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Abstract—Recent advances in high-level synthesis (HLS) have
enabled an automatic means of generating register-transfer level
from high-level specifications without compromising performance.
HLS provides substantial improvements to productivity and is a
promising solution to designing future heterogeneous chips consisting
of dozens of unique IP blocks (i.e., hardware accelerators). Despite
their impressive capabilities, HLS tools today are commonly used to
target a small subset of workloads, i.e., ones with inordinately regular
control flow and memory access patterns. The challenges of achieving
high-quality hardware for irregular workloads stems from HLS
relying on static analysis. Static analysis is overly conservative when
dealing with non-uniform memory access and imbalanced workloads,
and identifying the most appropriate parallelizing strategy. In this
brief, we propose the use of dynamic analysis to generate higher
quality designs using commercial HLS tools. Our evaluations show
that with dynamic dependence analysis, HLS designs achieve 3.3×
performance improvement for the sparse matrix-vector multiply
benchmark.

Index Terms—Hardware accelerators, high-level synthesis, dy-
namic dependence analysis, SpMV benchmark.

I. INTRODUCTION

TO CONTINUE scaling performance despite the power wall,
heterogeneous chips consisting of dozens of hardware accel-

erators emerge as an alternative for the semiconductor industry.
While accelerators overcome the power wall and offer substantial
performance gains, they introduce non-negligible engineering
costs as each requires a one-off design. To realize the potential
of accelerators, hardware design and build process need im-
provements. High-Level Synthesis (HLS) automatically generates
Register-Transfer Level (RTL) from a high-level workload spec-
ification, often written in C/C++. The productivity gains offered
by HLS combined with recent advances that improve the Quality
of Results (QoR), make it a promising solution and key to the
feasibility of future accelerator-centric architectures.
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HLS claims to increase productivity by reducing hardware de-
sign efforts, making large companies including Google, NVIDIA,
and Qualcomm have already used HLS in recent projects [1].
However, HLS requires designers to restructure programs, tweak
source code, and learn intricate details of how HLS works to apply
convoluted compiler directives to obtain good results. Looking at
this trend, researchers proposed techniques to improve the quality
of HLS-generated designs, regarding performance [2], area-saving
designs [3], and shortening optimization time with Design Space
Exploration (DSE) techniques [4]. In this regard, non-intrusive1

approaches are an alternative to reduce the gap between the
benefits revealed by research and the results presented by industry.

Despite the increased use and maturity of HLS tools, several
limitations still exist in off-the-shelf HLS tools. One well-known
difficulty involves workloads whose behavior depends on dynamic
information. Specifically, HLS struggles when the number of
loop iterations (i.e., the loop’s trip count) is unknown at design
time [5]. When considering these irregular workloads, HLS tools
are unable to efficiently exploit inter-loop iteration parallelism
(i.e., hardware loop unrolling). The use of static analysis is
insufficient to produce high-performing, parallel designs without
user guidance. As this form of parallelism is a major source of
efficiency for accelerators, this fundamental flaw is a significant
drawback when considering commercial HLS tools.

In this direction, the main contribution of this brief is to pro-
pose the use of dynamic dependence analysis to assist designers
to use commercial HLS tools to generate efficient accelerators for
irregular workloads. Our approach evaluates the Sparse Matrix-
Vector Multiply (SpMV) benchmark. This benchmark depends
on the input data to reveal its inner loop trip count and has
relevance to scientific applications [6]. This brief demonstrates
how dynamic analysis can be useful for exposing unknown
cycle information and improving the performance of accelerators
generated by conservative HLS tools. Furthermore, our technique
supports two state-of-the-art, commercial HLS tools, showing
that the benefits are not specific to a tool. Results show that
with dynamic dependence analysis, the performance of SpMV
improves by up to 3.3×.

Other contributions include:
- demonstrate the importance of addressing unknown loop

trip counts in HLS DSE to achieve efficient designs;
- understand the syntax of currently available commercial

HLS tools to take full advantage of the dynamic analysis
phase to generate meaningful directives for HLS tools;

- provide a Source-to-Source (S2S) transformation at the C
level to automatically apply the optimization opportunities
extracted from the dynamic analysis phase.

1Non-intrusive means a companion tool that assists HLS tools to generate
efficient designs without modifying the source code of HLS tools.
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II. RELATED WORKS

HLS tools rely on static compilers to discover parallelism,
pipeline structure and memory access patterns from high-level
descriptions of incoming workloads. The frequent absence of
explicit parallelism leads commercial HLS tools to allow users set
optimization parameters (e.g., pipeline initiation intervals and un-
rolling factors) based either on detailed application knowledge [7]
or handwritten-RTL reference designs [8] to generate efficient
accelerators. However, such an approach that exposes the opti-
mization parameters to the user does not solve the performance
problem of irregular workloads; it offloads the responsibility of
finding the workload parallelism from HLS tools to users.

