
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

MATEUS DA SILVEIRA COLISSI

TEAMUP: CONVERSATIONAL AGENTS TO SUPPORT
COORDINATION IN GROUPWORK

Porto Alegre
2021

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

TEAMUP: CONVERSATIONAL
AGENTS TO SUPPORT

COORDINATION IN
GROUPWORK

MATEUS DA SILVEIRA COLISSI

Master Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Master in Computer
Science.

Advisor: Prof. Dr. Rafael Heitor Bordini
Co-Advisor: Prof. Dr. Viviana Mascardi

Porto Alegre
2021

MATEUS DA SILVEIRA COLISSI

TEAMUP: CONVERSATIONAL AGENTS TO
SUPPORT COORDINATION IN GROUPWORK

This Master Thesis has been submitted in
partial fulfillment of the requirements for the
degree of Master in Computer Science, of
the Computer Science Graduate Program,
School of Technology of the Pontifical
Catholic University of Rio Grande do Sul

Sanctioned on March 24, 2021.

COMMITTEE MEMBERS:

Prof. Dr. Renata Vieira (PPGCC/PUCRS)

Prof. Dr. Jomi Fred Hübner (PGEAS/UFSC)

Prof. Dr. Viviana Mascardi (DIBRIS/UNIGE- Co-Advisor)

Prof. Dr. Rafael Heitor Bordini (PPGCC/PUCRS - Advisor)

I dedicate this work to my family.

“Computer science is no more about comput-
ers than astronomy is about telescopes, bi-
ology is about microscopes or chemistry is
about beakers and test tubes. Science is not
about tools. It is about how we use them, and
what we find out when we do.”
(Edsger Dijkstra)

ACKNOWLEDGMENTS

First of all, I would like to thank all my family who supported and encouraged me
during the two years of the master’s degree. I am also grateful for the new friendships,
colleagues, laboratory colleagues and the supervisor of this work, Professor Rafael Heitor
Bordini, who were always willing to aid in any matter.

I thank Professor Viviana Mascardi for agreeing to co-orient this work and Profes-
sors Renata Vieira and Jomi Hübner for agreeing to be evaluators of this work and for all
contributions.

I am grateful to the Computer Science Program (PPGCC) for all the support granted
during the master’s degree and to UOL EdTech for the scholarship-fee.

And finally, I want to thank everyone who somehow contributed, directly or indirectly,
to this work.

TEAMUP: AGENTES DE CONVERSAÇÃO PARA APOIAR A
COORDENAÇÃO DE TRABALHO EM GRUPO

RESUMO

Este trabalho tem como objetivo investigar e aplicar o uso de um sistema multi-
agente para auxiliar na coordenação de tarefas em grupos, especificamente em ambientes
educacionais, em que a interação dos integrantes do grupo ocorre de forma indireta e não
síncrona. Para uma melhor experiência do usuário, o sistema foi disponibilizado em uma
interface web integrado com um chatbot para uma interação de forma mais natural. O chat-
bot faz a comunicação com o sistema multi-agente que é responsável pela organização do
grupo, isso é, contém as informações a respeito das tarefas que devem ser realizadas e a
respeito dos integrantes dos grupos, além de restrições que podem ser impostas conforme
a organização de um grupo e também é capaz de retornar a informação requisitada em lin-
guagem natural. Essa abordagem foi validada pela experiência de usuários que realizaram
um curso prático de graduação em engenharia de software para testar o funcionamento
e a capacidade do sistema, em que os grupos de alunos fizeram o desenvolvimento co-
laborativo de um software. O sistema auxilia os alunos em um projeto real desenvolvido
como parte desse curso. A avaliação do sistema é realizada acompanhando as ações dos
membros do grupo, através do qual podemos confirmar se o chatbot está retornando a infor-
mação correta do sistema multi-agente. Com essa avaliação, verificou-se que o sistema foi
capaz de garantir integridade no desenvolvimento das tarefas dos grupos, além de garantir
respostas rápidas e coerentes com a solicitação do aluno.

Palavras-Chave: Sistema Multi-Agente, JaCaMo, Chatbot, Dialogflow, Coordenação de
Grupos.

TEAMUP: CONVERSATIONAL AGENTS TO SUPPORT COORDINATION
IN GROUPWORK

ABSTRACT

This work aims to investigate and apply the use of a multi-agent system to assist
in the coordination of tasks in groups, specifically in educational environments, in which the
interaction of the members of the group occurs indirectly and asynchronously. For an im-
proved user experience, the system was integrated into a web interface integrated with a
chatbot for more natural interaction. The chatbot communicates with the multi-agent system
that is responsible for the organization of the group, that is, it contains information about
the tasks that must be performed and about the members of the groups, in addition to re-
strictions that can be imposed according to the organization of a group and is also able to
return the requested information in natural language. This approach was validated by the
experience of users who took a practical undergraduate course in software engineering to
test the functioning and capacity of the system, in which groups of students collaboratively
developed software. The system assisted students in a real project developed as part of
this course. The evaluation of the system is carried out following the actions of the group
members, through which we can confirm that the chatbot is returning the correct informa-
tion from the multi-agent system. With this assessment, it was found that the system was
able to guarantee the correct management of the group organization in the development of
the group’s tasks, in addition to ensuring quick and consistent responses to the students’
requests.

Keywords: Multi-Agent System, JaCaMo, Chatbot, Dialogflow, Group Coordination.

LIST OF FIGURES

Figure 2.1 – Overview of a JaCaMo Multi-Agent System [8] 19

Figure 3.1 – Collaboration window [29] . 30

Figure 3.2 – Learning environment [49] . 31

Figure 3.3 – Example of interaction with Sayme (direct conflict) [45] 32

Figure 3.4 – Group chat discussions [33] . 33

Figure 4.1 – Our approach . 40

Figure 4.2 – System architecture . 41

Figure 4.3 – Website . 42

Figure 4.4 – Dialogflow architecture . 43

Figure 4.5 – Dialogflow intent training . 44

Figure 4.6 – Dialogflow and JaCaMo integration . 45

Figure 4.7 – Example interaction . 47

Figure 4.8 – Interaction flow . 48

Figure 4.9 – Leader requests . 52

Figure 4.10 – Student requests . 56

Figure 5.1 – Task List Request . 63

Figure 5.2 – Task List Request . 63

Figure 5.3 – Log Request . 64

Figure 5.4 – Log Request . 64

Figure 5.5 – Task Request . 65

Figure 5.6 – My Task Request . 65

Figure 5.7 – Dialogflow training example . 68

LIST OF TABLES

Table 3.1 – Papers returned in search . 29

Table 3.2 – Results summary RQ1 . 36

Table 3.3 – Results summary RQ2 . 37

Table 3.4 – Results summary RQ3 . 37

Table 3.5 – Results summary RQ4 . 38

Table 3.6 – Results summary RQ5 . 38

Table 3.7 – Results summary our approach . 39

Table 5.1 – Chatbot requests . 62

LISTINGS

4.1 Request coordinator example . 49
4.2 Create group request . 50
4.3 Example follow up intent . 50
4.4 Group setup . 53
4.5 Create agents . 53
4.6 Assign agent mission . 54
4.7 Example leader request . 55
4.8 Agent setup . 57
4.9 Set agent mission . 57
4.10 Agent assign task . 58
4.11 Agent drop task . 58
4.12 Example agent request . 59
4.13 Moise scheme . 60

LIST OF ACRONYMS

AI – Artificial Intelligence

AIML – Artificial Intelligence Markup Language

APT – Academically Productive Talk

AST – Abstract Syntax Tress

BDI – Belief-Desire-Intention

CSCL – Computer Supported Collaborative Learning

CSCW – Computer Supported Cooperative Work

LMS – Learning Management System

MAS – Multi-Agent System

MQ – Main Question

NLP – Natural Language Processing

RQ – Research Question

RST – Rhetorical Structure Theory

CONTENTS

1 INTRODUCTION . 14

1.1 MOTIVATION . 15

1.2 GOAL . 15

1.3 MAIN CONTRIBUTIONS . 16

1.4 DISSERTATION OUTLINE . 16

2 BACKGROUND . 17

2.1 COLLABORATIVE LEARNING . 17

2.2 MULTI-AGENT SYSTEMS . 17

2.2.1 JACAMO . 18

2.3 SELF-ORGANISING SYSTEMS . 19

2.4 CHATBOTS . 20

2.4.1 DIALOGFLOW . 21

2.4.2 WIT.AI . 22

2.4.3 LUIS.AI . 22

2.4.4 PANDORABOTS . 22

2.4.5 IBM WATSON . 23

2.5 TEAM COMPOSITION . 23

3 RELATED WORK . 26

3.1 RESEARCH QUESTIONS . 26

3.2 SEARCH STRATEGY . 26

3.3 SEARCH STRING . 27

3.4 STUDY SELECTION . 28

3.5 CONTROL PAPER . 29

3.6 EXECUTION . 29

3.7 RESULTS . 30

4 OUR APPROACH . 40

4.1 ARCHITECTURE . 41

4.2 ENVIRONMENT . 42

4.3 CHATBOT . 43

4.4 MULTI-AGENT SYSTEM . 45

5 EXPERIMENT RESULTS AND ANALYSIS . 62

6 FINAL CONSIDERATIONS AND FUTURE WORK . 69

REFERENCES . 71

APPENDIX A – Group Tasks . 76

14

1. INTRODUCTION

Institutions increasingly use collaboration to increase students’ search for knowl-
edge, using different types of learning methods, such as classroom learning and virtual
learning. However, with different learning styles, we need different learning approaches.
To assist these learning methods, several techniques and tools are being used in virtual
environments, such as: chats, conversational agents and others. With the use of virtual
environments, there is a concern with the learning techniques used in collaboration between
people. There are several reasons for the cause of inefficiency in groups, but the main
causes of inefficiencies in groups are: inefficient balance of team capacity, incorrect team
dynamics, poor communication or difficult social situations [4].

According to King [34], collaborative learning may motivate studies more than indi-
vidually, so in those environments, it is important to promote collaborative learning to enable
group participation and interaction in a specific task, where knowledge is built through dia-
logues that enable the sharing of ideas and information within the group [44]. Also, we can
provide important feedback for the teacher to know the interaction and discussion made by
the group, as well as the individual contribution of students in problem solving [2].

In a collaborative work environment, to fulfill certain tasks / objectives, the interac-
tion must be as a unit, coordinating actions, minimising redundant efforts, sharing resources,
among others. To help coordinate the groups, management systems are being used as a
solution to ensure consistency in the group’s actions.

Therefore, to manage group learning is necessary to create environments that fa-
cilitate knowledge sharing and other valuable learning behaviours to help promote student
discussion skills [20]. With the advancement of Artificial Intelligence (AI), there is a growing
use of conversational agents such as chatbots to aid learning. However, most of the studies
in this area are for individual learning.

To assist students in their collaboration, conversational agents, specifically peda-
gogical agents, are being used in roles such as: specialist, motivator or mentor [6]. Conver-
sational agents are often associated as subgroups of pedagogical agents, who interact with
students through natural language [32]. Conversational agents are being used to promote
individual student dialogues to improve understanding of knowledge [52] and also with the
potential to motivate student collaboration. Also, agents with social interaction capabilities
can help in learning and idea generation by providing dynamic support for learners do a
collaborative work [38, 39].

Conversational agents such as chatbots, use Natural Language Processing (NLP)
techniques to gain knowledge. They must have the ability to understand context of a conver-
sation, learn from the conversations and improve itself over time [5]. This can be achieved
automatically with NLP techniques or manually providing the knowledge for a chatbot.

15

Natural Language Processing allows for human-machine interaction using natural
languages associated with humans. Also, it is the area that investigates and analyses how
the user’s language text or speech inputs can be perceived and altered with computational
techniques [17]. NLP techniques can be used in various applications such as machine trans-
lations, natural language processing, multilingual and cross-language information retrieval,
speech recognition and Artificial Intelligent systems [14].

In a functional group, each member is responsible for one or more tasks. One
of the main requirements for group work to perform well is that its members operate in
harmony. Motivated to solve the problem of task resolution in educational environments, this
work mainly aims to improve the coordination of groups by allowing: improve information
sharing among group members; increase the group’s productivity; improve performance in
collaborative tasks and allow the educator responsible for the groups to be aware of the
events during the performance of the tasks with the aid of a tool for the development of
multi-agent systems and a chatbot.

1.1 Motivation

Collaborative learning should be presented as an important factor in student learn-
ing, since, as at present, when remote activities are being increasingly used, both as a trend
and as an emergency way for education, this type of education can allow students a more
comfortable and flexible way of learning. Due to this flexibility, systems that manage the ac-
tivities of groups have an important role, so that, even without the face-to-face contact, the
group and its responsible are fully aware of the duties and roles of the members throughout
the development of work.

Therefore, the motivation of this work when using an approach with multi-agent
systems, specifically with the JaCaMo multi-agent systems development platform, is due to
the capacity of these systems to manage the behaviour of an organisation (group) mainly
because it is possible to create and control an organisation through Moise, allowing us to to
manage them in terms of association and task resolution management. In addition to testing
the integration of JaCaMo with Dialogflow, in which communication with the user is carried
out through a chatbot to allow a more effective and natural communication with the system.
JaCaMo will be introduced in Section 2.2.1 and Dialogflow in Section 2.4.1.

1.2 Goal

This work aims to propose a solution to the problems of dynamics and communi-
cation of a group, since we assume that the groups are already well formed, with the use of

16

a chatbot in a collaborative environment, where such agents must represent their users as
part of a project group, and must assist in the organisation and communication between hu-
man users. The communication of the group members is done through the chatbot and not
directly, that is, the members do not communicate directly through the system. Communica-
tion in the system did not take place between students to make the system as asynchronous
as possible, thus testing the ability of requests to the chatbot and, consequently, to the
multi-agent system.

This multi-agent system has the main objective of facilitating the dissemination of
information about the current status of the project, allow management of multiple groups
simultaneously and allowing the person in charge of the group to monitor performance during
the execution of the task without disturbing the construction of knowledge, that is, there is no
interruption by the system in communication with the user. In particular, the focus is on an
academic environment, where it is important that members of a group including the lecturer
are aware of how the project is evolving.

1.3 Main Contributions

The main contributions of this work are the results of an experiment with a real
group in an educational environment using the multi-agent systems approach to assist in
group coordination and the demonstration of the development of the proposed solution. We
report experiences with possible problems and solutions in the use of a chatbot, percep-
tions are reported that must be taken into account when using a multi-agent system for the
proposed situation and a systematic review focused mainly on works that use group coordi-
nation systems with the use of chatbot.

