion (traditional consensus). As a consequence of

parallelism, this consensus can help reduce the latency to insert

transactions in the blockchain.

We evaluate the performance of context-based consensus

through a prototype implementation. In the evaluation, we use

a smart building scenario, composed of 1,000 devices and

10 gateways and compare the performance for two different

scenarios, under various transaction pool configurations and

two distinct update approaches. The results show that using

multiple contexts can reduce latency and increase the through-

put of transaction insertions when compared to consensus for

single transaction insertion or consensus for single context,

achieving a total latency under 550ms and throughput above
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100 transactions per second.

II. BACKGROUND - APPENDABLE-BLOCK BLOCKCHAINS

Due to hardware limitation (memory and processing power),

IoT devices are susceptible to attacks that expose sensitive

information [13], lead to catastrophic situations [14], or be

tampered with to be used as a botnet [15]. In order to solve

many IoT security issues, Christidis and Devetsikiotis [10]

proposed the adoption of blockchain in IoT.

Many proposals presented different ways to use existing

blockchains in IoT, in particular using a hierarchical archi-

tecture [6] or using blockchain as a service [7]. How-

ever, for many applications that use IoT devices, latency

and throughput are important factors that should be con-

sidered when designing a solution [3]. Consequently, con-

sensus algorithms [16] [17] [12] were adapted to existing

blockchains and new data structures, such as appendable-block

blockchains [11] and directed acyclic graphs (DAG) [9], were

proposed to be used in IoT environments. In our work, we

intend to improve appendable-block blockchains to solve some

security issues and to provide a new consensus mechanism to

the transaction insertion in the appendable-block blockchains.

Appendable-block blockchain was proposed to be used in

IoT environments using a different data structure that allows

the insertion of transactions after a block was inserted in

the blockchain [8] [11]. It adopts a layered IoT architecture,

composed of devices, gateways and service providers. In

this architecture, devices produce data and send them to the

gateways who append these data to the blockchain. Devices

can be understood as light-nodes in the blockchain, i.e., they
do not store blockchain data. Gateways are responsible for

controlling the access and insertions in the blockchain. Service

Providers can be understood as middleware to access the

blockchain information from the gateways.

Similar to other blockchains, appendable-block blockchains

have transactions stored inside blocks. The difference is that

every node (device, gateway or service provider) has a unique

block assigned to it, i.e., identified by its public key. The block
for a node is created and attached to the blockchain when

the node submits the first transaction (it can be understood

as a genesis transaction). After having the block attached to

the blockchain, the node can insert new transactions into it,

resulting in a chain of transactions, e.g., each transaction is

linked to the previous one. More details in Fig. 1.

To handle block insertions, appendable-block blockchain

allows to use different consensus algorithms. For example,

it can use simplified witness-based insertion or Practical

Byzantine Fault Tolerance (PBFT) [12]. Every time that a

new device (a device that does not have its public key in

a block) tries to connect to a gateway, it starts a consensus

algorithm to insert a new block. After the block is inserted,

the gateway can update that block with transactions sent

by the device without committing the consensus algorithm,

leading to many issues such as: (i) the insertion of invalid

data; (ii) the inconsistency in the block’s data when a device

connects to multiple gateways at the same time; (iii) as devices
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Fig. 1: Appendable-block blockchain block insertion and trans-

action insertion (adapted from [12]).

are connected to only one gateway per time, devices can

be eclipsed by malicious gateways, i.e., the communication

and information produced by a device is intercepted by the

gateway. To solve these security issues, we present in Section

III a proposal for a context-based consensus algorithm.

III. CONTEXT-BASED CONSENSUS ALGORITHM

Currently, SpeedyChain [11] - first proposed appendable-

block blockchain - presented a solution that allows inserting

new transactions into already inserted blocks. The consensus

is only performed when creating and inserting new blocks, and

there is no consensus to insert transactions into blocks [12].

However, some issues were not properly addressed by the

current version of SpeedyChain. Firstly, current proposals of

appendable-block blockchains have a communication protocol

that allows a device to connect to only a single gateway.