To overcome this HLS limitation, researchers start developing
frameworks and companion tools [4], [9], [10], [11] that perform
the DSE of a selected benchmark as an earlier step before invok-
ing HLS tools. These proposed infrastructures help to understand
the architectural design trade-offs introduced by hardware accel-
erators. Aladdin [4] and Lin-analyzer [9] construct a dynamic
dependence graph directly from the C code and estimate the
latency, area, and power for a variety of accelerators. HLScope+
[10] provides a fast and accurate HLS-based cycle estimate of the
FPGA execution. PARADE [11] integrates the accelerator models
with a cycle-accurate simulator, thus encompassing a DSE of the
entire system. All these works focus on providing analysis and
approximations for efficient benchmark exploration. In contrast,
our approach differs from previous ones in the sense that we use
DSE as an initial phase to analyze the original C code and propose
optimization parameters that can be directly fit into HLS tools.

Table I shows works with similar objectives. They propose
techniques that can be used in conjunction with commercial HLS
tools to improve the quality of generated accelerators. Alle et al.
[2] paved the way to use S2S transformations in C code for assist-
ing HLS. However, they rely on the user to apply their technique.
For example, they require the user inform (i.e., through directives)
the loop latency to allow loop pipelining in applications with
data-dependent memory access. Liu et al. [12] also propose an
automated S2S transformation framework that generates pipelines
to select dynamically among multiple schedules during runtime.
However, their flow requires an HLS pass to extract scheduling
information. Lattuada and Ferrandi [13] present another work
that heavily relies on the user, e.g., the benchmarks have to be
annotated by hand. On the contrary, our approach extracts the
application parallelism through a DSE phase, showing the user
the best opportunities for optimizing the accelerator. Besides,
instead of requiring a user-defined optimization parameter, our
flow automatically generates the optimization parameters.

Tan et al. [5] describe an approach that generates a dataflow
pipeline architecture where multiple pipeline instances of a
dynamic-bound inner loop are scheduled to execute in parallel.
Dai et al. [14] and Josipović et al. [15] propose the inclusion of
a hardware module, i.e., a hardware dynamic hazard resolution
mechanism and elastic circuits, respectively, to resolve runtime
conflicts caused by pipelining irregular loops. Unlike the three,
our approach focuses on finding opportunities through available
HLS directives to improve the quality of the generated acceler-
ator without inserting any new hardware modules. Besides, our
approach causes resource-saving opportunities in different parts
of the design, not just in the loop pipeline.

Lastly, the commercial Merlin Compiler [16] is an example
of a companion tool that plays with optimization parameters and

TABLE I
RELATED WORKS THAT PRESENT FRAMEWORKS AND COMPANION TOOLS

THAT ENHANCE THE QUALITY OF HLS-GENERATED DESIGNS

Works Year Irregular Non-intrusive Target Device Human Number of
Workloads Technique FPGA ASIC Interaction HLS tools

[2] 2013 D D D High 2

[5] 2015 D D D High 1

[12] 2017 D D D High 1

[13] 2017 D D D High 1

[14] 2017 D D D High 1

[15] 2018 D D Medium 1

[16] 2016 D D Low 2

Our work 2018 D D D D Low 2

demand low user interaction, similar to our approach. However,
they provide an environment that covers the entire system, from
design optimization to accelerator communication. Unlike, our
approach targets irregular workloads and is the first to show
improvements for both FPGA and ASIC.

The original contribution of this work is the proposition of
a design flow that uses commercial HLS as a back-end tool
to improve the performance of the SpMV benchmark. The key
difference from other works is the presence of a DSE phase that
extracts the profile information from the irregular workload and
uses it to generate optimization parameters that guide the HLS
tools automatically. Additionally, our approach is the first that
addresses both FPGA and ASIC flow in HLS companion tools,
as shown in Table I.

III. METHODOLOGY

Commercial HLS tools hide many architectural details from
designers [10]. As a result, designers need to rely on companion
tools and analytical methods to help them optimize their acceler-
ators efficiently. Following this trend, our non-intrusive approach
assists HLS tools to generate efficient accelerators from the SpMV
benchmark through dynamic analysis. This work extends the
former [17] in the sense that dynamic analysis is applied to
improve the performance of the SpMV benchmark instead of
saving resources from regular workloads. This distinction made
different optimization parameters gain importance, such as those
that expose the loop trip count.