1.4 Dissertation Outline

This work is organised as follows. In Chapter 2 a basic idea of the concepts and
tools that will be used in this work is presented. Chapter 3 a systematic review is performed
to understand the concepts, technologies and approaches used to frighten collaborative
learning. Chapter 4 the approach to resolve this proposal is presented,the system architec-
ture, the environment available to the user, chatbot information and the multi-agent system
are demonstrated. Chapter 5 presents the results and analysis of this work and finally Chap-
ter 6 presents the conclusion of this work and discuss future work.

17

2. BACKGROUND

2.1 Collaborative Learning

Online collaboration allows students to take action and express their own prefer-
ences through annotations [1]. There are two approaches to improving students’ overall
learning ability [16, 18]: synchronous and asynchronous, in which synchronous learning
activities are similar to those in the classroom, and asynchronous collaboration, in which
the student receives feedback on their own results. Asynchronous online collaboration has
become a more popular type of learning due to the lower cost of learning tools, minimal
hardware requirements and the ability to allow students to learn at their own pace [29].

In addition, online collaboration offers the student the opportunity to absorb and
question the knowledge generated by the group, while they are developing their own contri-
bution to the tasks provided [29]. This allows us to give students a way to ask questions they
want to clarify by collaborating with the group.

Asynchronous collaboration allows time to synthesise knowledge [9, 21], so learn-
ers can reflect on the subject of learning. It is a meaningful approach that provides a learning
space where learners can discuss ideas in more objective and reflective ways [21]. In ad-
dition, through asynchronous learning, the teacher can receive a return of learners’ level of
understanding to better adapt the next material, facilitating a deeper understanding of the
content [9, 25].

In synchronous collaboration, the discussion usually takes place in real time, sched-
uled by learners and teachers [25]. With synchronous collaboration, the group is more likely
to discuss less complex issues and provide social support. Like a conversation, this ap-
proach makes the recipient more committed and motivated to read and respond to the mes-
sage because a response from the recipient is expected [25].

2.2 Multi-Agent Systems

As the name says, Multi-Agent Systems (MAS) are systems made up of multiple
agents. It has the capacity to build and understand a wide range of artificial social systems
and can be applied in several different areas [57].

For multi-agent systems, the term autonomous designates the fact that agents have
their own existence, regardless of the existence of other agents. Each agent has a set of
behavioural capacities that define their competence, a set of objectives, and the necessary
autonomy to use their behavioural capacities in order to achieve their objectives. The main

18

contribution of multi-agent systems is the development of systems that are continuously
running and reacting to events that characterise changes in the dynamic environments in
which these autonomous systems usually operate [8].

According to Wooldridge [57], understanding a domain with multiple agents is es-
sential to understand the type of interaction that occurs between agents. For smart self-
employed agents, the ability to do business is sorely needed, negotiation and argumentation
skills are often required for this.

In a multi-agent system, the collection of roles, relationships and structures of au-
thority that govern the behaviour of agents is called organisation. Every multi-agent system
has some form of organisation, even if implicit and informal. Organisations guide how agents
should interact, which can influence data flows, resource allocation, authority relationships
and various other system resources [24].

The study of organisational agents received a lot of attention from multi-agent re-
searchers because several studies have shown that the organisation of a system can signif-
icantly impact their performance [24].

2.2.1 JaCaMo

JaCaMo [8] is a multi-agent systems development platform that enables integration
of three multi-agent programming dimensions: agents, organisations, and environment. A
JaCaMo system, as shown in Figure 2.1, consists of the following platforms: Jason [11] for
agent development, CArtAgO [10] for environment programming, and Moise [27] for pro-
gramming organisations. Therefore, JaCaMo integrates these three platforms for a uniform
and consistent programming model, with the goal of simplifying the combination of these
dimensions when programming multi-agent systems [8].

Jason [11] is a platform for multi-agent system development that incorporates an
agent-oriented programming language. It makes use of AgentSpeak agent-oriented lan-
guage, which is based on logical programming and the cognitive Belief-Desire-Intention
(BDI) model architecture for autonomous agents. At the agent level, the main abstractions
are: (i) beliefs, representing the information the agent has about other agents, the environ-
ment in which they are located and the state of the organisation; (ii) goals, representing
states of what the agent would like to bring; and (iii) plans that are courses of action that can
be used to achieve objectives, forming the agent’s know-how [8].

CArtAgO [10] is a framework and infrastructure for environments programming and
execution in multi-agent systems. It can be used as an abstraction to design multi-agent
system that encapsulates functionality and services that agents can exploit at run-time [54].
These environments can be designated and programmed into artifacts. Artifacts are like a

19

Figure 2.1 – Overview of a JaCaMo Multi-Agent System [8]

set of computational entity dynamics, collected in workspaces where the actions that agents
choose to perform are performed and possibly distributed across multiple network nodes.
Artifacts also have observable properties that, when altered, automatically reflect agents’
beliefs through perception of the state of the environment [8].

Moise [27] implements a programming model for the organisational dimension,
including: an organisation modelling language, an organisation management infrastruc-
ture [26], and support for agent-level organisation-based reasoning mechanisms. At the
organisational level, agents play roles in agent groups that are jointly responsible for manag-
ing tasks. Such tasks are specified as social schemes, which break down tasks into simpler
tasks. The organisation takes care of informing agents when their part of the joint task can
be accomplished, thus helping to coordinate the work of various agents [8].

2.3 Self-Organising Systems

Due to the increasing complexity of the proposed tasks [47], there was a significant
transformation from organised work to individual work with team-based structures, together

20

with a focus on organisational efficiency [36]. In addition, technology innovations make it
easier for members to communicate and collaborate across disparate locations.

To ensure organisation in multi-agent systems, coordination between agents is re-
quired. Coordination is related to agents’ social skills, in which agents communicate with
each other to share information, beliefs, goals and plans [11]. With coordination, agents
can achieve joint objectives and plans that would not otherwise be possible, and ensure that
tasks are performed consistently and efficiently by synchronising their actions and interac-
tions with other agents [28, 12].

Capone et al. [13] proposed a Smart RogAgent mobile app using the JaCaMo
multi-agent system, with the objective of simulating rogaining, where agents simulate human
participants, groups of a JaCaMo organisation simulate teams and the environment can be
simulated in a realistic way. Although its development is still in progress, there is great
potential in the direction of the research.

The system architecture was: humans modelled as Jason agents, teams modelled
as Moise organisations, and the resources accessed by agents modelled as CArtAgO arti-
facts. In the development of team building at JaCaMo, based practices were followed, such
as: (i) improving the team’s problem solving, managing interpersonal relationships, setting
goals or clarifying roles; (ii) following up on plans/agreements to maintain accountability; and
(iii) guiding the team to develop tangible action plans/agreements, must be adopted to make
team building more effective.

Capone et al. [13] conjectures that the combination of argumentation scheme and
ontologies brings significant new contributions to the development of practical applications
of collaborative teams of human beings and autonomous agents. That is, due to non-viable
reasoning patterns, which include several critical questions that can be used to justify the
conclusion or avoid inference when answered negatively. These questions can make explicit
reference to the roles that agents are playing and answers to those questions can also help
to clarify which agent is best suited to play which role and why.

2.4 Chatbots

Chatbots are software that interacts with the user by mimicking human conversa-
tions and offers personalised services. There are two types of chatbot apps: the cloud-based
chatbot that can be accessed through the web interface and a standalone chatbot app that
can be accessed from a single computer [31]. Chatbot uses natural language input text and
responds with the best intelligent response to user input text [53].

In order for user text entries to be identified, it is necessary to incorporate the bot
with intelligence and knowledge to identify sentences and generate an appropriate response

21

to initiate a conversation between the human and the bot. However, there is a concern with
the context of the conversation, in which each platform deals differently.

There are many chatbots platforms, such as Google Dialogflow, Microsoft Azure
Bot Framework and others. Dutta [17] discussed four chatbot platforms: Dialogflow, Wit.ai,
Luis.ai, and Pandorabots. Dialogflow is recommended for intelligent chatbot development
because it is capable of handling user input sub-intent goals. To create a chatbot with Di-
alogflow, we need to create agents and declare the intent streams that receive user requests
in specific contexts. Data is managed through the Cloud function to access Google cloud
services, enabling chatbot development without the need to create a server [46].

2.4.1 Dialogflow

It is a platform for the development of chatbots on the platform console based on
natural language conversations. Chatbot model behaviour uses concepts such as intents
and contexts. Where intents are the mapping between what a user types and what response
or action should be performed by the bot, and contexts which are used to distinguish user
entries that may have different intent depending on previous user entries.

Dialogflow 1 allows many integration options for our agent, providing platform spe-
cific features and creating rich responses. It can be integrated with many current conver-
sational platforms such as Google Assistant, Slack, Facebook Messenger, Skype, Twitter,
Telegram and others. Dialogflow provides agent import and export capabilities for other NLP
platforms (e.g. Amazon Alexa and Microsoft Cortana). This allows us to prioritise our agent
creation and let the platform handle end-user interactions.

Dialogflow has a conversation fulfillment (deployed as a web-hook) that calls a
REST API or back-end service such as C#, Go, Java, Node.js, PHP, Python and Ruby to
return a response to conversation platforms. In addition, it can handle Dialogflow intents
individually, allowing to specify which intent will use extra processing and which will return
only defined responses.

When receiving a user input, it is first checked to match a predefined intent. If user
entries do not match any predefined intent, the default fallback intent will handle the entry.
Matching cases of an intention can be limited by stating a list of contexts that should be
working and that can create and delete contexts.

Intents and contexts can provide a large and complex flow in human-computer con-
versation in chatbot development. However Dialogflow cannot be designed so that an intent
can be matched only if a specific context is not present, making this a platform limitation.

1Available in https://dialogflow.com/

https://dialogflow.com/

22

2.4.2 Wit.ai

Wit.ai 2 develops chatbots in platform console, were the training of NLP engine use
examples and allows integration with Node.js, Python, Ruby and others HTTP API.

Wit.ai use the concept of stories. Each story is depicted as an example of a con-
versation. The intent is a user entity which is not mandatory. To create a complex chatbot
a large number of intent in stories are grouped. When a user writes a request of similar
nature, the entities are extracted and the logic implemented by the developer is applied.

The platform documentation is divided into three parts: understand, were the focus
is categorisation, extraction and analysis; integrate Wit everywhere, where it shows how to
integrate the platform with applications; and manage wit apps. Unlike Dialogflow, we don’t
have specifications of fulfillment or detailed description of a subject like intents.

2.4.3 Luis.ai

The platform allows the user to build their own model of chatbot. Example phrases
or utterances are supplied for the intents. Utterance sentence or speech, is user’s input
which is supposed to be understood by the chatbot that can be labelled in Luis 3 application
with specific details. Labels have two purposes: illustrate the performance of the current
model on unseen data and also can be used to act as a rotating test set; and can act as an
accelerator if the proposed labels are correct [56].

In Luis an intent is a goal conveyed in a user’s input that represents relevant de-
tailed information in the utterance that may be mapped to many utterance variations and
describe user actions that is expected to perform.

Luis does not work with context, to do that, we must define context in our bot by
using dialogs. Dialog works like a function in a program, it is designed to perform a specific
operation an it can be invoked as often as it is needed. To handle conversation flow we need
to chain multiple dialogs.

2.4.4 Pandorabots

The platform is based on AIML (Artificial Intelligence Markup Language). The pur-
pose of the Pandorabots 4 is to enable human computer conversation without considering a

2Available in https://wit.ai/
3Available in https://www.luis.ai/home
4Available in https://home.pandorabots.com/home.html

https://wit.ai/
https://www.luis.ai/home
https://home.pandorabots.com/home.html

23

task or action-oriented scenario. The application is an XML-based platform and conversa-
tional patterns. It can take much effort to scale up, if the application are built manually.

Platform documentation is sparse. There are only tasks to assist in learning AIML
language, API references, deploy and extend application. Another problem is that sandbox
version from Pandorabots, that is the free version, does not support API access.

2.4.5 IBM Watson

Watson Assistant 5 develops the chatbots in platform console using concepts like
intents, dialogs and entities runs on a powerful cloud service (IBM Cloud) delivering a ro-
bust and interactive experience through API endpoints. Watson provides natural language
understanding (e.g. speech to text) and also have a wide range of Watson services that can
be useful for creating chatbots, virtual assistants and conversational agents due to run on
cloud.

Watson’s intents foresee users’ goals with samples of intents to deal with users
input. To create a flow of conversation is used dialogs to incorporate the intents and to
create context we use entities.

2.5 Team Composition

Although it was not applied in this work, solving the problem of team composition
is an important task for future work, as it is an essential task to allow the best collaboration
of the students. In order to prevent teams from working less efficiently, team composition is
a problem that has aroused the interest of research in groups, such as multi-agent systems.
Solving the team composition problem for virtual teams can improve team members’ rela-
tionships under their work environment remotely, enabling them to complete tasks on a daily
basis, improving collaboration, productivity and tracking tasks.

The question of team composition is how to create a multi-agent system environ-
ment as a group of heterogeneous agents (e.g. humans and robots) and how to organise
their activities. Team members must observe the environment and interact with each other to
perform tasks or solve problems that are beyond their individual capabilities. The algorithms
for creating these teams are inspired by human teamwork [3].

Recent algorithms are inspired by human teamwork because most approaches
represent agent resources in a Boolean manner (whether or not an agent has a required

5Available in https://www.ibm.com/watson

https://www.ibm.com/watson

24

skill). This approach does not correspond to real life, resources are not binary as each
individual shows different performances for each competency [4].

Andrejczuk et al. [4] propose an approach to synergistic teams, in which the syn-
ergistic values are capacity and personality, i.e. each team is proficient (covers the skills
needed for a given task) and congenial (balances gender and psychological traits). To de-
termine personality, the author uses the method of Post-Jungian Personality Theory [55].

The Post-Jungian Personality Theory method is a modified version of the Myers-
Briggs Type Indicator (MBTI) [43] that uses numerical data collected using the questionnaire.
Compared to other methods, the personality questionnaire is short, containing only 21 quick
questions.

The theory is based on the cognitive-mode personality model of psychiatrist Carl
Gustav Jung [30]. His model has two sets of pairs of human personality variables: psycho-
logical functions and psychological attitudes.

The variables of psychological function are: (i) sensing/intuition (SN), which de-
scribes how to approach problems; and (ii) thinking/feeling (TF), which describes how to
make decisions. The variables of psychological attitudes are: (i) perception/judgement (PJ),
which describes the way of living; and (ii) extroversion/introversion (IS), which describes the
way of interacting with the world. For example, thinking/feeling (TF), a value between -1
and 0 means that a person is sentimental and a value between 0 and 1 means that he is
thoughtful.

To solve the team’s synergistic composition, agents are divided into partitions and
assigned competencies in a task to team members. Since the goal is to find the most com-
petently and psychologically balanced team, the Bernoulli-Nash function is used to measure
the synergistic value of a team partition [43].