As a consequence, transactions produced by devices can be

omitted by a malicious gateway. Secondly, the consensus is

performed only to insert new blocks, which means that invalid

transactions can be included. Finally, scalability can be a

problem as the usage of consensus in the current appendable

block blockchain would be performed individually for each

transaction, leading to latency issues as we will present in the

evaluation.

We propose a context-based consensus algorithm to address

the limitations of the current version of SpeedyChain. In

particular, to solve the first issue, we propose that every

device should connect to a minimum initial set of gateways.

When a device connects to multiple gateways, this eliminates a

malicious gateway from cheating as other gateways will detect

it, differently to what would happen if a device was connected

to a single gateway. A simplified version of the connection

protocol is presented in Fig. 2. The main steps are described

as follows:

1) Device a (represented Dev a in Fig. 2) sends a Hello

message with its own public key Dev a Pubkey, e.g.,
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for encryption using the asymmetric cryptography, to

gateway A (Gw a);
2) Gw a verifies if Dev a PubKey is in a block header of

the blockchain, i.e., a block for that device was inserted

previously in the blockchain:

a) In the case that the Dev a PubKey is not in a block

header and the device is allowed to access the network,

Gw a starts a consensus to include a new block for Dev
a containing its PubKey;
i) Other gateways (Gw b and Gw c in Fig. 2) verify

the proposed new block, they vote (signed voting)

and send the result back to the gateway that started

the consensus;

3) After the consensus (if the block is considered valid),

the block containing Dev a PubKey is inserted in the

blockchain. Then, if Dev a PubKey is in the blockchain,

Gw a and Dev a can establish an encrypted channel using

symmetric cryptography;

4) After a device connects to a gateway, they can exchange

information. Our proposal allows a device to send the

same transaction to multiple gateways. These multiple

connections with gateways can help to avoid a device

from being eclipsed by a tampered gateway. Allowing

the connection to multiple gateways is an improvement

to appendable-block blockchain, as discussed previously.

Also, it is important to note that devices’ transactions

have a timestamp and a digital signature.

5) Any update from a device is a transaction in the block-

chain.

Fig. 2: Device connection simplified protocol.

As mentioned previously, every device can connect and send

its update (a new transaction) to multiple gateways at the same

time. For instance, Dev a is connected to three gateways (Gw

a, Gw b and Gw c), as depicted in Figure 2.

As presented previously, appendable-block blockchains al-

low nodes to insert transactions into their own blocks at the

same time, independently from each other. However, there are

two remaining issues. One of them is that the current version of

SpeedyChain does not present consensus at transaction level,

i.e., a gateway - to which a device is connected - inserts the

transaction in the device’s block ledger and sends it to the other

gateways. In this case, different gateways can insert the same

transaction in the blockchain (duplicating the same transac-

tion), or in the worst case, propose an invalid transaction, e.g.,
wrong result of smart contract execution. The other issue is

that using one consensus procedure for each inserted transac-

tion, without changing the way how transactions are inserted

in the current version of appendable-block blockchains, can

lead to scalability problems. A solution to these problems is

to separate devices into different contexts. Consensus will be

executed inside each context, and then propagated to gateways

from different contexts. Thus, a new field called context should

be added to the Block Header (presented previously in Fig.

1. This will allow to define that a device will participate in

a specific context. The definition of which context a device

will be part of is made by gateways during the device’s block

insertion. The rules to define this can be based on the type

of information handled (gas sensor, lightning sensor, etc.) or

other definitions that an organization/consortium will agree

upon previously. In our proposal, we assume that the definition

of contexts is based on existing predefined rules.

Context-based consensus consists of different contexts,

where each context contains a number of devices. Consensus

is performed in a context independently from other contexts.

Consequently, each context can have different consensus or

different parameters to be considered to append new informa-

tion in the blockchain. Gateways can participate in consensus

of different contexts, allowing them to participate in different

consensus mechanisms (see Fig. 3). For example, Context Blue

(CB) is composed of a set of gateways {GW A, GW B, GW
C, GW D, GW E}, Context Yellow (CY) = {GW E, GW F,
GW G, GW H, GW I, GW J}, and Context Red (CR) = {GW
E, GW F, GH K, GW L, GW M, GW N}. In this example,

the consensus algorithm used in CB can be different from the

consensus algorithm used in CY and CR.