A. SpMV Benchmark
SpMV is an important kernel present in a variety of applica-

tions, including image processing [18] and text classification [19].
However, parallelizing SpMV remains a challenging problem
because it deals with non-uniform memory access and imbalanced
workload. Recent works aiming to accelerate SpMV on modern
multi- and many-core architectures [20] and GPUs [21]. In this
regard, our proposal addresses this optimization problem through
the use of accelerators. To demonstrate that HLS can efficiently
generate accelerators for this irregular workload, we choose 10 of
the most well-known matrices (5 integer type and 5 double type)
from the SuiteSparse Matrix Collection [22]. Because each input
results in radically different behavior, each is treated as a single
benchmark. These carefully selected inputs cover 91.1% of the
sparsity behavior from a total of 2757 available matrices, which
rigorously evaluate our proposed technique.
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Algorithm 1 SpMV code supporting CSR format.
1: procedure SPMV CSR(double *val, int *col, int *row, double *vec,

double *out, int lenght)
2: for i = 0; i < lenght; i++ do
3: sum = 0;
4: for j = row[i]; j < row[i+ 1]; j ++ do
5: sum = sum+ val[j] ∗ vec[col[j]];
6: out[i] = sum;

B. Irregular Loop Trip Count

To demonstrate how static analysis limits HLS-generated de-
signs, Algorithm 1 shows a SpMV example in Compressed
Sparse Row (CSR) format. The inner loop processes the non-
zero elements (nnz) of the matrix in each row. By default,
HLS tools would not apply any unrolling factor to this loop as
the loop trip count is unknown at the static time. Thus, such
HLS absence directly degrades the performance achieved. Let’s
consider that a designer has a detailed application knowledge,
knows the maximum number of nnz (e.g., 64 per row) and applies
it as a user-defined optimization parameter in a state-of-the-art
HLS flow, as shown at the top of Figure 1. It guides the HLS
tool to generate the highest performance accelerator. However,
this HLS-generated design may still be inefficient as many rows
of the matrix is not as dense as 64. For example, if the input
matrix has only one row with 64 nnz, and the remaining have
2 nnz per row, such aggressive design is over-designed as most
of the allocated hardware is idling during the execution. In this
case, either over- or under-provision of hardware resource would
lead to inefficient designs.

C. Dynamic Dependence Analysis

Dynamic dependence analysis comes to eliminate user guid-
ance to generate efficient HLS designs. In state-of-the-art HLS
flow, the user needs to learn the HLS syntax, understand the
available directives and how they are more effective, besides
needing detailed application knowledge to produce a meaningful
optimization parameter, as shown at the top of Figure 1. On the
contrary, our approach generates an optimized RTL design with
minimal human interaction.

First, the dynamic data dependence graph (DDDG) is con-
structed using a dynamic trace, built through an LLVM instru-
mentation step [23]. In DDDG, the nodes represent operations
(or instructions), and the edges represent dependencies between
operations [24]. The scheduling heuristic consists of parsing
registers and memory dependencies that yields an original DDDG
that only contains the true read-after-write data dependencies.
Then, we find places in the graph where control flow and
data dependencies cannot be disambiguated statically, adding
edges (i.e., true dependencies) at these locations, in addition to
manipulate the original DDDG to consider different directives.
Next, nodes are scheduled for execution when all of the nodes
they depend on (i.e., their parent nodes) finish. Finally, the graph
is re-balanced. Parent nodes on the critical path and nodes that
access memory with true dependencies are left intact, but the
remaining node operations can suffer reordering. The output of
this backward step is a scheduled DDDG that exposes the hidden
parallelism of SpMV benchmark and is even more balanced to
improve resource usage.

for	i =	0;	i <	lenght;	i++	do
sum	=	0;	
for	j	=	row[i];	j	<	row[i +	1];	j++	do	
sum	=	sum	+	val[j]	� vec[col[j]];

out[i]	=	sum;
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Fig. 1. Difference between state-of-the-art and proposed HLS flow, highlighting
the included dynamic dependence analysis.