Finally, the algorithm was evaluated in the context of a classroom. The results
showed that the approach is better able to predict team performance than experts who know
students, their social background, skills and cognitive abilities [4]. In addition, the author
states that the algorithm is potentially useful for any organisation facing the need to optimise
its troubleshooting teams.

Farhangian et al. [19] propose a performance computation mechanism for software
development projects by taking into consideration employees’ personalities and skills. The
model is based on MBTI and Belbin Team Roles (BTR) [7] studies. Belbin introduced a
theory about the roles of individuals in teams, that in each team each member has a role
that can affect team performance and suggesting that personality and role trends are not
independent. Also suggests two main factors for forming a team: dyadic relationships of
team members and competency of team members in the tasks [7].

25

Farhangian et al. [19] use the formal model to select the best team composition for
a given task. To calculate the performance of each team composition the formula used is
described below:

Performance = (c1 ∗ Pm + c2 ∗ Rm + c3 ∗ Cr + c4 ∗ Um + c5 ∗ So + c6 ∗ Co+

c7 ∗ Bcr + c8 ∗ Bum + c9 ∗ Bso + c10 ∗ Bco) ∗ c11 ∗ C
(2.1)

The above parameters are: Matching_index (Pm), Matching_roles (Rm), Creativ-
ity (Cr), Urgency (Um), Sociality (So), Complexity (Co) and Competence (C), parameters
that starts with B (e.g. Bum) are Belbin parameters. These variables are numerical values
that can be uniformly considered to be measured over some scale from 0 to 1. Identifiers
c are coefficients that can adjust empirical measurements. For each parameter there is a
formula and associated task styles such as: Creativity (Cr) for tasks requiring a high level
of creativity, teams composed of differing attitude tendencies are believed to perform better
than teams of like-minded people.

A agent based model for task allocation was developed with a system that looks for
all possible combinations of a team and calculates the highest value coalition. The system
assigns tasks to employees to maximise system utility. To analyse the model some simula-
tion experiments was conducted on the NetLogo [50] platform. The simulation environment
can provide a low cost simulation to investigate the impact of agent attributes, tasks, envi-
ronment dynamics, and also their task allocation strategies on team performance [19]. The
results presented by the author are a modelling and simulation approach that can demon-
strate interesting effects based on combinations of personality and skill setting parameters.
Parameterisation can also be configured for situations with specific contexts.

In multi-agent systems there is also the formation of coalitions, in which there are
several agents interacting in the same environment, performing their own tasks, but that
sometimes a task may require more effort than another agent can offer. The formation of
coalitions, that is, the group of agents that will work together, studies how the problem of
grouping these agents is approached in order to maximise the rewards they receive for their
efforts [37].

Sandholm et al. [48] presented the process of how the agents are grouped and
what their purpose is. The coalition formation process was divided into three activities:
generation of the coalition structure; resolution of the optimisation problem of each coalition;
and division of the solution value among the agents.

Wooldridge [57] referred to these activities as the life cycle of cooperation. It is
shown how agents, brought together on the basis of some criteria, can cooperate with each
other to achieve their desired goals. From single agents, the coalition begins to decide which
agent will be responsible for which task, and then a plan is created to meet the goal.

26

3. RELATED WORK

A systematic literature review help us to identifying, evaluating and interpreting all
available research relevant to our research area [35]. To draw the basis of a hypothesis
from a research is identified and reported researches that support or not the initial hypoth-
esis. Approaches such as, systematic or mapping reviews in bibliographic research can be
used to examine where empirical evidence supports or contradicts theoretical hypotheses,
or even to help generate new hypotheses [35]. We therefore chose to conduct a system-
atic review to identify: existing studies on collaborative learning using chatbots in education,
research gaps and possible new research activities to support our hypothesis that manage-
ment systems are capable of maintaining an organisation and control of collaborative work
in educational environments.

3.1 Research Questions

We created the main question (MQ) and five research questions (RQs) in our sys-
tematic review to determine how collaborative work is addressed in the studies:

(MQ) How chatbots are approached with organising systems in collaborative work in
education?

(RQ1) What technologies are used?

(RQ2) Which activities are used: individual, collaborative (how many people),
which formats (practical or playful)?

(RQ3) What are the advantages of collaborative activities?

(RQ4) How the proposal was validated?

(RQ5) What are the challenges and limitations of the proposed solution?

3.2 Search Strategy

To define our search strategy in the systematic review, we first created a prelimi-
nary research question to manually select our control paper. The control paper is selected
to validate the automated search ensuring relevance of the search result. Having defined
our control paper we extracted two main keywords for our research, where they are: chat-
bot and collaborative learning. In addition, we add the synonyms for both keywords: chat,

27

virtual assistant, chatterbot, bot, conversational agent, CSCW, computer supported coop-
erative work, CSCL, computer supported collaborative learning, learning methods, group
assignment, group course work, group exercise and group project.

With the previous search scope, our search string is formulated and an automated
search is made in know databases such as: Scopus1, ACM Portal2 and IEEE Xplore3.

3.3 Search String

The search strings used are described below. Searches were performed on OCTO-
BER 23, 2019 and JUNE 09, 2020 in the abstract, title and keywords fields, with publication
year after 2013. We restrict year of publication due to studies using chatbot and recent NLP
techniques:

Scopus

TITLE-ABS-KEY (("Chatbot" OR "Chat" OR "Virtual assistant" OR "Chatterbot" OR "Bot"
OR "Conversational agent") AND ("Collaborative Learning" OR "CSCW" OR "Computer

Supported Cooperative Work" OR “CSCL” OR “Computer Supported Cooperative Learning”
OR "Learning methods" OR "Group assignment" OR "Group coursework" OR "Group

exercise" OR "Group project"))

ACM

acmdlTitle:(("Chatbot" OR "Chat" OR "Virtual assistant" OR "Chatterbot" OR "Bot" OR
"Conversational agent") AND ("Collaborative Learning" OR "CSCW" OR "Computer
Supported Cooperative Work" OR "CSCL" OR "Computer Supported Cooperative

Learning" OR "Learning methods" OR "Group assignment" OR "Group coursework" OR
"Group exercise" OR "Group project")) OR

recordAbstract:(("Chatbot" OR "Chat" OR "Virtual assistant" OR "Chatterbot" OR "Bot" OR
"Conversational agent") AND ("Collaborative Learning" OR "CSCW" OR "Computer
Supported Cooperative Work" OR "CSCL" OR "Computer Supported Cooperative

Learning" OR "Learning methods" OR "Group assignment" OR "Group coursework" OR
"Group exercise" OR "Group project")) OR

keywords.author.keyword:("Chatbot" OR "Chat" OR "Virtual assistant" OR "Chatterbot" OR
"Bot" OR "Conversational agent") AND ("Collaborative Learning" OR "CSCW" OR
"Computer Supported Cooperative Work" OR "CSCL" OR "Computer Supported

Cooperative Learning" OR "Learning methods" OR "Group assignment" OR "Group
coursework" OR "Group exercise" OR "Group project"))

1https://www.scopus.com/search/form.uri?display=basic
2https://dl.acm.org/
3https://ieeexplore.ieee.org/Xplore/home.jsp

https://www.scopus.com/search/form.uri?display=basic
https://dl.acm.org/
https://ieeexplore.ieee.org/Xplore/home.jsp

28

IEEE Xplorer

(("Document Title":"Chatbot" OR "Document Title":"Chat" OR "Document Title":"Virtual
assistant" OR "Document Title":"Chatterbot" OR "Document Title":"Bot" OR "Document

Title":"Conversational agent") AND
("Document Title":"Collaborative Learning" OR "Document Title":"CSCW" OR "Document

Title":"Computer Supported Cooperative Work" OR “Document Title”:“CSCL” OR
“Document Title”:“Computer Supported Cooperative Learning” OR "Document

Title":"Learning methods" OR "Document Title":"Group Assignment" OR "Document
Title":"Group coursework" OR "Document Title":“Group exercise” OR "Document

Title":“Group project”)) OR
(("Abstract":"Chatbot" OR "Abstract":"Chat" OR "Abstract":"Virtual assistant" OR

"Abstract":"Chatterbot" OR "Abstract":"Bot" OR "Abstract":"Conversational agent") AND
("Abstract":"Collaborative Learning" OR "Abstract":"CSCW" OR "Abstract":"Computer

Supported Cooperative Work" OR “Abstract”:“CSCL” OR “Abstract”:“Computer Supported
Cooperative Learning” OR "Abstract":"Learning methods" OR "Abstract":"Group

Assignment" OR "Abstract":"Group coursework" OR "Abstract":“Group exercise” OR
"Abstract":“Group project”)) OR

(("Author Keywords":"Chatbot" OR "Author Keywords":"Chat" OR "Author
Keywords":"Virtual assistant" OR "Author Keywords":"Chatterbot" OR "Author

Keywords":"Bot" OR "Author Keywords":"Conversational agent") AND
("Author Keywords":"Collaborative Learning" OR "Author Keywords":"CSCW" OR "Author
Keywords":"Computer Supported Cooperative Work" OR "Author Keywords":"CSCL" OR

"Author Keywords":"Computer Supported Cooperative Learning" OR "Author
Keywords":"Learning methods" OR "Author Keywords":"Group Assignment" OR "Author

Keywords":"Group coursework" OR "Author Keywords":“Group exercise” OR "Author
Keywords":“Group project”))

3.4 Study Selection

To filter automated search results, inclusion (I) and exclusion (E) criteria have been
defined to accept or reject the study in the next phase of the review, which are:

(I1) Must have “Collaborative work in education” in the title, abstract or keywords;

(E1) Not be in English;

(E2) Not related to the theme of “Collaborative work in education”;

(E3) Repeat studies (will be considered the most recent);

(E4) Books and abstracts from conference presentations;

(E5) Narrative reviews, comparative studies, surveys, and other systematic reviews.

29

3.5 Control Paper

For this review we defined a control paper that had been previously identified in
non-systematic searches in the Scopus database to validate the search string. The selected
article is: Design of a collaborative learning environment integrating emotions and virtual
assistants (Chatbots) [15]. This paper was chosen because it presented a collaborative en-
vironment in an educational context, in addition to using a chatbot to improve the productivity
of groups in learning.

3.6 Execution

This section shows how the articles were selected, the selection procedure and the
results were extracted. The selection of papers was performed as follows:

1. String execution on each search base;

2. Applying the filter in the bases to select papers after 2013;

3. Export of paper list in bibtex format;

4. Importing bibtex files into the Start 4 tool, which is a tool that supports the organisation
of systematic reviews;

5. A filtering of the papers was performed, in which the selection criteria were applied
based on the reading of the abstract, keywords and title, for the 609 papers returned
from the different bases;

6. Full reading of previously accepted articles, in which 12 papers were accepted. Ta-
ble 3.1 shows the number of articles found, duplicated and accepted for each database.

Table 3.1 – Papers returned in search

Base Number of papers
returned

Number of duplicate
papers

Number of articles
accepted

Scopus 308 38 5
ACM Portal 265 2 2
IEEE Xplore 36 5 5

Total 609 45 12

4http://lapes.dc.ufscar.br/tools/start_tool

http://lapes.dc.ufscar.br/tools/start_tool

30

3.7 Results

We set out research questions in Section 3.1, which defined the purpose of the
systematic review. This chapter presents the results and analysis of the studies, addressing
each of these research questions following the execution of the Section 3.6 and manually
selected studies that were useful for the construction of this work. Although other works
of the review were cited, in the selection of articles, only those who somehow had a group
coordination in an educational context, that is, who did not use the chatbot just to extract
information, were accepted in the selection.

(RQ1) What technologies are used?

Islam et al. [29] proposed a browser-based client interface approach with Express
and SocketIO framework, Node.js, Jade and AngularJS, that can be accessed using only
a web browser available on PCs, tablets, laptops or mobile devices, where the teacher up-
loads the lecture to the site for students to study/solve by collaborating in pairs as shown in
Figure 3.1.

Figure 3.1 – Collaboration window [29]

Tegos and Demetriadis [49] proposed a prototype dialogue support system, acting
as an instant messaging application, in order to accomplish one or more learning tasks in
an online activity (Figure 3.2A), with a conversation agent (Figure 3.2B) that uses text-to-
speech to read its interventions, offering Academically Productive Talk (APT). To encourage
collaboration, the agent introduces concepts into the group discussion displaying outside the

31

main chat frame (Figure 3.2C) using the Levenshtein-based string similarity algorithm and a
WordNet [42] lexicon for synonyms to calculate a proximity score for each identified concept.

Figure 3.2 – Learning environment [49]

David et al. [15] uses the Alexa virtual assistant along with capturing the six basic
emotions: joy, anger, sadness and fear captured by camera and text with emojis. The author
proposes an approach that students with major problem solving problems and showing neg-
ative emotions will be guided first by the teacher. Learners with satisfactory task resolution
results and positive emotions during the process can continue to be supervised by the virtual
assistant [15].

Neto and Fernandes [44] proposed an interaction between chatbot and Learning
Management System (LMS) participants to encourage discussion in the educational context
to support the process of a academically productive talk.

Guo et al. [23] designed a prototype system with WebSockets, Node.js, modified
Mozilla’s TogheterJS library and integrated it with the Online Python Tutor to promote hu-
man interaction in multi-user program visualisations for real-time tutoring and collaborative
learning.

Allaymoun and Trausan-Matu [2] proposed a model for analysing Computer Sup-
ported Collaborative Learning (CSCL) chat collaboration using rhetorical schemes to enable
teachers to evaluate semiautomatic chats with NLP tools.

Paikari et al. [45] proposed a chatbot called Sayme to address the detection and
resolution of of possible code conflicts that may arise in the development of parallel soft-
ware as shown in Figure 3.3. Sayme is implemented using Python, MySQL, Google Cloud
Platform and Slack is used as the chat channel to communicate with developers. In addi-

32

tion, the chatbot operates autonomously, initiating conversations with developers based on
information collected from Git. Sayme also monitors when developers save files using Git
commands to automatically extract files that are being changed and on which lines they are
being changed. To detect possible indirect conflicts between files, all files are analysed using
the Abstract Syntax Tress (AST) library.

Figure 3.3 – Example of interaction with Sayme (direct conflict) [45]

Sayme provides information about potential direct and indirect conflicts, helping
developers to resolve those conflicts. Its main function is to proactively detect possible
conflicts between developers working in parallel, notifying them before the conflicts become
too big. Its secondary function is to respond to a variety of requests that help developers
understand the state of work of other developers.

The chatbot operates on a request-response basis for its reactive features, waiting
for a developer to start a conversation. Is not limited to a fixed set of commands that it
would recognise on the Slack channel, for this purpose natural language processing is used
to interpret the developer’s request. Dialogflow is used as the underlying mechanism, with
28 to 54 common training phrases by which developers can interact with Sayme during the
initial tests.