Fig. 3: Gateways in three different contexts.
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After a consensus is performed inside a context, a gateway

can share/propagate the new consented set of transactions to

the gateways from the other contexts. For example, after a

consensus in CR, GW F can share new information from CR
with gateways in CY. This can be performed in two different

approaches:

• (i) using the existing approach by sending the transactions
with signed votes to a list of known gateways that do

not participate in the context in which the consensus was

performed, e.g., GW D in Fig. 3 can share a set of valid

transactions from CB with gateways to known gateways

from CR. Every gateway that receives a transaction from

known devices can share that with other gateways;

• (ii) using a new approach by sending transactions from a

context or specific devices when they are requested by a

gateway (on demand), e.g., if Gw I wants to ensure that

it has an updated view from a device from CB.

Approach (i) is similar to what is adopted in dBFT [18]

and any other consensus algorithm that has a limited group

of nodes performing consensus. This approach maintains an

updated view (but not synchronous) of all transactions from

every node. One issue that this approach can have is related

to scenarios of a large amount of contexts and, consequently,

many messages are exchanged between gateways to update all

gateways’ ledgers. However, the number of messages will be

far less than performing the consensus by all gateways in the

blockchain.

Approach (ii) can be adopted as a mechanism to avoid

many update messages and, also, it can be used as a mecha-

nism to update gateways that do not participate in the same

context when requested. As the gateways do not participate

in the consensus for that context, the information about

transactions may not be used by that gateway. Additionally,

this approach can be used to reduce the amount of data that is

stored in each gateway. These data can be required if a gateway

needs to use them for some processing, decision making, or

they are requested by a Service Provider. This approach does

not affect the replication of block headers, but can compromise

the reliability and the number of copies of transactions.

Each context can have different configurations or different

consensus algorithms. Each round can be defined by a set of

transactions, that can be designed in different configurations:

• (a) one transaction (from that context) per time;

• (b) a set of transactions (from that context) generated

during the time required to perform the previous context

without a limit of transactions;

• (c) fixed maximum number of transactions per consensus.

Configuration a presents the same configuration used by

the current version of appendable-block blockchain to insert

transactions, i.e., one transaction per time. This configuration

can have a reduced latency to process the transaction for a

device in a scenario that gateways are not overloaded. It is

a simple approach, and each gateway can start a round of

consensus. However, it can lead to a high number of consensus

performed in a scenario with a high number of devices or a

high rate of updates from devices from a context. In the end,

the latency can be increased by the bottleneck in gateways.

Configuration b presents the same configuration available

in many blockchain, i.e., a limited set of transactions for

each consensus. This configuration can reduce the number

of consensus performed in the same context and, as a con-

sequence, reduce the number of messages. However, it can

lead to more time spent to verify all transactions and, as

a consequence, more time can be required to perform the

consensus. The gateway that starts the consensus (also known

as leader) has to use all transactions produced in the context.

However, this approach can increase the number of messages

exchanged before the consensus (every gateway will have to

send proposed insertions to the leader when requested). A

problem with this approach is that overloading the gateways

with many new transactions can lead to a time-consuming

consensus.

Configuration c presents an alternative configuration,

which may help to avoid high latency (or starvation) of trans-

actions in overloaded situations. However, this configuration

can increase the latency to insert a single transaction, but the

number of messages exchanged will be reduced. The gateway

that starts the consensus (also known as leader) has to use a

limited set of transactions from the context. A problem that

can happen is when too many transactions are produced in a

small amount of time, i.e., this approach can have a problem

to handle an overloaded situation.

A context-based approach can reduce the number of mes-

sages exchanged to perform consensus for the transactions.

However, some issues can happen when using this approach.

For example, gateways that participate in many contexts can

have issues regarding the high number of consensus messages,

e.g., GW E (in Fig. 3) participates in all contexts. A maximum

amount of contexts for each gateway should be defined. Also,

scenarios in which a small number of gateways participate

in the consensus for a particular context is susceptible to

Sybil and 1% attacks, similarly to shard approaches [19] or

consensus with limited gateways [18].

Lunardi et al. [12] discussed the usage of PBFT in

appendable-block blockchains to insert new blocks. That ap-

proach can still be used to insert new blocks, i.e., having
different consensus to block insertion similarly to the ones

used for transaction insertion. In the next subsections, we

present the algorithms for each different configuration.