The bottom of Figure 1 shows our dynamic analysis flow. First,
we use the original C code as input to perform a DSE based on
a specific HLS tool, i.e., our approach automatically evaluates
several DDDGs. This phase results in several design points where
the best ones (e.g., from P1 to P8) are shown in a Pareto curve.
At this point, the user needs to pick up one design, which is
the only moment of human interaction. Here we assume that
the user has a performance constraint, as shown in Figure 1.
After his choice (e.g., P5), the extracted profile information is
used to (1) apply a S2S transformation at the C level, and (2) to
automatically generate an input configuration (i.e., optimization
parameters or directives) for a specific HLS tool that reveals, for
example, the unknown loop bounds that depend on the input data.
This flow ensures design portability between HLS tools without
human interaction, which encourages more software designers to
adopt HLS tools.

D. Commercial Tools

The choice of commercial HLS tools was made based on their
market coverage. We aim to improve designs for both FPGA and
ASIC, and not be restricted to a single technology. In this regard,
the market-leading HLS tools chosen were:

Vivado HLS [25]: This HLS tool from Xilinx is used as the
solution when aiming FPGA platforms. Reported FPGA numbers
are for a Virtex-7 FPGA (xq7v585t).

Catapult C [26]: To demonstrate our proposed optimization
techniques’ generality both across different back-ends and HLS
tools, we leverage Catapult C as our ASIC HLS flow using a
commercial 40nm CMOS technology library.

Both HLS tools generate RTL and test benches starting from
C code, as shown in Figure 1. All synthesized RTL designs
are simulated using QuestaSim 10.4c; simulation results provide
performance numbers and validation for each design2.

2This brief intends to improve designs generated by commercial HLS tools and
not offer any comparison between them. In this regard, experimental results fall
into two categories, and each HLS tool evaluated a different type of sparse matrix
input (i.e., integer for ASIC flow and double for FPGA flow).
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Fig. 2. Evaluation of integer input sparse matrices for SpMV:(a) input matrix distribution, (b) dynamic analysis and (c) design performance using Catapult C.

TABLE II
INTEGER INPUT SPARSE MATRICES SET

Sparse Matrix App. Domain Rows nnz nnz/row

SmaGri Directed Multigraph 1059 4919 4.64

GL6 D 7 Combinatorial 636 5378 8.46

lpi klein2 Linear Programming 477 5062 10.61

GL7d26 Combinatorial 305 7412 24.30

Journals Undirected Graph 124 6096 49.16

IV. RESULTS

This Section presents how dynamic dependence analysis can
increase the quality of HLS-generated designs. At large, imbal-
anced workloads and non-uniform memory access account for
the most significant source of inefficiency in HLS-generated RTL,
due to the limitations of static analysis and required conservatism
to implement correct hardware. An archetype of irregularity, the
SpMV benchmark varies wildly across input sets. For example,
Table II shows the extent of disparity among 5 integer input sets,
with sparsity range from 4.64 to 49.16.

Algorithm 1 presented in Section III-B shows the source code
for SpMV-CSR benchmark. Note the inner-loop in Algorithm 1,
where unknown static trip counts limit the amount of parallelism
that HLS can extract from the sequential specification. Unlike
regular applications where increasing design area (e.g., dupli-
cating resources) through HLS directives (e.g., loop unrolling)
produce greater parallelism and better performance. The issue
of optimizing SpMV-CSR using HLS alone is the irregularity
increase complexity of static dependence analysis in HLS tool,
which induces the generation of inefficient designs. On the other
hand, dynamic analysis can address this problem by deciphering
the optimal design rapidly.

Figure 2 shows the three phases performed to validate our
proposed optimization technique. First, (a) profile information
is extracted from the input matrix. This chart is optional and
helps users to understand where are the points to be improved.
Then, (b) a DSE is performed based on several scheduled DDDG.
Finally, (c) a commercial HLS tool (Catapult C or Vivado HLS)
automatically fed by our optimization parameters, generates the
accelerator with the most effective solution.

Although phase (a) is optional, it produces insights to optimize
the HLS-generated design. For example, sparsity shown in the
last column in Table II corresponds to the average density of
non-zero elements of the matrix. This is typical information used
by designers to optimize the accelerator by unrolling the inner-
loop shown in Algorithm 1 [20]. However, this information can
be misleading, because depending on the distribution of the non-

TABLE III
DOUBLE INPUT SPARSE MATRICES SET

Sparse Matrix App. Domain Rows nnz nnz/row

bcsstm25 Structural 15439 15439 1.00

poli3 Economic 16955 37849 2.23

dw8192 Electromagnetics 8192 41746 5.10

bcsstk12 Structural 1473 17857 12.12

ex7 Fluid dynamics 1633 54543 33.40

zero elements across the matrix, it will not match the normal
curve average and this initial directive will undoubtedly generate
an inefficient design.