Kim et al. [33] proposed GroupfeedBot, a chatbot agent to facilitate group discus-
sions in social chat groups on goal-oriented communication, managing discussion time, en-
couraging members to participate evenly and organising members’ opinions as shown in
Figure 3.4. The chatbot runs in the Telegram messaging application and was built with
BotFather. The back-end server was created with Python, using the Telegram library and
pickleDB. The front-end and back-end use a Telegram dispatcher to communicate, transmit
data and access APIs.

The chatbot manages discussion time (Figure 3.4C e Figure 3.4E), facilitates par-
ticipation by encouraging less active agents to speak up (Figure 3.4A e Figure 3.4D) and or-
ganises the opinions of individual members (Figure 3.4B) and general groups (Figure 3.4F).

To encourage uniform contributions, non-participating members are encouraged.
Members who have not commented are subject to the following question: "What is <member
name> opinion?" (Figure 3.4A), in addition, comments are also requested from less frank

33

Figure 3.4 – Group chat discussions [33]

members. The number of words each member sent is counted, and then asks the person
with the least participation to elaborate their opinions with the question: “Can <member
name> tell us more about the reasons for the comments you provided?" (Figure 3.4D).

In addition, the chatbot establishes time constraints and alerts (Figure 3.4E) for
each task to reach consensus efficiently (Figure 3.4C). Also, the main opinions of each
member are organised in the form of a hashtag (Figure 3.4B), using a text classification al-
gorithm to summarise the comments of each member in one or two sentences, thus extract-
ing their lexical morphemes. Finally, the comments of the entire discussion are summarised
(Figure 3.4F) and filtered by a text classification algorithm to transform the entire team’s pro-
duction into four to five sentences; with this, the main morphemes are extracted from the
summarised sentences and presented as hashtags.

Göschlberger and Brandstetter [22] proposed an information system for corporate
e-learning, providing learning resources through a chat interface with Google’s Dialogflow as
Conversational AI platform. It addresses the gap of dynamic role assignments by proposing
information including providers and consumers, that is, the design objectives are constructed
from both perspectives. In addition, possible regulatory demands or restrictions are also
identified.

The provider, in e-learning context, is responsible for making content available on-
line, that is, adapting, organising, creating, orchestrating and providing learning resources.
In the corporate context, most of the learning resources are the existing material transformed
into learning resources through learning management systems. The consumer, in the con-
text of e-learning, is a student. In the corporate context, learning is often incorporated (or
integrated) in daily work.

The system architecture consists of several services that are communicating through
different REST endpoints. Postgres are used to read/write information in the relational

34

database, the Elasticsearch search engine and a fulfillment for customised responses for
a given intent.

For the conversational model, seven intents were trained: (i) Welcome: to greet
users; (ii) Discovery Topics: to return all available topics in the database; (iii) Search:
searches for a term passed as a parameter to process in the back-end; (iv) Learn: starts
the learning process, this intention needs a topic for research and will use padding if the
parameter is not provided; (v) Continue Learning: it can only be used when the context is
about learning to return the next information about the current topic; (vi) Cancel Learning: it
can only be used when the context is about learning and removes the learning context from
the current conversation; and (vii) Fallback: when it does not correspond to any intention
mentioned.

(RQ2) Which learning activities are used: individual, collaborative (how many
people), which formats (practical or playful)?

Islam et al. [29] proposed peer collaboration activities where students collaborating
synchronously or asynchronously can learn together with the teacher’s lecture.

Tegos and Demetriadis [49] and Ferschke et al. [20] both proposed a similar ap-
proach by peer collaboration. Tegos and Demetriadis [49] created a system allowing teach-
ers or researchers to register participants and assign them to their respective groups. Fer-
schke et al. [20], allowed a more autonomous group assignment, requiring only the approval
of both peers to start the activity. Thus, the goal is to encourage students in each group to
discuss a topic to submit a joint answer to an open learning question [49, 20].

Neto and Fernandes [44] proposed an online collaborative environment in groups
of up to four learners, with well-defined individual roles such as group topic research, pre-
sentation paper preparation, presentation and mediation of debate, presentation of results
achieved and coordination of group activities.

Guo et al. [23] proposed a collaborative programming editing in an online environ-
ment embedded with text chat system for one-on-one and small-group interactions.

Kim et al. [33] proposed small group collaboration of four to five members and
medium groups of ten members. Four group discussion tasks were constructed so that
each group was involved in the discussion of its task and presented a final answer extracted
from that discussion. (i) Estimation task: simple estimation problems that involved inferring
the height of the Eiffel Tower and the calories in an avocado without searching the Internet;
(ii) Decision-making task: a travel task, widely used in group decision-making tasks. Specif-
ically, plan a day trip to Korea for a foreign friend who was visiting the country for the first
time; (iii) Open debate task: members were asked to give their opinion on a dilemma of the
moral machine, in order to elicit different opinions from members. Open debates require the
assessment and reasoning of ethical and social issues; and (iv) Troubleshooting task: for

35

the participants they determined the best way to find out the name of a person you forgot
without directly requesting this information (scenario involving a social context).

Göschlberger and Brandstetter [22] proposed collaborative work through chatbot-
user interaction. Thus, other users have access to information through the chatbot and not
by direct contact.

(RQ3) What are the advantages of collaborative activities?

Online collaborative learning offers benefits over traditional classroom learning by
providing different approaches to learners and teacher interactions, enabling real-time col-
laboration across available learning technologies [41], offering tailored opportunities and
flexibility of learning through feedback and interactive collaboration [40]. In addition to being
an environment where students can express their thoughts autonomously [18].

Collaboration is identified as an important factor in successful learning in traditional
and online environments [9, 41]. There are studies indicating that students perceiving col-
laboration in the group were more satisfied with the online learning environment [16, 18].
Also, a key factor in sustaining the educational experience is developed due to students’
sense of community in developing collaboration [21].

(RQ4) How the proposal was validated?

Guo et al. [23] reviewed nine months of server logs studied, deployed as an feature
in Online Python Tutor.

Allaymoun and Trausan-Matu [2] propose a evaluation based mainly on Mikhail
Barkhtin’s dialogism theory and Stefan Trausan-Matu’s polyphonic model [51], with allow
analysing the learner level of participation and Rhetorical Structure Theory (RST) trying to
find out linking relations between the threads and throughout relations resulted from col-
laborative learning. Adding NLP techniques (tokenisation, lemmatisation and stop-words
removal) and Stanford NLP tools to extract the most repeated words, allow the system to
discover important threads discussed in chat.

Kim et al. [33] proposed a qualitative study with small groups, followed by a study
with users with medium groups. The qualitative study involved six small groups, each con-
sisting of four to five members. Then, a preliminary user study was carried out with two
medium groups with ten members each.

At the end of each task, the participants answered a survey consisting of eight
questions (about the usefulness and effectiveness of communication). After completing all
tasks, participants answered three open-ended questions about the group chat experience.
Also, the group behaviour (number of messages, diversity of opinions and participation),
user attitudes (efficiency, effectiveness, openness of communication and usefulness) and
quality of the output were evaluated.

(RQ5) What are the challenges and limitations of the proposed solution?

36

According to Tegos and Demetriadis [49], interpreting the results achieved should
be considered a limitation of the study. In addition, learners aware that their discussions
are being monitored may eventually change their typical conversational behaviour by paying
more attention to the agent than they would in an uncontrolled environment. Lastly, the
study results need to be confirmed by a larger sample size and other student populations of
different backgrounds or ages.

Guo et al. [23] carried out nine months of studies with server logs, due to the lack
of conducting a controlled experiment to formally assess the usability of the system.

Kim et al. [33] encountered several difficulties in conducting goal-oriented discus-
sions through group chat. Reaching consensus can be more difficult in a virtual chat than
in a face-to-face meeting. Controlling the participation of group members to avoid weaken-
ing the positive dynamics of the group and reducing the satisfaction of those who actively
participate. Difficulties in organising different opinions because of fragmented/summarised
messages, thus reducing the efficiency of the discussion.

(RQ) Summarized results:

Table 3.2 present the summarised result of the RQ1. It was evaluated in the works
that although some works reported the use of management systems, chatbot was only used
as a way to search and deliver content for a given request, thus making the management
occur directly by the group members. It was also realised the flexibility that creating a chatbot
can offer to work instead of using a chatbot tool.

Table 3.2 – Results summary RQ1
(RQ1) What technologies are used?

[29]
Browser-based client interface approach with Express and SocketIO framework,
Node.js, Jade and AngularJS

[49] Levenshtein-based string similarity algorithm and a WordNet [42] lexicon

[15]
Virtual assistant in conjunction with the camera to capture emotions to assist
students in detecting negative emotions and major problems to solve problems

[44] Interaction between chatbot and Learning Management System (LMS)

[23]
Prototype system with WebSockets, Node.js, modified Mozilla’s TogheterJS library
and integrated it with the Online Python Tutor

[2]
A model for analysing (CSCL) chat collaboration using rhetorical schemes with
NLP tools

[45] Chatbot, Slack, Python, MySQL and Google Cloud Platform

[33]
Chatbot that runs in Telegram, built with BotFather. The back-end server was created
with Python, using the Telegram library and pickleDB. The front-end and back-end use
a Telegram dispatcher to communicate, transmit data and access APIs

[22]
A chat interface with Google’s Dialogflow. The system architecture consists of several
services that are communicating through different REST endpoints. Was used Postgres
for database, the Elasticsearch search engine and a fulfillment

37

Table 3.3 present the summarised result of the RQ2. It was evaluated in the works
that the number of members of a group generally depended on the type of task that the
members would solve, for example, discussion groups usually have a greater number of
members than groups for solving practical tasks. It was also noticed that the use of playful
tasks needs more attention in management because it is difficult to reach a joint response
(consensus) in a group.

Table 3.3 – Results summary RQ2
(RQ2) Which learning activities are used: individual, collaborative (how many people),

which formats (practical or playful)?

[29]
Peer collaboration activities where students collaborating synchronously or asynchronously can

learn together with the teacher’s lecture

[49, 20]
Peer collaboration. Each group to discuss a topic to submit a joint answer to an open learning

question

[44] Groups of up to four learners. Group for discussion and presentation of a research topic

[23]
Collaborative programming editing in an online environment embedded with text chat system

for one-on-one and small-group interactions

[33]
Proposed small group collaboration of four to five members and medium groups of ten members.

Group discussion tasks

[22]
Proposed collaborative work through chatbot-user interaction. Thus, other users have access to

information through the chatbot and not by direct contact

Table 3.4 present the summarised result of the RQ3. It was evaluated in the works
that collaborative work is strongly encouraged because it can help both in the educational
development of a student and for individual growth as a person, bringing characteristics of
living together in society. Learning flexibility is also seen as a positive point to be taken into
account, as it is argued that people have different learning times and ways of assimilating
knowledge.

Table 3.4 – Results summary RQ3
(RQ3) What are the advantages of collaborative activities?

[41]
Different approaches to learners and teacher interactions, enabling real-time collaboration

across available learning technologies

[40]
Offering tailored opportunities and flexibility of learning through feedback and interactive

collaboration

[16, 18]
Students perceiving collaboration in the group were more satisfied with the online learning

environment

[18] An environment where students can express their thoughts autonomously

[21] Sense of community is developed in collaboration

38

Table 3.5 present the summarised result of the RQ4. It was noticed the difficulty
of evaluating proposals for the management of collaborative work. There are also different
evaluations in the studies, some authors preferred to evaluate the content (conversation/dis-
cussions) of the group members and others evaluated the approach itself. Because of this
difficulty, most studies interpreted the results through questionnaires.

Table 3.5 – Results summary RQ4
(RQ4) How the proposal was validated?

[23] Reviewed nine months of server logs studied

[2]
A evaluation based mainly on Mikhail Barkhtin’s dialogism theory, Stefan Trausan-Matu’s

polyphonic model and NLP tools

[33] Qualitative study with small groups, followed by a study with users with medium groups

Table 3.6 present the summarised result of the RQ5. As most of the works did
not have a management system, it was realised that managing the actions of the members,
especially in recreational activities, was difficult. Thus, conducting experiments and conse-
quently interpreting the results achieved is considered a limitation of proposals for evaluating
approaches in collaborative systems.

Table 3.6 – Results summary RQ5

(RQ5) What are the challenges and limitations of the proposed solution?

[49] Interpreting the results achieved should be considered a limitation of the study

[23]
Difficulty in carrying out a controlled experiment to formally assess the usability

of the system

[33]
Reaching consensus, controlling the participation of group members and difficulties

in organising different opinions

Table 3.7 shows the summary result of the research questions of our approach.
Unlike other approaches in the literature where chatbot was used only as a way to retrieve
information from a database or to encourage participation in the development of a project,
our approach to a chatbot communicating with a MAS presents an improved management
and knowledge about the proposed organisation in a collaborative work. That is, the chatbot
is responsible for the communication between system and user and MAS is responsible for
storing all knowledge about the organisation’s management, respecting groups, roles and
tasks. Therefore, although no role restrictions were used in this work, it was realised that
designing a multi-agent system was a good decision due to the possibilities of organising
and structuring a group, in addition to the possibility of maintaining multiple groups with their
own organisation and rules. That said, there may be some difficulty in using these systems in

39

collaborative educational environments due to the construction of the organisation, in which
roles and tasks must be well defined before the system is implemented.

Table 3.7 – Results summary our approach
Our Approach

RQ1
Browser-based client interface approach with an integrated chatbot and a
multi-agent system

RQ2
Collaborative approach to groups with eighteen members and a lecturer to
solve group tasks

RQ3 Promotes greater search for knowledge
RQ4 Checking logs on the chatbot platform and with system log

RQ5
Difficulty in interpreting the results and changing the structure of a group
at run-time

40

4. OUR APPROACH

Our approach explores the use of a chatbot in a collaborative environment, in which
MAS agents represent their users as part of a project group, assisting in the organisation and
communication between human users. The communication of the group members is done
through the chatbot and not directly, that is, the organisation’s information is available to the
group members at any time. The main objective of the multi-agent system is to facilitate the
dissemination of information about the current status of the project, to allow several groups
to function concurrently, by allowing: greater control of restrictions and greater management
by the group responsible when monitoring performance during the execution of the task
without hinder the construction of knowledge.

The approach is represented in Figure 4.1. The user sends a message in natural
language to the chatbot inserted on a website, when the chatbot receives a request, it is
sent to JaCaMo and perceived as a plan to be executed. This plan triggered by the chatbot
request checks the query parameters to redirect to a specific plan of the request. That is,
when the user makes a request, several plans are triggered to return the response to the
chatbot, which in turn returns the response in natural language to the user on the website.

Figure 4.1 – Our approach

41

The choice of the JaCaMo platform for the approach with multi-agent systems was
made mainly because it is possible to create and control an organisation through Moise,
allowing us to manage an organisation in terms of members and in the management of task
resolution and communication with the user through a chatbot it allows a more effective and
natural communication with the system.