A. Configuration a

New data that are produced by a node from a specific

context (Cj) will be processed by a gateway (Gwi) from that

context, and it will be sent for a consensus. The prepareCon-
sensus(Tm) and commitConsensus(Tm) functions used can be

different for each scenario. Although, we assume, in this work,

that operations are the same as used in PBFT [20], i.e., every
node receives a copy of the transaction in the prepare phase,

and sends the vote to every other gateway (in the same context

Cj) approving or not the new transaction on commit phase.
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Algorithm 1 Perform transaction consensus - Config. a

Require: Infom and Di
1: validInfo← verifyInfo(Infom)
2: if validInfo is true then
3: Tm ← createTransaction(B, Infom, NPK i)
4: for all Gwi in Dj do
5: prepareConsensus(Tm)
6: end for
7: for all Gwi in Dj do
8: responseList← commitConsensus(Tm)
9: end for
10: if |positive(responseList)| > minResponses then
11: addTransaction(Tm))
12: end if
13: end if

B. Configuration b

A gateway Gwi will receive new data produced by a node

from a specific context Cj. After processing that data, Gwi will

send it to a transactions list (or pool) and then process it in

the next consensus.

Algorithm 2 Send transactions pool - Config. b and c

Require: Infom and device NPK i

1: validInfo← verifyInfo(Infom)
2: if validInfo is true then
3: sendTransactionPool(Infom, BHb)
4: end if

Differently from Configuration a, we assume, in Config-
uration b, that operations prepare and commit use a set of

transactions that will be voted as valid or not. It is important to

note that variable z (line 1 in Alg. 3), which represents the limit
of transactions, is set to zero (no limit is used in Configuration

b). Also, we assume that a leader is elected for each consensus

round. Similarly to Configuration a, we based the prepare and
commit phases in what is adopted by PBFT [20]. Thus, every

node receives a copy of the set of transactions in the prepare

phase. After that, on the commit phase, every node sends the

vote (approving or not each transaction in the set) to all other

gateways (in the same context Cj). As a result, there is a list

of votes (from all gateways) for each transaction.

C. Configuration c

Similar to Configuration b, all data produced by a device

from a specific context Cj will be processed by Gwi from that

context. Also, a list will be processed in the consensus (Alg. 2).

We assume, in Configuration c, that operations prepare and

commit use a set of transactions with a predefined limit (z
in line 1 in Alg. 3) that will be voted as valid or not. Also,

we assume that a leader is elected for each consensus round.

Also, every time that a consensus is finished a new one will

be started but with a maximum amount of transactions per

time, i.e., the consensus is based on the time for each round

but with a limited amount of z transactions.

IV. EVALUATION

In order to evaluate context-based consensus algorithms

in appendable-block blockchain, we performed testing with

Algorithm 3 Perform transaction consensus - Config. b and c

Require: transactionPool and C j

1: setTm ← getTransactions(transactionPool, z)
2: validInfo← verifyInfo(Infom)
3: if validInfo is true then
4: Tm ← createTransaction(B, Infom, NPK i)
5: for all Gwi in Dj do
6: prepareConsensus(setTm)
7: end for
8: for all Gwi in Dj do
9: responseListperT ← commitConsensus(setTm)
10: end for
11: for all T k in responseListperT do
12: if |valid(responseList)| > minResponses then
13: addTransaction(T k))
14: end if
15: end for
16: end if

a different number of contexts, different configurations and

different approaches for updating the nodes. Also, we used

the Core Emulator [21] to create a container-based network

to emulate network equipment, gateways and devices. For all

executed tests, a network with ten (10) gateways and 1,000

devices was adopted in order to emulate a smart building.

We present the description scenarios used in the evaluation

in Table I, the configurations used in the context-based con-

sensus in Table II and the approaches used to propagate the

transactions after consensus in Table III. The emulation was

performed in a Virtual Machine (VM) with 6-core processor,

16GB of memory and 64MB of graphics memory running

Ubuntu 18.04 operating system using a Virtual Box hypervisor

over a Macbook Pro with 2.3 GHz 8-Core Intel Core i9

processor, 32GB DDR4 memory.