Let’s use GL7d26 as an example. Table II indicates to use an
unrolling factor of 24 for GL7d26 based on sparsity. However,
Figure 2a shows that GL7d26 has almost half rows containing
up to 16 nnz. This information reveals that a design using an
unrolling factor of 16 can have similar performance and 33% less
area compared to the same design generated with an unrolling
factor of 24. GL7d26 achieves this efficiency because the faster
execution time on low-density parts compensates the large density
parts.

Figure 2b illustrates the dynamic analysis phase. Each input
matrix performs a DSE by sweeping the inner-loop unrolling
factor from 1 to 32. Loop pipelining is set to minimize the
initiation interval, and arrays are partitioned by 32, causing
memory bandwidth does not limit inner-loop unrolling. Further-
more, Figure 2b highlights the implementation that saturates the
normalized performance for each input matrix. The arrows are
the efficient design that must be achievable (through directives)
by HLS tools.

Looking at the implementation phase (Figure 2c), results show
that all efficient unrolling factors exposed by our dynamic analysis
(Figure 2b) match with the best performance design produced by
Catapult C (Figure 2c).

Comparing the sparsity measures shown in Table II and the
designs exposed by the dynamic analysis (Figure 2b), our non-
intrusive approach improves the performance of HLS-generated
accelerators. Otherwise, simplistic analysis using sparsity or other
static information can lead to inefficient designs when dealing
with irregular workloads. Results show that our approach achieves
2.07× better performance (Journals) for integer sparse matri-
ces than our baseline, i.e., compared to the use of HLS tools
without optimization parameters.

To demonstrate the approach’s effectiveness across multiple
platforms, we chose five large and complex double input sets
(i.e., number of nnz larger than 15000) shown in Table III and
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Unroling Factor

Fig. 3. SpMV design performance using Vivado HLS. These experiments help
demonstrate the approach’s effectiveness across multiple platforms.

evaluated over an FPGA device. Figure 3 shows the performance
results generated by Vivado HLS, where are highlighted the
hints produced by the dynamic analysis phase. Results show a
performance improvement of up to 3.3× for ex7 compared to
our baseline design. Furthermore, dynamic analysis outcomes are
precisely the set where are obtained the best results regarding
performance, same behavior as shown in the ASIC flow. After this
set, performance begins to deteriorate caused by the inefficiency
to generate sizable Finite State Machines (FSM). FSM increases
according to the number of Functional Units (FUs) assigned in
each loop iteration, causing an unnecessary time control overhead
if those FUs are underused. As our dynamic analysis does not
model an entirely FSM, the point where performance saturates is
the optimal design set, as previously illustrated in Figure 2b.

Although our approach shows good results for both ASIC
and FPGA, their optimization parameters are entirely different.
For example, FPGA presents scarcer DSP slices than LUTs and
FFs. To save DSPs, the produced directives must prioritize share
multipliers than other FUs. As shared FUs increase, the HLS
tool introduces more MUXes which raises the number of LUTs.
In ASIC design flow, on the contrary, the cost of additional
MUXes are dwarfed by the cost of FUs. Therefore, the generated
directives give less priority to shared FUs and more priority to
increasing performance.

Our dynamic analysis approach has two caveats. First, irregular
workloads have few area saving opportunities because standalone
HLS tools cannot suitable parallelize the design as discussed
previously. Further, relatively large FUs driven by unrolling factor
dominates the area. This means that to achieve performance im-
provement for the SpMV benchmark, based on our approach or by
handwritten modification, we have to deal with an area overhead.
Second, the intrinsic delay in the overall C-to-RTL synthesis time
brought by our non-intrusive approach. Fortunately, our dynamic
analysis time accounts for less than 2% of the total synthesis time.

In short, ASIC and FPGA results show the same behavior, indi-
cating that our non-intrusive approach improves the performance
of the SpMV benchmark by up to 3.3× compared to standalone
commercial HLS tools. However, this performance improvement
shows a small increase in the synthesis time.

V. CONCLUSIONS

Performance improvement for irregular workloads challenges
modern commercial HLS tools, mainly caused by static compilers
that unpredict the loop’s trip count. In this work, we proposed a
non-intrusive dynamic dependence analysis that works in con-

junction with commercial HLS tools to increase the quality of
accelerator designs.

Evaluation comprises a real benchmark (SpMV) through two
commercial HLS tools. Results show that the proposed dynamic
analysis can be used to accurately extract the parallelism profile
of the SpMV benchmark, automatically producing optimization
parameters that reached 3.3× more performance than unassisted
HLS-generated accelerator designs.
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