The coordinating Jason agent has plans to receive and send requests for the chat-
bot and plans for all chatbot intentions regarding the group’s status, which in turn redirects
to the plans regarding an agent with specific group plans. If specific plans are successfully
executed, the answer is returned to the coordinator, who in turn returns to the chatbot.

The system is validated by the experience of users of the software engineering
discipline to test the functioning and capacity of the system. The system will assist students
in a project developed in the discipline, two groups are assisted simultaneously, these groups
are composed of eighteen students and a responsible teacher. Each group has different
tasks to be solved and different final objectives.

4.1 Architecture

The overall architecture of the proposed system is shown in Figure 4.2. It involves
software development in different environments to allow an improved user interaction and
coordination. Our system is able to receive requests in the form of questions (about the
state of the organisation) or actions to be performed (register new tasks, select new tasks,
among others) and return a coherent answer with the user’s group through plans in the
JaCaMo system.

Figure 4.2 – System architecture

42

Figure 4.2 shows users’ communication with the chatbot through a website and the
perception of the multi-agent system with chatbot requests through a Java REST API. A
database was used to allow recording of information on the user’s side and to retrieve this
information on the multi-agent system side.

A website was developed to define permission levels and assist in the identification
of agents on JaCaMo, in addition to allowing the leader to register/delete and make requests
to the chatbot. The website was developed using the Angular front-end framework, for the
back-end Firebase was used with the Realtime Database.

To coordinate the groups, the multi-agent system is able to collect information in the
database to initialise the groups according to commands from the leaders. The information
generated at run-time by the organisation is not stored in the database, but in the artifact of
each group. For the development of the chatbot, the Dialogflow platform was used. The next
sections present the details of the architectures mentioned above.

4.2 Environment

A website using the Angular framework and Firebase 1 were used to facilitate the
development of web applications and host the necessary information for the user. A user has
two possible interfaces – depending on their level of access – with the system through the
website: an interface for the administrator and leaders with forms and a chatbot, as shown
in Figure 4.3, and one for students containing only the chatbot.

Figure 4.3 – Website
1Available in: https://firebase.google.com/

https://firebase.google.com/

43

A login page was developed to allow the JaCaMo system to correctly send the
message to its respective agent, that is, the moment the user sends a message to the
chatbot, information such as the user’s name and role are also automatically transmitted. As
a result, it is not necessary to request this information whenever the user sends a message.
Also, form guides have been implemented to allow the administrator to register new students
and assignments, and control guide to allow the administrator to view registered students.

To automatically send the information mentioned above, it was necessary to create
a chat, instead of using the standard Dialogflow chat integration, so that the user does
not see a query like "name_last-name_role What is my group?" but "What is my group?",
while in JaCaMo the complete request is sent (name_last-name_role Question) to extract
the necessary parameters for queries. An example of how this information is processed is
shown in Section 4.4.

4.3 Chatbot

The Dialogflow chatbot was used because it allowed communication between the
multi-agent system and the chatbot through the conversational fulfillment (deployed as a
web-hook) as shown in Figure 4.4, that calls a REST API or back-end service.

Figure 4.4 – Dialogflow architecture

The chatbot knowledge base is currently comprised of 25 intents and follow up in-
tents (intents that continue the conversation), not counting the defaults, capable of answering
questions such as: what is the group’s goal; what is the role of each member of the group;
which members of the group; what was the last task to be completed; when was the last
update made; what are my tasks; what is the project delivery date; and how long until the
task delivery date. The chatbot can also recognise requests to trigger actions on the system,
such as task completion requests or multi-agent system startup. The twenty-five intents are
described: commands, create group, create task, delivery date, development, difference in
the delivery date, statistic, group, record, my tasks, objective, productivity, project, completed

44

project, remove agent, response commands, groups of response commands, answer com-
mands my tasks, response command tasks, select the group, select the log group, select
the productivity group, select the task, tasks and last update.

To communicate with the JaCaMo multi-agent system, an intent was created in
Dialogflow for each question to be answered and for each action to be taken. To orga-
nize requests made by users, intentions were trained using parameters. Initially four pa-
rameters were created, with the expectation of a query of the type: "name last-name dis-
cipline role Question": name (@sys.given-name), last-name (@sys.last-name) , discipline
(@disciplina) and role (@role), but Dialogflow was unable to get the parameters with cer-
tainty, causing the multi-agent system to fail to identify which agent and plan it should trigger.
With that, the phrases were trained with a parameter: name (@name), for queries of the type
"name_last-name_role Question". The @name parameter is identified by an entity created
that recognises the pattern of a word through Regex.

Figure 4.5 shows an example of task-related intent training. This example shows
how the chatbot recognises questions related to tasks in order to return options of actions
that the user wants to perform.

Figure 4.5 – Dialogflow intent training

45

4.4 Multi-Agent System

The system was implemented based on the JaCaMo and Dialogflow integration
project developed by Engelmann et al 2. The integration project was adapted according to
the needs of the proposal project. Figure 4.6 shows how the integration with the multi-agent
system is currently implemented.

Figure 4.6 – Dialogflow and JaCaMo integration

The system was developed so that the agents of a group are responsible for a func-
tion, each with a set of different missions that must be fulfilled for the project to be completed.
These roles and missions must be part of the Moise scheme, previously organised before
the system started, therefore, they must be modified according to the instructions and needs
of the responsible teacher. Moise is responsible for the student to know that he can already
perform his task.

The multi-agent system is responsible for storing all the information of the group,
which tasks each student has to solve, which is the student’s role in the group, the objectives
and members of the group. The chatbot is the means for students to extract information from
the multi-agent system in natural language. The multi-agent system receives a POST from
the REST API that treats the information that comes from the chatbot as an object. This
information is refactored to extract the necessary parameters and initiate an internal action

2https://github.com/DeboraEngelmann/helloworld_from_jason

https://github.com/DeboraEngelmann/helloworld_from_jason

46

in Jason, which consequently the system of continuity in the communication between agents
to meet the user’s request.

For the development of the JaCaMo multi-agent system, three types of agents
were used: REQUEST COORDINATOR agent responsible for the requests that the sys-
tem receives from Dialogflow and for managing information with Firebase; LEADER agent
responsible for group coordination, that is, it is the agent that does all the work related to the
group’s initialisation (creation of the group artifacts and workspace), initialises the agents of
your group and deals with the management of the requests of the group; and STUDENT is
the agent responsible for solving tasks, with this, it handles its own requests regarding tasks
and redirects requests regarding the group to its leader.

The system works by communicating between agents and by reaching plans ac-
cording to the perception of requests. The request coordinator controls the actions between
agents through Jason’s communications, in which these communications have two formats,
which can be just a tell to send beliefs to another agent or an achieve, telling another agent to
execute a certain plan. Chatbot requests are perceived by the request coordinator through
internal operations in the CArtAgo artifact. Each perceived request executes the request

plan, which forwards it to the response plan. There is a response plan for each chatbot
intent, which executes different plans, based on the parameters received from the triggered
intent.

For example, when the request coordinator receives an intention to create a group,
it triggers the setup plan that uses a CArtAgo operation to get the group information in
Firebase. When the artifact takes the information, an internal operation is triggered to create
a leading agent, send beliefs to that agent and communicated to that agent to execute a
setup plan. In turn, the lead agent creates the workspace, the group organisation, the group
scheme and executes a plan for creating student-type agents. As the students are created
in the system, the lead agent sends orders to execute plans for configuring the workspace,
organisation and schema. Finally, to complete the group creation, the lead agent stores the
information of the tasks present in Moise.

Regarding tasks requests, the request coordinator communicates directly to the
agent responsible for the request. The plans responsible for the tasks are defined to respect
the Moise organisation, so there is always a permission check for the student’s actions. That
is, the system checks whether the agent is able to perform the proposed action, checking the
status of the task, the role that the agent is representing in the group and the very activities
that the agent is performing or not.

And finally regarding the group’s information requests, the group leader keeps the
organisation’s consultation information in its belief base. With that, all requests for group
information that are directed to student agents are redirected to the leader.

Figure 4.7 shows how the architecture works through an example of user-system
interaction. The student asks a question regarding the tasks he is responsible for performing

47

("What are my tasks?"). The chatbot recognises the user’s intention (My Tasks) and extracts
parameters such as the student’s full name (name: John, last-name: Doe) and if he is a
project leader and forwards the query to the multi-agent system. The multi-agent system
recognises these parameters and forwards them to the agent responsible for representing
their real user, activating plans responsible for handling the request and forwards the query
response to the chatbot, which in turn presents the response to the user ("Responsible for
the Task: Register users in the system").

Figure 4.7 – Example interaction

Figure 4.8 shows how the system flows, the steps are described below:

1 User asks a question to the chatbot about the group’s tasks ("What tasks to solve");

2 Question triggers an intent. The chatbot identifies the parameters and the intent in the
query;

3 Query is sent to JaCaMo via web-hook by a POST request;

4 Information is processed in Java and sent to the multi-agent system;

5 Request Coordinator verifies the parameters received from the chatbot such as: name
of the agent and the intent and sends it to the agent that represents the student in the
multi-agent system;

48

6 Agent asks the Leader of his group for information about the tasks;

7 Leader sends the information requested by the Student to the Request Coordinator;

8 Multi-agent system sends the response to the chatbot;

9 Chatbot responds to the user the task to be solved.

Figure 4.8 – Interaction flow

Request coordinator is the agent who is focused on the artifact referent to the re-
quests of Dialogflow. It has plans to deal with each Dialogflow intent, that is, for each chatbot
intent there is a corresponding plan. As it receives all requests from Dialogflow, the agent is
responsible for the communication between the real user and his respective agent, that is, it
forwards the information to the respective agent. It also has plans responsible for starting a
leading agent at run-time, sending the necessary beliefs for that agent to start his group.

Listing 4.1 shows an example of a request to the coordinator. The +request event
correspond to chatbot requests to the multi-agent system, +!responder are plans responsi-
ble for triggering specific plans based on the perceived intentions of the chatbot requests.
In this example, the triggered plan is to show the commands available to the user, so the
+!comandos plan is triggered and creates a context (contextBuilder) to trigger a chatbot
conversation sequence and then sends the response to the user via the +!answer plan.
With the context referenced, the chatbot will give options of actions to be performed in the
system, making the user’s response trigger specific plans related to the context.

49

Listing 4.1 – Request coordinator example

1 +request(ReponseID, IntentName, Params, Contexts): true <-

2 !getNameByParam(Params, Name);

3 systemLog(IntentName, Name);

4 !responder(ResponseId, IntentName, Params, Contexts);

5 .

6

7 +!responder(ResponseID, IntentName, Params, Contexts):

8 (IntentName == "Comandos")

9 <-

10 !getNameByParam(Params, Name);

11 !comandos(Name);

12 .

13

14 +!comandos(Nome):

15 .all_names(L) &

16 .term2string(N, Nome) &

17 .member(N, L)

18 <-

19 contextBuilder("respostaComandosContext", Contexto);

20 !answer("0. Cancel

21 1. Tasks

22 2. My Tasks

23 3. Group",

24 Contexto

25);

26 .

27

28 +!answer(Resposta, Contexto): true <-

29 reply(Resposta, Contexto);

30 .

Listings 4.2, 4.4, 4.5, 4.6, 4.8 and 4.9 describe the creation and configuration of
multiple groups, that is, these plans are responsible for the entire configuration of the organ-
isation, as long as the system already has a Moise organisation previously configured.

Listing 4.2 shows an execution of a plan when perceiving a group creation request
+group. Upon realising the creation of a group, the +!createLeader plan is triggered by
creating the initialised project leader and sending beliefs to the leader and sending him to
reach the setup plan.

50

Listing 4.2 – Create group request

1 +grupo(start(Leader,Grupo)): true <-

2 !createLeader;

3 .

4

5 +!createLeader:

6 grupo(start(Leader, Grupo) &

7 projeto(Projeto) &

8 descricao(Objetivo)

9 <-

10 .create_agent(Leader, "leader.asl");

11 .send(Leader, tell, start(Grupo, Projeto, Objetivo));

12 .send(Leader, achieve, setup);

13 +grupoStatus(Leader);

14 .

Listing 4.3 shows an example of a follow up intent in the execution of a plan re-
sponsible for verifying parameters when receiving a command intent. This plan verifies the
options given by the command intent and verifies if it is a student to create a new conversa-
tion context for the continuity of the operation (follow up intent).

Listing 4.3 – Example follow up intent

1 +!executar(Nome, Operacao):

2 Operacao == 1 &

3 .all_names(L) &

4 .term2string(N, Nome) &

5 .member(N, L)

6 <-

7 contextBuilder("respostaComandosTarefasContext,Contexto);

8 !answer("0. Cancel

9 1. List registered tasks

10 2. Select task

11 3. List unfinished tasks",

12 Contexto

13);

14 .

15

16 +!executar(Nome, Operacao):

17 Operacao == 2 &

51

18 .all_names(L) &

19 .term2string(N, Nome) &

20 .member(N, L)

21 <-

22 contextBuilder("respostaComandosMinhasTarefasContext,

23 Contexto

24);

25 !answer("0. Cancel

26 1. Task in progress

27 2. Mark task as done

28 3. Release task

29 4. Task delivery date

30 5. How much to deliver the task,

31 Contexto

32);

33 .

Leader is the agent who is responsible for starting the group at run-time, creating
the members of your team dynamically with the information provided by the request coor-
dinator. It has plans responsible for: initialising and defining the team’s workspace, group
and initial tasks; in addition to initialising team members, he is also responsible for assigning
missions and roles to these agents; and finally is responsible for answering the questions re-
garding the group, that is, organising the group’s information and forwarding it to the request
coordinator according to the consultations. The commands available to the group leader are
described bellow:

• commands: show the commands available on the system (tasks [register task, remove
task, list tasks, tasks not being performed and uncompleted tasks], group [group mem-
bers, list due date for tasks, remove member and mark project as complete], log and
members’ productivity);

• create group: initialise the group on MAS;

• tasks: show commands for tasks (register task, remove task, list tasks, tasks not being
performed and uncompleted tasks);

• group: show commands for group (group members, list due date for tasks, remove
member, mark project as complete);

• log: show the group log;

• productivity: show group productivity;

52

• update: show the last update made by the group;

• objective: show the project description;

• delivery date: list the due date for tasks;

• completed project: mark the project as completed.

Figure 4.9 shows how information is forwarded by the request coordinator to the
group leader. The leader makes a request for consultation – in case of an administrator user
it is also possible to make a request for group creation – to the corresponding leader, if nec-
essary it seeks information from the members of the group itself and returns the information
to the chatbot or if there is already information in their own beliefs, information is returned
directly.