TABLE I: Evaluated scenarios.

Scenario Description

1
1,000,000 transactions sent by 1,000 devices, varying from
1 to 10 contexts, where all gateways participate in all contexts

2
1,000,000 transactions sent by 1,000 devices, varying from
1 to 10 contexts, each context having exactly 5 gateways
(gateways can participate in more than one context)

TABLE II: Evaluated configurations.

Configuration Description
A All contexts using PBFT for a single transaction

B
All contexts using PBFT with no limit of transactions
per consensus

C
All contexts using PBFT with limited number of
transactions (100, 1000, and 10000) per consensus

TABLE III: Evaluated approaches.

Approach Description

I
After the consensus, transactions are sent to all gateways
that do not participate in the context

II
After the consensus, transactions are not sent to gateways
that do not participate in the context

In Scenario 1, we intend to show how multiple contexts can

perform when all gateways participate in all contexts. This is
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to show the most demanding scenario due to high processing

and communication demand. In Scenario 2, we intend to show
the impact of limiting the number of contexts that a gateway

can participate in on latency and throughput. Unlike Scenario
1, in this scenario it is not possible for a gateway to participate
in all contexts as there are only five gateways in every context.

Hence, it is possible to have some gateways that participate in

multiple contexts.

Also, we evaluated the 3 configurations proposed in Sec-

tion III and presented in Table II. These different configura-

tions were evaluated to show how the number of transactions in

each consensus affects the throughput and latency in context-

based consensus. Finally, as presented in Table III, we used 2

different transaction update approaches: inserting transactions

in all gateways that do not participate in the consensus, or not

inserting them while they are not requested. These approaches

were evaluated only for Scenario 2. Thus, we used only the

approach I code for Scenario 1 since all gateways belong to all

contexts, i.e., they do not need any additional updates. Conse-
quently, we executed 150 different tests, as a result of different

combinations of scenarios, transaction limit configurations in

each context, different transaction propagation approaches and

a different number of contexts used in each test.

A. Results

We used two metrics to evaluate context-based consensus

for transactions in appendable-block blockchains, i.e. latency
and throughput.

1) Latency results: latency was calculated based on the

time spent from creating a transaction to inserting it in the

blockchain. Consequently, the latency captures the whole time

spent in different processes such as the time it takes to

propagate the transaction to gateways, the time the transaction

spends in the transaction pool, and the time spent in the

consensus. It is important to note that the evaluation was

performed in a local network, where the communication times

are reduced.

We can observe in Table IV the average (with the 95% con-

fidence interval) transactions latency (in milliseconds) in all

scenarios, approaches and configurations. Hence, lower latency

results are better. Due to space limitation, we present only the

results for 1, 2, 4 and 8 contexts. The first row indicates the

scenario (1 or 2), the configuration (A, B and C, where C can

take 100, 1,000 and 10,000 transactions) and update approach

(I or II). For each scenario/configuration/approach, we collect

results from 1 to 10 contexts (for one context, all devices

in that context; for two contexts, half of the devices in each

context; and so on).

We can observe that when using only one context (in all

scenarios/configurations/approaches), the average latency is

always higher than 10,000ms (10 seconds), indicating that

using only a single context, i.e., only one consensus for all

transactions, is not sufficient to insert a transaction before a

new one is produced by the same device (every 10 seconds).

Additionally, considering two or more contexts, for almost all

cases configurations/approaches, scenario 1 presented worse

results than evaluation over scenario 2. For scenario 1, the
lowest transaction latency was 706.5±1.3ms using two con-

texts with Configuration C (with limit of 1,000 transactions).

This value is more than 463% of the best result (152.5±0.3ms)
in scenario 2 (four contexts with Configuration c with limit

of 1,000 transactions and update approach II). Consequently,
the results show that the number of gateways in each context

can impact the latency.

TABLE IV: Latency (in milliseconds) to insert transaction.