Figure 4.9 – Leader requests

Listing 4.4 shows the plan responsible for starting the group and the agents. Is ini-
tialised the workspace (createWorkspace and joinWorkspace), artifact (makeArtifact), or-
ganisation (createGroup) and the plan to initialise agents is triggered (!createAgents). This
plan ensures that each group has its own artifacts and workspace, in addition to adopting the
position of leader to the agent (adoptRole). The workspace artifact provides functionalities
to create workspace (createWorkspace), create group (createGroup), join (joinWorkspace),
lookup (lookupArtifact), make artifcat (makeArtifact), focus artifacts of the workspace
(focus) and also it provides operations to set roles (adoptRole). We use focus in order to
perceive the artifact.

53

Listing 4.4 – Group setup

1 +!setup:

2 .my_name(Nome) &

3 start(Agentes,Projeto,_)

4 <-

5 .concat("workspace_", Nome, WName);

6 createWorkspace(WName);

7 joinWorkspace(WName, WOrg);

8 .lenght(Agentes, Ag);

9 .concat("tarefa_", Nome, ArtName);

10 makeArtifact(ArtName, "board.Tasks", [Ag],

11 OrgArtId[wid(WOrg)]

12);

13 focus(OrgArtId[wid(WOrg)]);

14 joinWorkspace(Nome, GrOrgId);

15 .concat("time_", Nome, GroupName);

16 createGroup(GroupName, team, GrArtId)[artifact_name(Nome),

17 wid(GrOrgId)];

18 adoptRole(leaderRole)[artifact_id(GrArtId)];

19 focus(GrArtId)[wid(GrOrgId)];

20 !createAgents;

21 .

Listing 4.5 shows the plan responsible for creating the agents (.create_agent), the
plan to trigger the specific agent and initialise the artifacts previously created by the leader,
the schema initialisation and also triggers the plan to assign the mission. First, all agents in
the group are created and initialised by the setup plan. When all agents are fully initialised,
the group schema is created, which is a global objective decomposition tree (createScheme),
add a scheme under the responsibility of a group (addScheme) and the process of assign-
ing missions is started (!assignMissions). lookupArtifact is used to search the group’s
artifacts and ?formationStatus is used to check if the group is well formed.

Listing 4.5 – Create agents

1 +!createAgents:

2 .my_name(Nome) &

3 start(Agentes,_,_) &

4 qtdAgentes(QtdAgentes) & QtdAgentes > 0

5 <-

6 .nth(QtdAgentes-1, Agentes, Agente);

54

7 .create_agent(Agente, "student.asl");

8 .concat("tarefa_", Nome, ArtName);

9 .concat("time_", Nome, GroupName);

10 .send(Agente, achieve, setup(ArtName, GroupName));

11 descontaAgentes;

12 !createAgents;

13 .

14

15 +!createAgents:

16 .my_name(Nome) &

17 qtdAgentes(QtdAgentes) & QtdAgentes == 0

18 <-

19 lookupArtifact(Nome, GrOrgId);

20 .concat("esquema_", Nome, Scheme);

21 createScheme(Scheme, taskScheme, SchArtId)[wid(GrOrgId)];

22 focus(SchArtId)[wid(GrOrgId)];

23 .concat("time_", Nome, GroupName);

24 lookupArtifact(GroupName, GrArtId);

25 ?formationStatus(ok)[artifact_id(GrArtId)];

26 addScheme(Scheme)[artifact_id(GrArtId)];

27 resetaAgentes;

28 !assignMissions;

29 .

Listing 4.6 shows the plan responsible for triggering the specific agent and initial-
ising the artifacts previously created by the leader and is also responsible for saving all the
group’s goals. First we use send for all agents in the group to achieve the setMission plan.
After all agents are correctly configured, a list is generated with all the objectives of the
group.

Listing 4.6 – Assign agent mission

1 +!assignMissions:

2 .my_name(Nome) &

3 start(Agentes,_,_) &

4 qtdAgentes(QtdAgentes) &

5 QtdAgentes > 0

6 <-

7 .nth(QtdAgentes-1, Agentes, Agente);

8 .concat("esquema_", Nome, Scheme);

55

9 .send(Agente, achieve, setMission(Scheme));

10 descontaAgentes;

11 !assignMissions;

12 .

13

14 +!assignMissions:

15 qtdAgentes(QtdAgentes) & QtdAgentes == 0

16 <-

17 .findall(Goal, specification(

18 scheme_specification, taskScheme,

19 goal(_,_,_,_,_,_,plan(_,Goal)),

20 _,

21 _

22)), Goals);

23 .term2string(Goals, Objetivos);

24 missoesMoise(Objetivos);

25 resetaAgentes;

26 .

Listing 4.7 shows the plan responsible for responding to a request for the last
change (date and task performed) in the group and sends it to the coordinator to trigger
the plan to respond to the chatbot.

Listing 4.7 – Example leader request

1 +!getLastUpdate: true <-

2 ?ultimoUpdate(Data);

3 ?ultimaTarefaCompleta(Tarefa);

4 .concat("[", Data, "]: ", Tarefa, Resposta);

5 .send(chatbot, achieve, answer(Resposta));

6 .

Student is the agent who has plans to dynamically join a group and workspace as
directed by the group leader. It also has plans related to the tasks to be completed for the
resolution of the group project, that is, the plans are related to the situation of the tasks in
relation to the Moise scheme, such as: selection, drop and completion of tasks. And finally,
it is also able to directly answer to request coordinator some queries regarding tasks. The
commands available to students are described bellow:

• commands: show the commands available on the system (tasks [list registered tasks,
select task and list unfinished tasks], my tasks and group [group members and project
status (completed or not completed)]);

56

• tasks: show commands for tasks (list registered tasks, select task and list unfinished
tasks);

• group: show group members;

• update: show the last update made by the group;

• objective: show the project description;

• delivery date: list the due date for tasks;

• how much to deliver the task: show how much is left for delivery date;

• project: show the state of completion of the project;

• concluded: mark task as complete.

Figure 4.10 shows in relation to a student request. If the request is for consultation,
the Jason agent corresponding to the student who made the request sends a message to
the group leader to respond to that request. If the request is to update the group status, the
operation is performed only at the student’s Jason agent.

Figure 4.10 – Student requests

The tasks that students had to solve were related to software development, that is,
front-end, back-end development tasks, among others. The following are examples of tasks
to be performed: modelling the persistence layer, generating the initial physical and logical
database schema, creating the POST method to receive the registration data, creating the

57

GET endpoint in the users API, creating the profile screen and user route management. The
complete list of tasks can be found in the Appendix A.

Listing 4.8 shows the plan responsible for initialising the agent artifacts. When the
group leader sends a message to the agent to reach the setup plan, artifacts related to
the group are searched for (lookupArtifact), focused (focus) and the agent’s role is also
selected (adoptRole).

Listing 4.8 – Agent setup

1 +!setup(OrgArt, GrArt)[source(Nome)] <-

2 .concat("workspace_", Nome, WName);

3 joinWorkspace(WName, WOrg);

4 lookupArtifact(OrgArt, OrgArtId);

5 focus(OrgArtId)[wid(WOrg)];

6 joinWorkspace(Nome, GrOrgId);

7 lookupArtifact(GrArt, GrArtId);

8 focus(GrArtId)[wid(GrOrgId)];

9 adoptRole(studentRole)[artifact_id(GrArtId)];

10 .

Listing 4.9 shows the plan responsible for initialising the agent’s artifacts for the
mission. First the group’s artifacts are recognised (lookupArtifact) and then the focus is
made (focus). This plan is triggered by the group leader.

Listing 4.9 – Set agent mission

1 +!setMission(SchArt)[source(Nome)] <-

2 lookupArtifact(SchArt, SchArtId);

3 lookupArtifact(Nome, GrOrgId);

4 focus(SchArtId)[wid(GrOrgId)];

5 .

Listing 4.10 shows the plan responsible for committing to carry out the proposed
mission. When this plan is triggered first it checks if the task that the agent selected is a main
task (task that is in the Moise) or if it is a secondary task (inserted later by a group leader)
by the operation (missoes) and then it is triggered the plan !assignTask. The !assignTask

plan causes the agent to commit to a mission in the scheme (commitMission) and send a
completion response to the user.

58

Listing 4.10 – Agent assign task

1 +!assignTask(DataAtual, Hora, Agente, Tarefa): true <-

2 .findall(Mission, specification(

3 scheme_specification(taskScheme,_,Mission,_)

4), Missions;

5 .term2string(Missions, Missoes);

6 .concat("mission_tarefa_", Tarefa, Missao);

7 missoes(Missao, Missoes, IsMission);

8 !atribuiTarefa(DataAtual, Hora, Agente, Tarefa, IsMission);

9 .

10

11 +!atribuiTarefa(DataAtual, Hora, Agente, Tarefa, IsMission):

12 play(Leader,eaderRole,_) &

13 IsMission

14 <-

15 .concat("mission_tarefa_", Tarefa, Mission);

16 .term2string(Missao, Mission);

17 .concat("esquema_", Leader, Scheme);

18 commitMission(Missao)[artifact_name(Scheme)];

19 atribuirTarefa(DataAtual, Hora, Agente, Tarefa, Resposta);

20 .send(chatbot, achieve, answer(Resposta));

21 .

Listing 4.11 shows the plan responsible for releasing the task, and it is no longer
necessary to perform it. First, the plan verifies whether the corresponding agent is really
committed to carrying out the mission (commitment), if the agent is committed, leaveMission
is used to remove the mission from the scheme and then a confirmation response is sent to
the user.

Listing 4.11 – Agent drop task

1 +!dropTask(DataAtual, Hora, Nome):

2 .term2string(Ag, Nome) &

3 commitment(Ag, Mission, Scheme)

4 <-

5 leaveMission(Mission)[artifact_name(Scheme)];

6 liberaTarefa(DataAtual, Hora, Nome, Resposta);

7 .send(chatbot, achieve, answer(Resposta));

8 .

59

Listing 4.12 shows a task completion request, it is the responsible plan to achieve
the objective. First, the plan checks whether it is a primary mission (IsMission), whether the
corresponding agent is really committed to carrying out the mission (commitment) and the
current active obligations (obligation), whether these checks are fulfilled, the agent sets
the goal as performed by him (goalAchieved) and a response message is sent to the user.
It is an action plan, so the communication takes place directly between the student agent
and the request coordinator agent.

Listing 4.12 – Example agent request

1 +!finalizarTarefa(DataAtual, Tarefa, Resposta,

2 Objetivo, IsMission):

3 .my_name(Ag) &

4 IsMission &

5 play(Leader,leaderRole,_) &

6 commitment(Ag,_,_) &

7 obligation(Ag,Norm,What,Deadline)[artifact_id(ArtId)]

8 <-

9 .concat("[", Nome, "]: ", Tarefa, Task);

10 !attLeaderBelief(Task, DataAtual);

11 .concat("tarefa_", Objetivo, Go);

12 .term2string(Goal, Go);

13 goalAchieved(Goal)[artifact_id(ArtId)];

14 .send(chatbot, achieve, answer("Good job!"));

15 .

Listing 4.13 shows a simplified example of organisation of the Moise scheme in
which there are only a few examples of tasks and there are no dependencies between
them, that is, the tasks have no prerequisites to be fulfilled. Thus, each goal has a specific
mission, in which multiple students can complete the task (minimum 0, there may be no one
performing the task at the moment, and maximum 18, maximum number of students).

The organisation’s specification is divided into: structural-specification, functional-
specification and normative-specification:

• Structural-specification: defines the roles and the number of agents that can fill those
roles;

• Functional-specification: defines the organisation’s scheme, the objectives and the
missions to be accomplished are defined;

• Normative Specification: states both the required roles for missions and missions obli-
gations for roles.

60

Listing 4.13 – Moise scheme

1 <organisational-specification

2 id="groupOrg" os-version="0.8"

3 xmlns=’http://moise.sourceforge.net/os’

4 xmlns:xsi=’http://www.w3.org/2001/XMLSchema-instance’

5 xsi:schemaLocation=’http://moise.sourceforge.net/os

6 http://moise.sourceforge.net/xml/os.xsd’>

7

8 <structural-specification>

9 <role-definitions>

10 <role id="leaderRole" />

11 <role id="studentRole" />

12 </role-definitions>

13

14 <group-specification id="team">

15 <roles>

16 <role id="leaderRole" min="1" max="1" />

17 <role id="studentRole" min="1" max="18" />

18 </roles>

19 </group-specification>

20 <structural-specification>

21

22 <functional-specification>

23 <scheme id="taskScheme">

24 <goal id="complete_Project" ds="Project#1">

25 <plan operator="parallel">

26 <goal id="task_1" ds="Import photos"></goal>

27 <goal id="task_2" ds="Add photo description"></goal>

28 <goal id="task_3" ds="US16 - Create profile screen">

29 </goal>

30 <goal id="task_4" ds="US16 - Create screen components">

31 </goal>

32 </goal>

33 <goal id="task_5" ds="US16 - Integrate screen

34 and components">

35 </goal>

36 <goal id="task_6" ds="US16 - Create GET endpoint

37 to receive company data">

38 </goal>

61

39 </plan>

40 </goal>

41

42 <mission id="mission_task_1" min="0" max="18">

43 <goal id="task_1" />

44 </mission>

45

46 <mission id="mission_task_2" min="0" max="18">

47 <goal id="task_2" />

48 </mission>

49

50 <mission id="mission_task_3" min="0" max="18">

51 <goal id="task_3" />

52 </mission>

53

54 <mission id="mission_task_4" min="0" max="18">

55 <goal id="task_4" />

56 </mission>

57

58 <mission id="mission_task_5" min="0" max="18">

59 <goal id="task_5" />

60 </mission>

61

62 <mission id="mission_task_6" min="0" max="18">

63 <goal id="task_6" />

64 </mission>

65 </scheme>

66 </functional-specification>

67

68 <normative-specification>

69 <properties>

70 <property id="mission_permission" value="ignore"/>

71 <property id="mission_left" value="ignore"/>

72 </properties>

73 </normative-specification>

74

75 </organisational-specification>

62

5. EXPERIMENT RESULTS AND ANALYSIS

Our system was evaluated during two months of tests with students in the discipline
of software engineering. It was tested with two groups (two software development projects),
in which the groups consisted of eighteen students and a lecturer responsible for the group.
The students performed several sprints during the development of the project, with that, with
each sprint the new tasks were updated in the multi-agent system, specifically in the Moise
organisation, as well as corrections and improvements in the system’s response.

The students’ questions and answers were checked through the Dialogflow platform
itself to assess whether the chatbot was able to correctly identify and trigger the desired
intent. The number of requests, matches and non-matches of the chatbot can be checked
in Table 5.1.

Table 5.1 – Chatbot requests
Requests No Match

September, 2020 299 53
October, 2020 278 1

Total 577 54

Due to the multi-agent system, as its name says, being able to support the man-
agement of multiple agents when communicating with the chatbot to manage individual in-
formation, the chatbot initially had difficulty in triggering a certain intention due to the way the
parameters were extracted from the information of a student consultation. After identifying
the problem, the solution presented in Section 4.3 was proposed to guarantee the correct
extraction of the parameter that identified the student, in order to correspond with his agent
in the system.

The multi-agent system was able to deliver quick responses (as a rule, responses
should take less than two seconds, necessary due to the time that Dialogflow waits for a
query to be answered, but responses usually take less than a second) and consistent with
the group and its representation in the system. The exchange of messages between the
agents of the system to consult information about the group was an interesting approach
regarding the organisation, since all information about a group was stored in one place,
specifically with the group leader.

Figures 5.1 and 5.2 show a request for listing the tasks available to the group (stu-
dents’ names were censored for privacy reasons). The answer to this request is valid both
for listing tasks and for selecting a task.

The agent answers this query by returning a conversation bubble for each task in
the formats: [Agent1 Performing Task - AgentN Performing Task] Task (if there are
agents doing the task) or just Task (if there are no agents doing the task).

63

Figure 5.1 – Task List Request

The status of completion of the task is also shown in case the student responsible
for performing the task completes the task, as shown in Figure 5.2. In case of completing a
task, the format is given by: [Agent1 Performing Task (completed) - AgentN Performing
Task] Task . As more than one person can perform the task, the state of completion is
individual to the student.

Figure 5.2 – Task List Request

Figures 5.3 and 5.4 shows a request made by a group leader regarding his group’s
Log. The agent’s response is in the format: [Date of Assignment Agent] Assigned task:
Task .

64

Figure 5.3 – Log Request

The task completion status is also shown in the log if the agent responsible for
executing the task completes the task, as shown in Figure 5.4. In the case of completing a
task, the format is given by: [Date of Assignment Agent] Completed the task: Task .

Figure 5.4 – Log Request

Figures 5.5 and 5.6 show examples of requests based on selecting options from the
student. These figures are examples of responses when a multi-agent system handles re-
quests that have follow-up intents, the next user interaction, the chatbot will take into account
that the request is in the context of Tasks (Figure 5.5) and My Tasks (Figure 5.6), because
follow-up intents keep the context and/or parameters for a certain number of interactions.

65

Figure 5.5 shows a student requesting the available options regarding tasks. The
agent returns the following response: 0. Cancel; 1. List registered tasks; 2. Select task
and 3. List unfinished tasks.

Figure 5.5 – Task Request

Figure 5.6 shows a student requesting the options available regarding the agent’s
tasks. The agent returns the following response: 0. Cancel; 1. Task in progress; 2. Mark
task as completed; 3. Release task; 4. Delivery date of the task and 5. How much is
left for the delivery of the task,

Figure 5.6 – My Task Request

Two types of logs were generated by the system, one informing about activities
and triggering intentions and the other form of validation was through the training guide of

66

Dialogflow itself (Figure 5.7). The following are examples of the system logs.

Activities
Agent - Assigned to task: The logout button must be removed from all screens being used
and must pass into the ’More ...’ tab bar section
Agent - Assigned to task: Update Wiki with Mockups
Agent - Assigned to task: On the job vacancy screen (company) it must contain the fields
’Hours’ and ’Local’
Agent - Assigned to task: On the login screen the enter button must be with the same round-
ing as the first screen
Agent - Assigned to task: Adjust button colours to black, must be the same as the login
screen
Agent - Assigned to task: Increase the logo on the quick registration screen
Agent - Assigned to task: US03 Validate the data entered by the user and apply masks
Agent - Assigned to task: US03 Complete address fields via API
Agent - Assigned to task: US03 Load profile data into the form and allow editing
Agent - Assigned to task: US03 Load profile data into the form and allow editing
Agent - Assigned to task: Design Adjust vacancy registration screen according to the current
project
Agent - Assigned to task: On the Search for Available Jobs screen, the title should be aligned
in the left paragraph format
Agent - Assigned to task: US06 Consume zip code API to fill in data based on zip code
Agent - Assigned to task: Automated tests
Agent - Assigned to task: US16 Create profile screen
Agent - Assigned to task: US16 Create screen components
Agent - Assigned to task: US16 Integrate screen and components
Agent - Assigned to task: US16 Create profile screen
Agent - Assigned to task: US16 Create screen components
Agent - Assigned to task: US16 Integrate screen and components
Agent - Assigned to task: US16 Create profile screen
Agent - Assigned to task: US16 Create screen components
Agent - Assigned to task: US16 Integrate screen and components
Agent - Assigned to task: Create classes to standardise calls to Firebase
Agent - Assigned to task: Add descriptions to photos
Agent - Assigned to task: 33 Delete discipline (and your photos)
Agent - Assigned to task: Import photos from user’s phone automatically
Agent - Assigned to task: 39 Optical character recognition (OCR)
Agent - Finished the task: The logout button must be removed from all screens that are
being used and must pass into the ’More ...’ tab bar section
Agent - Finished the task: Update Wiki with Mockups

67

Agent - Finished the task: On the login screen the enter button must be with the same
rounding as the first screen
Agent - Finished the task: Adjust button colours to black, must be the same as the login
screen
Agent - Finished the task: US03 Validate the data entered by the user and apply masks
Agent - Finished the task: US03 Complete address fields via API
Agent - Finished the task: US03 Load profile data in the form and allow editing
Agent - Finished the task: US03 Load profile data in the form and allow editing
Agent - Finished the task: Design Adjust vacancy registration screen according to the cur-
rent project
Agent - Finished the task: On the Search for Available Jobs screen, the title should be
aligned in the left paragraph format
Agent - Finished the task: US06 Consume zip API to fill in data based on zip code
Agent - Finished the task: US16 Create profile screen
Agent - Finished the task: US16 Create screen components
Agent - Finished the task: US16 Integrate screen and components
Agent - Finished the task: US16 Create profile screen
Agent - Finished the task: US16 Create screen components
Agent - Finished the task: US16 Integrate screen and components
Agent - Finished the task: US16 Create profile screen
Agent - Finished the task: US16 Create screen components
Agent - Finished the task: US16 Integrate screen and components

Intents
Received (Agent) intent: Create Group
Received (Agent) intent: Commands
Received (Agent) intent: Response Commands
Received (Agent) intent: Task Commands Response
Received (Agent) intent: Create Group
Received (Agent) intent: Commands
Received (Agent) intent: Response Commands
Received (Agent) intent: Task Commands Response
Received (Agent) intent: Log
Received (Agent) intent: Tasks
Received (Agent) intent: Task Commands Response
Received (Agent) intent: Select Task
Received (Agent) intent: My Tasks
Received (Agent) intent: My Tasks Commands Response
Received (Agent) intent: Group
Received (Agent) intent: Group Commands Response

68

Received (Agent) intent: Project
Received (Agent) intent: Developed
Received (Agent) intent: Difference Delivery Date
Received (Agent) intent: Goal

Users’ requests for the chatbot are perceived by the Dialogflow platform and stored
in the training guide, as shown in Figure 5.7, storing information such as: date of the request,
who requested it, what was their input, what intention was triggered and what parameters
were extracted. Figure 5.7 shows an example of Dialogflow training, in which the intention
that was triggered and the parameters recognised are shown, in yellow the name parameter
and in orange the operation of a command request.

Figure 5.7 – Dialogflow training example

69

6. FINAL CONSIDERATIONS AND FUTURE WORK

Increasingly, remote (non-face-to-face) learning has been used in the education or
training of people through digital resources to acquire new knowledge, to develop profes-
sionally by acquiring new skills and abilities of the most diverse types, among others. With
reasonable technological support, distance education is being used as an alternative to face-
to-face activities to continue education amid the restrictions imposed by the pandemics of
COVID-19.

In this context, distance education allows people who do not have access to infor-
mation in physical environments (for social reasons or for a specific situation, such as the
pandemic) to easily, quickly and dynamically consume personalised and efficient knowledge
from a digital platform. Although distance learning has so many good points, it is still far
from being the ideal method. There is a concern about the collaborative distance learning
method, in which the main problems to be solved in this approach are: balance of skills
within a group, incorrect group dynamics, lack of communication in the group and difficulty
with social situations.

As demonstrated in this work, Allaymoun and Trausan-Matu [2], Ferschke, Tomar
and Rosé [20] among other authors showed that collaborative work is an important factor
in a student’s development. In addition, Ferschke, Tomar and Rosé [20] shows the impor-
tance of avoiding redundant work by sharing information within a group. Thus, this work
proposed an approach through multi-agent systems, which differs from other works covered
in this dissertation, in which the greatest means of disseminating information was a large
information store mediated by a chatbot. Using a multi-agent system, it was possible to
achieve approaches by organisations (groups), in which, unlike other approaches, our sys-
tem is capable of managing multiple groups, managing information such as roles and tasks,
in which each group has its own organisation configuration, that is, their own roles, tasks
and restrictions.

Therefore, the main objective of the multi-agent system is to manage the organisa-
tion of a real group through its representation in the system, by facilitating the dissemination
of information about the current status of the project and allowing the responsible for the
group to monitor the performance of the members during the tasks of execution, without
disturbing the construction of knowledge. In particular, the focus is on the educational en-
vironment, where it is very important that project members are aware of how the project is
evolving. An approach based on multi-agent systems is used, specifically with the JaCaMo
platform, because it is possible to create and control an organisation in terms of members
and in the management of task assignment. Communication with the user through a chatbot
aims to allow a more effective and natural communication with the system.

70

The possibility of creating multiple domains is what makes the use of multi-agent
systems a very important feature for managing systems. In particular, if there are different
people or organisations with different objectives and proprietary information, a multi-agent
system is capable of handling interactions efficiently. That is, MAS are able to model an
organisation’s internal affairs with a single system, avoiding the need to develop an organ-
isation that encompasses all representations, but rather to develop different organisations
that are accessible in their own system with their capabilities and priorities.

It was noticed during the development of this work that multi-agent systems present
a range of possibilities in the coordination of groups in an educational environment, enabling
group management through tasks or roles. Multi-agent systems are able to facilitate the
development of multiple projects simultaneously due to the selection of tasks and roles nec-
essary to create organisations in the system, allow restrictions on the execution of tasks
based on the capacity (role) of the agent, allow group members to be attentive to all the ad-
vances that occur in the development of the project through the Moise management, among
other possibilities.

The biggest challenge of this work when implementing a multi-agent system in
a collaborative educational project is to improve the system so that changes in the group
structure occur during the development of the project, that is, change the Moise scheme
at run-time to insert new ones plans and consequently missions without interruption in the
system.

As a future work, we intend to make the use of chatbot more flexible, allowing
a different approach in the system when carrying out interventions in the group with pro-
activity, change the chat interface so that students can communicate through the system
interface itself, allow a means of direct communication with the teacher through the platform,
apply and test the method of the team composition problem, previously interview users to
collect the phrases used in the development of a work to enrich the chatbot language and
finally, researching ways to change the group’s schema at run-time so that the group leader
can change through the proposed interface without interruptions in the system.

As a future work, we intend to make the use of the chatbot more flexible, allowing
a proactive approach to the system when carrying out interventions in the group; change
the chat interface so that students can communicate through the system interface itself;
allow a means of direct communication with the teacher through the platform; apply and test
the method presented in Section 2.5 to solve the team composition problem; interview the
users to collect the phrases used in the development of a groupwork to enrich the chatbot
language; and finally, research ways to change the scheme of the group at run-time so that
the group leader can change through the proposed interface without interruptions in the
system.

71

REFERENCES

[1] Al-Abri, A.; AlKhanjari, Z.; Jamoussi, Y.; Kraiem, N. “Identifying learning styles from chat
conversation using ontology-based dynamic bayesian network model”. In: Proceedings
of the 8th International Conference on Computer Science and Information Technology,
2018, pp. 77–84.

[2] Allaymoun, M. H.; Trausan-Matu, S. “Analysis of collaboration in computer supported
collaborative learning chat using rhetorical schemas”. In: Proceedings of the 7th
International Conference on Information and Communication Systems, 2016, pp. 39–
44.

[3] Andrejczuk, E.; Berger, R.; Rodríguez-Aguilar, J. A.; Sierra, C.; Marín-Puchades,
V. “The composition and formation of effective teams: computer science meets
organizational psychology”, The Knowledge Engineering Review, vol. 33, Nov 2018,
pp. e17.

[4] Andrejczuk, E.; Rodríguez-Aguilar, J. A.; Roig, C.; Sierra, C. “Synergistic team
composition”. In: Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, 2017, pp. 1463–1465.

[5] Baby, C. J.; Khan, F. A.; Swathi, J. N. “Home automation using iot and a chatbot
using natural language processing”. In: Proceedings of the Institute of Electrical and
Electronics Engineers Innovations in Power and Advanced Computing Technologies,
2017, pp. 1–6.

[6] Baylor, A. L.; Kim, Y. “Simulating instructional roles through pedagogical agents”,
International Journal of Artificial Intelligence in Education, vol. 15–2, Jan 2005, pp.
95–115.

[7] Belbin, R. M. “Team roles at work”. Routledge, 2012, 162p.

[8] Boissier, O.; Bordini, R. H.; Hübner, J. F.; Ricci, A.; Santi, A. “Multi-agent oriented
programming with jacamo”, Science of Computer Programming, vol. 78–2, Jun 2013,
pp. 747–761.

[9] Bonk, C.; Zhang, K. “Introducing the r2d2 model: online learning for the diverse learners
of this world”, Distanec Education, vol. 27–2, Aug 2006, pp. 249–264.

[10] Bordini, R. H.; Dastani, M.; Dix, J.; Fallah-Seghrouchni, A. E. “Multi-agent programming,
languages, tools and applications”. Springer, 2009, 420p.

[11] Bordini, R. H.; Hübner, J. F.; Wooldridge, M. “Programming multi-agent systems in
AgentSpeak using Jason”. John Wiley & Sons, 2007, 292p.

72

[12] Brazier, F. M. T.; Mobach, D. G. A.; Overeinder, B. J.; Wijngaards, N. “Supporting life
cycle coordination in open agent systems”. In: Proceedings of the Multiagent System
Problem Spaces Workshop at Autonomous Agents and Multiagent Systems, 2002, pp.
1–4.

[13] Capone, C.; Bordini, R. H.; Mascardi, V.; Delzanno, G.; Ferrando, A.; Gelati, L.;
Guerrini, G. “Smart rogagent: where agents and humans team up”. In: Proceedings
of the 22nd Principles and Practice of Multi-Agent Systems, 2019, pp. 541–549.

[14] Chowdhury, G. G. “Natural language processing”. John Wiley & Sons, 2003, chap. 2,
pp. 51–89.