Scen.Conf.Appr. Number of Contexts
1 2 4 8

1.A.I 284867.0±336.1 150477.9±577.2 48413.7±407.1 189562.5±731.9
1.B.I 168544.0±245.3 881.1±1.3 906.9±2.5 14328.5±32.1
1.C-100.I 287921.4±544.4 2402.2±5.4 1152.5±3.8 4106.3±8.3
1.C-1000.I 210587.2±359.4 706.5±1.3 734.2±2.2 5160.3±27.2
1.C-10000.I 122431.8±353.8 895.8±2.1 762±1.8 1661±3.9
2.A.I 402376.2±1294.3 43833.7±194.5 31170.9±217.8 5714.2±49.0
2.B.I 70143.3±226.3 256.7±0.6 2507.3±4.6 4455.8±18.1
2.C-100.I 189105.4±345.6 937.1±2.5 1186.9±2.8 1619.8±15
2.C-1000.I 145247.4±262.9 416.7±0.9 216.6±0.6 303.4±2.2
2.C-10000.I 42636.7±117.4 305.8±0.7 168.0±0.4 363.2±1.2
2.A.II 214997±804.3 1407.9±4.4 686.9±4.4 897.3±5.6
2.B.II 118258.2±484.4 670.0±2.0 924.6±2.3 1095.4±6.2
2.C-100.II 30212.2±170.7 309.3±0.8 306.1±2.8 261.7±0.7
2.C-1000.II 46555.1±275.6 173.3±0.6 152.5±0.3 430.2±1.5
2.C-10000.II 56736.4±89.3 169.5±0.4 164.6±0.4 302±0.8

In order to help to better understand the differences between

transaction limit configurations and update approaches, we

present the results separated in scenarios in Fig. 4 using

logarithm values. We can observe that best results for two or

more contexts are achieved by Configuration c with 1,000 and
10,000 transactions, represented respectively by yellow (with

diamond) and green (with square) lines. In special for both

evaluations over scenario 2, the average latency was under 1

second for two or more contexts using Configuration c with

1,000 and 10,000 transactions. Additionally, approach II had
better general results than approach I. Also, it is important to
note that approach II using Configuration c (100, 1,000 and

10,000) achieved an average latency lower than 550ms for 2

or more contexts. Thus, we can assume that a context with

less gateways (scenario 2), with a configuration with a limit

between 100 and 10,000 transactions, and updating by request

can have a reduced latency.
2) Throughput results: in this evaluation, we considered

as throughput the rate of insertion of transactions per second

(tps) in the blockchain. As expected, when considering only

one context, the throughput was considerably lower than with

multiple contexts. Similar to what happened to latency, best re-

sults were obtained when less gateways per context were used

(scenario 2). As a comparison, the best result was obtained

when using three contexts, in scenario 2, with Configuration c
with limit of 100 transactions and approach II (not updating),
having a consensus throughput of 154.8±1.4tps.
It is important to note that throughput is affected by many

factors. The number of transactions is an important aspect, for

one transaction in each consensus (Configuration a) means
a consensus procedure that will be performed for just one

transaction. Although, a high number of transactions in each

consensus means more time to verify and perform consensus.
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(c) Scenario 2, approach II

Fig. 4: Average latency for each transaction in context-based consensus.

Additionally, increased load on gateways during parallel exe-

cution of consensus and more messages exchanged (during the

consensus or receiving updates from different contexts) can

affect the performance. Furthermore, it is important to note

that a higher rate of transactions would affect the throughput.

However, in all evaluation instances we used the same number

of devices, gateways and transactions in order to have the same

parameters for all 150 different performed tests.

TABLE V: Transactions throughput (transactions per second)

using context-based consensus.