[15] David, B.; Chalon, R.; Zhang, B.; Yin, C. “Design of a collaborative learning environment
integrating emotions and virtual assistants (chatbots)”. In: Proceedings of the 23rd
Institute of Electrical and Electronics Engineers International Conference on Computer
Supported Cooperative Work in Design, 2019, pp. 51–56.

[16] Díaz, L. A.; Entonado, F. B. “Are the functions of teachers in e-learning and face-to-face
learning environments really different?”, Educational Technology & Society, vol. 12–4,
Oct 2009, pp. 331–343.

[17] Dutta, D. “Developing an intelligent chat-bot tool to assist high school students
for learning general knowledge subjects”, Technical Report, Georgia Institute of
Technology, 2017, 13p.

[18] Er, E.; Ozden, M.; Arifoglu, A. “Livelms: a blended e-learning environment: a model
proposition for integration of asynchronous and synchronous e-learning”, International
Journal of Learning, vol. 16–2, Jan 2009, pp. 449–460.

[19] Farhangian, M.; Purvis, M. K.; Purvis, M.; Savarimuthu, B. T. R. “Agent-based
modeling of resource allocation in software projects based on personality and skill”.
In: Proceedings of the Advances in Social Computing and Multiagent Systems, 2015,
pp. 130–146.

[20] Ferschke, O.; Tomar, G.; Rosé, C. P. “Adapting collaborative chat for massive open
online courses: lessons learned”. In: Proceedings of the 17th International Conference
on Artificial Intelligence in Education, 2015, pp. 13–18.

[21] Garrison, D.; Kanuka, H. “Blended learning: uncovering its transformative potential in
higher education”, The Internet and Higher Education, vol. 7–2, Apr 2004, pp. 95–105.

[22] Göschlberger, B.; Brandstetter, C. “Conversational AI for corporate e-learning”. In:
Proceedings of the 21st International Conference on Information Integration and Web-
based Applications & Services, 2019, pp. 674–678.

73

[23] Guo, P. J.; White, J.; Zanelatto, R. “Codechella: multi-user program visualizations
for real-time tutoring and collaborative learning”. In: Proceedings of the Institute of
Electrical and Electronics Engineers Symposium on Visual Languages and Human-
Centric Computing, 2015, pp. 79–87.

[24] Horling, B.; Lesser, V. R. “A survey of multi-agent organizational paradigms”, The
Knowledge Engineering Review, vol. 19, Dec 2004, pp. 281–316.

[25] Hrastinski, S. “Asynchronous and synchronous e-learning”, Educause Quarterly, vol.
31–4, Jan 2008, pp. 51–55.

[26] Hübner, J. F.; Boissier, O.; Kitio, R.; Ricci, A. “Instrumenting multi-agent organisations
with organisational artifacts and agents”, Autonomous Agents and Multi-Agent
Systems, vol. 20, May 2010, pp. 369–400.

[27] Hübner, J. F.; Sichman, J. S.; Boissier, O. “Developing organised multiagent systems
using the moise+ model: programming issues at the system and agent levels”,
International Journal of Agent-Oriented Software Engineering, vol. 1, Dec 2007, pp.
370–395.

[28] Huhns, M. N.; Stephens, L. M. “Multiagent systems and societies of agents”.
Massachusetts Institute of Technology Press, 1999, chap. 2, pp. 79–120.

[29] Islam, A.; Flint, J.; Jaecks, P.; Cap, C. “A proficient and versatile online student-teacher
collaboration platform for large classroom lectures”, International Journal of Educational
Technology in Higher Education, vol. 14–1, Nov 2017, pp. 29.

[30] Jung, C.; Hull, R. “Collected works of CG Jung, volume 6: Psychological types”.
Princeton University Press, 1976, 640p.

[31] Kane, D. A. “The role of chatbots in teaching and learning”. McFarland, 2016, chap. 4,
pp. 131–148.

[32] Kerly, A.; Ellis, R.; Bull, S. “Conversational agents in e-learning”. In: Proceedings of the
XVI Applications and Innovations in Intelligent Systems, 2008, pp. 169–182.

[33] Kim, S.; Eun, J.; Oh, C.; Suh, B.; Lee, J. “Bot in the bunch: facilitating group chat
discussion by improving efficiency and participation with a chatbot”. In: Proceedings of
the 20st Conference on Human Factors in Computing Systems, 2020, pp. 1–13.

[34] King, A. “Structuring peer interaction to promote high-level cognitive processing”,
Theory Into Practice, vol. 41, Mar 2002, pp. 33–39.

[35] Kitchenham, B. “Procedures for performing systematic reviews”, Technical Report,
Keele University, 2004, 33p.

74

[36] Kozslowski, S.; Bell, B. “Work groups and teams in organizations. Review update”. John
Wiley & Sons, 2012, chap. 3, pp. 412–470.

[37] Krausburg, T. “Constrained coalition formation among heterogeneous agents for the
multi-agent programming contest”, Masters Dissertation, Computer Science Graduate
Program, School of Technology, Pontifical Catholic University of Rio Grande do Sul,
2018, 109p.

[38] Kumar, R.; Beuth, J.; Rosé, C. P. “Conversational strategies that support idea
generation productivity in groups”. In: Proceedings of the 9th Computer Supported
Collaborative Learning, 2011, pp. 398–406.

[39] Kumar, R.; Rosé, C. P. “Architecture for building conversational agents that support
collaborative learning”, Institute of Electrical and Electronics Engineers Transactions
on Learning Technologies, vol. 4–1, Jan-Mar 2011, pp. 21–34.

[40] Lorenzo, G.; Ittelson, J. “An overview of e-portfolios”, Educause Learning Initiative, vol.
1–1, Jan 2005, pp. 1–27.

[41] Martínez-Caro, E. “Factors affecting effectiveness in e-learning: an analysis in
production management courses”, Computer Applications in Engineering Education,
vol. 19–3, Sep 2011, pp. 572–581.

[42] Miller, G. A. “Wordnet: a lexical database for english”, Communications of the
Association for Computing Machinery, vol. 38–11, Nov 1995, pp. 39–41.

[43] Myers, I. B.; Myers, P. B. “Gifts differing: Understanding personality type”. Nicholas
Brealey, 2010, 248p.

[44] Neto, A. J. M.; Fernandes, M. A. “Chatbot and conversational analysis to promote
collaborative learning in distance education”. In: Proceedings of the 19th Institute of
Electrical and Electronics Engineers International Conference on Advanced Learning
Technologies, 2019, pp. 324–326.

[45] Paikari, E.; Choi, J.; Kim, S.; Baek, S.; Kim, M.; Lee, S.; Han, C.; Kim, Y.; Ahn, K.;
Cheong, C.; van der Hoek, A. “A chatbot for conflict detection and resolution”. In:
Proceedings of the 1st International Workshop on Bots in Software Engineering, 2019,
pp. 29–33.

[46] Pham, X. L.; Pham, T.; Nguyen, Q. M.; Nguyen, T. H.; Cao, T. T. H. “Chatbot as an
intelligent personal assistant for mobile language learning”. In: Proceedings of the 2nd
International Conference on Education and E-Learning, 2018, pp. 16–21.

[47] Ramezan, M. “Intellectual capital and organizational organic structure in knowledge
society: How are these concepts related?”, International Journal of Information
Management, vol. 31, Feb 2011, pp. 88–95.

75

[48] Sandholm, T.; Larson, K.; Andersson, M.; Shehory, O.; Tohmé, F. “Coalition structure
generation with worst case guarantees”, Artificial Intelligence, vol. 111–1–2, Jul 1999,
pp. 209–238.

[49] Tegos, S.; Demetriadis, S. N. “Conversational agents improve peer learning through
building on prior knowledge”, Educational Technology & Society, vol. 20–1, Jan 2017,
pp. 99–111.

[50] Tisue, S. “Netlogo: design and implementation of a multi-agent modeling environment”.
In: Proceedings of the Agent Conference on Social Dynamics: Interaction, Reflexivity
and Emergence, 2004, pp. 161–184.

[51] Trausan-Matu, S. “A polyphonic model, analysis method and computer support tools for
the analysis of socially-built discourse”, Romanian Journal of Information Science and
Technology, vol. 16–2–3, Jan 2013, pp. 144–154.

[52] Veletsianos, G.; Russell, G. S. “Pedagogical agents”. Springer, 2014, chap. 7, pp. 759–
769.

[53] Vrajitoru, D.; Ratkiewicz, J. “Evolutionary sentence combination for chatterbots”. In:
Proceedings of the International Conference on Artificial Intelligence and Applications,
2004, pp. 287–292.

[54] Weyns, D.; Omicini, A.; Odell, J. “Environment as a first class abstraction in multiagent
systems”, Autonomous Agents and Multi-Agent Systems, vol. 14, Feb 2007, pp. 5–30.

[55] Wilde, D. “Post-Jungian personality theory for individuals and teams”. Sydrose LP, 2013,
23p.

[56] Williams, J. D.; Kamal, E.; Ashour, M.; Amr, H.; Miller, J.; Zweig, G. “Fast and easy
language understanding for dialog systems with microsoft language understanding
intelligent service”. In: Proceedings of the 16th Special Interest Group on Discourse
and Dialogue, 2015, pp. 159–161.

[57] Wooldridge, M. J. “An introduction to multiagent systems, second edition”. John Wiley
& Sons, 2009, 461p.

76

APPENDIX A – GROUP TASKS

Tasks Group 1 – Tasks that students had to solve were related to software development,
following the list of tasks:

User story planning
Mockup planning
Study Flutter / Dart and start thinking about architecture
Study Firebas and think about textual search, image processing and storage

See photos organised by discipline
Register schedule grid
Create the logical model of the application data
Setup of the Flutter project
Adapt UX according to stakeholder feedbacks

Search for the description of photos of a course
Adjust communication with back-end on the creation screen
Adjust times and colours
Delete photos

Fix navigation bug when deleting photos
Add arrows indicating whether the course is collapsed or expanded

Remove button from general search, leave only in the scope of the course and remove
Tags
Automatically import photos from user’s phone
Edit course
View photos on any device
Install APK and generate a list of bugs
Review photo sharing
Optical character recognition (OCR)
Delete grid (and its disciplines)
Add description to photos
Delete subjects (and your photos)
Replace app mocks with real calls
Fix infinite bug loading after course swipe
Create class to standardize Firebase calls
Share photos with colleagues

77

Bug on the screen of the list of photos in which some images are staying on top of others
Correct the title of the photo listing screen

Download APK and map bugs
Log out of settings
Discipline does not appear after being added Necessary to go to another screen and return
Fix app on iOS. Path of hard coded files may be causing the problem

Remove unnecessary calls to Firebase
Edit Grid
Add description to specific areas of the photos

Display dates, day of the week and time instead of the path in synced photos
Descending semesters in a decreasing way
Fix course collapse
Validate that the description is not being persisted after changing Visual feedback on regis-
tration
Review the schedule format / validate if it is from the simulator and remove from the Ameri-
can standard
Callout on the sync tab
Hide bar on login screen
Subscribe to the wiki list of known issues
Review application texts
Review login

Tasks Group 2 – Tasks that students had to solve were related to software development,
following the list of tasks:

Initial setup
Cancel vacancy advertised
Add button to log out and remove vacancy in the back-end
In the edit profile screen, the shift field must be readjusted to the same as the photo, adding
identity
Move password encoding to the back-end

Make sure only applied vacancies are shown when clicking on applications

Reflect the edit data to the profile view screen
Test development
In the screen of registering vacancies (company) it must contain the fields "Schedules" and

78

"Location"
Automated testing
Create a job posting screen
Bug of the company registration screen does not appear
Create company vacancies page redirect button to view company profile

Update mockups as described
Update the wiki with the photo of team members
Register in the application to publish vacancies
Show registered jobs
Update tab of sprints with the US that were delivered and technical charge
Create installation script for the user to download the project and run
Add wiki configuration section
Edit the profile through the home screen for easy access
Merge the edit profile screen with dev
Create registration screen with respective fields
Update missing field on back-end
Search for company data to store in user data and add the "company name" field to the
company table
When a skill or experience is inserted, when the data is saved, it must be displayed within a
modal
Skills and experiences fields should be formatted
Fix login screen responsiveness
Navigate the platform without having registered to view vacancies
In my skills and experience section the data must be displayed inside a card
In the editor screen the profile, the duration fields must be changed to start date and end
date
Edit profile
Increase the logo on the quick registration screen
Validate edit fields
Create company profile edit screen
Create components of the company profile edit screen
Frontend and back-end integration
Create endpoint patch to edit company
Bugfix registration screen is not working correctly, it is not possible to perform a registration
Fix the screen to search for available vacancies, the title should be aligned in the paragraph
format on the left
Fix on the login screen the button to enter must be with the same rounding as the first screen
Fix adjust button colours to black, should be the same as the login screen Feature-log out
the log out button must be removed from all screens being used, must pass into the header

79

Company can access the profile
Integrate front-end and back-end and open US PR
Create profile screen
Create screen components
Integrate screen and components
Adjust vacancy screen according to the current project
Update wiki with mockups
Company can register vacancy in the application
Add the company’s routes in their context allowing access only from the same
Create screen components
Create POST method for data insertion
Create the screen with the components
User view the job details of interest
Create the screen with the components and integrate them
Create get method to list vacancies
Consume CEP API to fill data based on CEP
Create the screen components
Create controller and DAO for data editing
Create route with PUT method in the API to edit the data
Complete address fields via API
Load profile data into the edit form
Validate the data entered by the user and apply masks
User view profile for data verification
Load user data on the profile screen
Create profile screen
Create screen components
Create POST method to receive registration data
Create GET endpoint in the users API
Allow user registration in the application
Create input component
Create user registration route
Back-end and front-end integration
Capture the data entered in the fields
Ensure responsiveness of the elements
Create quick registration screen
Create BD model to persist registration data
Create button component
Create home screen button routes
Create home screen
Navigation Buttons

80

Button Profile
Review login flow when registering
Add splash screen for PWA
Make mockups
Adjust mockups as per customer request
User route management
Initial back-end structure
Generation of the physical and logical schema of the database
Create back-end API documentation (SWAGGER)
Update the wiki with the charter
Put the US on the wiki
Initial front-end structure
Add the initial versions of the database model to the wiki
Component and deploy diagrams
Refactor front-end structure

	Introduction
	Motivation
	Goal
	Main Contributions
	Dissertation Outline

	Background
	Collaborative Learning
	Multi-Agent Systems
	JaCaMo

	Self-Organising Systems
	Chatbots
	Dialogflow
	Wit.ai
	Luis.ai
	Pandorabots
	IBM Watson

	Team Composition

	Related Work
	Research Questions
	Search Strategy
	Search String
	Study Selection
	Control Paper
	Execution
	Results

	Our Approach
	Architecture
	Environment
	Chatbot
	Multi-Agent System

	Experiment Results and Analysis
	Final Considerations and Future Work
	References
	Appendix A – Group Tasks