Scen.Conf.Appr. Number of Contexts
1 2 4 8

1.A.I 30.264905±0.4 79.4±0.4 84.6±0.5 80.4±0.6
1.B.I 30.4805145±2.0 92.2±1.5 91.7±0.9 79.9±1.2
1.C-100.I 37.2878515±1.5 85.4±1.4 93±0.8 71.5±2.3
1.C-1000.I 29.6682895±2.1 92.4±1.3 89.7±1.1 81.4±0.9
1.C-10000.I 29.8±0.4 60.6±0.7 99.4±2.0 78.6±3.2
2.A.I 19.3±0.2 85.2±0.7 105.9±1.3 127.7±1.5
2.B.I 6.4±0.6 123.9±1.2 102.7±0.8 40.6±0.6
2.C-100.I 26±1.0 112.1±1.7 121.4±2.5 133.3±2.4
2.C-1000.I 8.1±0.7 122.6±1.1 108.6±0.8 99.5±0.6
2.C-10000.I 6.2±0.5 126.1±1.6 113.1±0.8 97±0.7
2.A.II 36.4±0.2 75.7±0.4 87.3±0.4 78.8±0.3
2.B.II 13.5±1.2 91.2±2.0 96.2±2.0 54.8±1.0
2.C-100.II 41.5±1.2 133.2±1.1 125.8±0.9 108±0.6
2.C-1000.II 30.7±0.9 134.9±1.1 124.7±0.9 114.9±0.8
2.C-10000.II 11.1±1.4 145.3±1.6 123.1±0.8 99±0.6

Fig. 5 shows the impact of the number of contexts, con-

figurations and update approaches on the throughput. We

can observe that increasing the number of contexts can im-

prove throughput. This shows that parallelism of insertion

using different contexts can help to improve appendable-

block blockchains performance. Additionally, between 2 and

6 contexts in scenario 2 (for both approach I and II) and using

configuration C (100, 1,000 and 10,000 transactions limit) the

throughput is above 100 transactions per second.

V. DISCUSSION AND THREATS TO VALIDITY

The evaluation presented in Section IV showed that the

context-based approach can present improvements both over

a single context (or non-existence of contexts) and to a single

transaction insertion in the blockchain. Also, our evaluation

shows that context-based consensus can guarantee lower la-

tency and higher throughput. However, there are some threats

to validity of our evaluation since the evaluation tests were

performed in a controlled environment.

The first internal threat is the instrumentation used to

perform the tests. Mainly, the hardware used to perform

the evaluation can have an impact on the presented results

as different hardware and network configurations lead to

different results. However, the difference between scenarios,

configurations and approaches is expected to be reproduced

in any adopted hardware. We intend to consider different

hardware in future work. The second internal threat is related

to the selection of values used to set the scenarios. A different

number of gateways and devices, as well, different rate of

transactions per second can influence the obtained results.

Moreover, smart contracts transaction on appendable-block

blockchains (as proposed by Nunes et al. [22]) can lead

to different execution results. In future work, we intend to

evaluate different set of scenarios, e.g., larger scenarios with
higher transaction rate with smart contracts executions.

Also, context-based consensus can present some security

issues, particularly due to the limited number of gateways

controlling the consensus in each context. This issue is similar

to the issues in the adoption of shards in blockchains [19].

Different from many shard approaches, all block headers are

kept by all nodes in context-based consensus for appendable-

block blockchains. This can reduce the impact of an attack,

but further investigations will be discussed in future work.

VI. FINAL CONSIDERATIONS AND FUTURE WORK

In this paper we propose and present context-based con-

sensus, which supports consensus at the transaction level as

well as allowing devices to connect to multiple gateways. By

doing so, the context-based consensus can solve two existing

issues in appendable-block blockchains, namely the eclipse

attack performed by a single malicious gateway and the lack

of transactions consensus.

To evaluate the performance of context-based consensus,

we implemented a prototype. The evaluation shows that per-

formance is good, achieving a total latency under 550ms

and throughput above 100 transactions per second. These

results are influenced by the number of gateways in each

context, the number of transactions per consensus, and the
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(c) Scenario 2, approach II

Fig. 5: Average transactions consensus throughput (transactions per second inserted in the blockchain).

way appendable-block blockchain in each gateway is updated

with transactions from other contexts. The best results (latency

under 550ms, achieving average results lower as 152.5m) were

obtained using multiple contexts with a limited number of

gateways and a limited number of transactions per consensus

round. Throughput of over 100 transactions per second relied

on PBFT as consensus algorithm. We also showed that using

multiple contexts to insert transactions leads to lower latency

than a single or no context. The consensus of a single

transaction per time (as in the previous versions of appendable-

block blockchains) tends to result in prohibitively high latency.

As future work, we intend to scale our context-based con-

sensus by increasing the number of gateways and devices, so

that it can be used in different IoT environments. Further dis-

cussion should be performed considering different consensus

algorithms as well, detailed analysis and impact of different

attacks, such as Sybil and 1% attacks.
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