
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO
MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

RAFAEL KRINDGES

A PROPOSED ARCHITECTURE FOR IOT DATA MARKET

Porto Alegre

2019

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

A PROPOSED ARCHITECTURE
FOR IOT DATA MARKET

RAFAEL KRINDGES

Thesis submitted to the Pontifical Catholic
University of Rio Grande do Sul in partial
fulfillment of the requirements for the
degree of Master in Computer Science.

Advisor: Prof. Dr. Fabiano Passuelo Hessel

Porto Alegre
2019

RAFAEL KRINDGES

A PROPOSED ARCHITECTURE FOR IOT DATA MARKET

This Thesis has been submitted in partial

fulfillment of the requirements for the degree of

Master of Computer Science, of the Graduate

Program in Computer Science, School of

Technology of the Pontifícia Universidade Católica

do Rio Grande do Sul.

Sanctioned on August 27th, 2019.

COMMITTEE MEMBERS:

Prof. Dr. Jorge Luís Victória Barbosa (PPGCA/Unisinos)

Prof. Dr. César Augusto Mission Marcon (PPGCC/PUCRS)

Prof. Dr. Fabiano Passuelo Hessel (PPGC/PUCRS - Advisor)

Dedico este trabalho a meus pais e minha esposa Pauline.

UMA PROPOSTA DE ARQUITETURA PARA O MERCADO DE DADOS

EM IOT

RESUMO

O aumento no número de dispositivos IoT e conseqüentemente os dados gera-

dos pelos mesmos fizeram com que se percebesse ali um novo mercado em potencial.

Empresas e indivíduos estão buscando novas receitas financeiras através de estruturas já

existentes e a venda de dados gerados por dispositivos móveis inteligentes é uma delas.

Porém, desafios precisam ser superados para que esse mercado aconteça. Ques-

tões como formato dos dados, remuneração dos entes envolvidos, como encontrar a infor-

mação desejada no meio de tantas disponíveis são apenas algumas delas. Este trabalho

apresenta uma definição de arquitetura para um mercado de dados para dispositivos IoT,

quebrando assim os silos de dados que existem. O trabalho detalha os módulos presentes

na arquitetura proposta e, uma prova de conceito foi realizada, utilizando MQTT e Ethe-

reum. A prova de conceito validou todas as etapas envolvidas numa transação de venda

de dados, desde a sua geração, até o momento que o vendedor recebe o pagamento. Os

problemas e desafios encontrados também são detalhados.

Palavras-Chave: IoT, internet das coisas, blockchain, mercado de dados.

A PROPOSED ARCHITECTURE FOR IOT DATA MARKET

ABSTRACT

The increase in the number of IoT devices and consequently, in the data gen-

erated by them created a new potential market. Companies and individuals are seeking

new financial revenue through existing devices, and the sale of data generated by these

devices is one of them.

However, some challenges exist to make this happen. An agreement in what

format to exchange the data, how to get paid for it, how to find the desired information in

a world with millions of devices are just a few.

This work aims to present an architecture that helps in defining a data market-

place focused on IoT devices that help to break the data silos that exist today. A detailed

explanation of the proposed data marketplace modules is presented, and a proof of con-

cept was implemented, using MQTT and Ethereum. The proof of concept involved all the

phases in a data trading transaction, since the generation until the data seller payment.

The issues encountered and the challenges that exist in the area are also presented.

Keywords: IoT, internet of things, blockchain, data marketplace, Ethereum.

LIST OF FIGURES

Figure 1.1 – The sensing as a service model. Source [38] 19

Figure 2.1 – Evolution of the Internet in five phases. Source [35] 23

Figure 2.2 – Logical representation of a blockchain. Source [2]. 25

Figure 2.3 – Example of Smart Contract with oracles. Source [32]. 27

Figure 2.4 – Dimensions List. Source [45]. 28

Figure 2.5 – Elements of a data marketplace ecosystem. Adapted from [58]. . . . 29

Figure 2.6 – MQTT System [41] . 29

Figure 2.7 – QoS 0 - Source [49] . 30

Figure 2.8 – QoS 1 - Source [49] . 30

Figure 2.9 – QoS 2 - Source [49] . 30

Figure 3.1 – System Architecture. Source [27] . 33

Figure 3.2 – MARSA Prototype. Source [8] . 33

Figure 3.3 – Architecture overview. Source [26] . 34

Figure 3.4 – Major phases in a Databox’s life cycle. Source [36] 34

Figure 3.5 – Architecture of Contract-aware Dataspace Service Platform. Source

[4] . 35

Figure 3.6 – Data Flow Sequence Diagram. Source [33] . 35

Figure 3.7 – A system overview for automating the monetization of IoT data using

Ethereum Smart Contracts. Source [47] . 36

Figure 4.1 – System Architecture . 39

Figure 4.2 – Seller Device Registration Form . 42

Figure 4.3 – Seller Device Message Association Form . 43

Figure 4.4 – Purchase Order Registration Form . 44

Figure 4.5 – Purchase Order Message Association Form . 45

Figure 4.6 – Seller Device Registration . 46

Figure 4.7 – Seller Device Message Association . 47

Figure 4.8 – Purchase Order Registration Process . 48

Figure 4.9 – Purchase Order Message Association . 49

Figure 4.10 – Purchase Order Message Settings . 50

Figure 4.11 – Purchase Order Balance Update . 51

Figure 4.12 – Seller Device and Purchase Order Mapping . 53

Figure 4.13 – Process New Message . 55

Figure 4.14 – Ether Transfer Management . 57

Figure 5.1 – Delay . 59

Figure 5.2 – Test Workflow . 60

Figure 5.3 – Delay in Scenario 1 . 61

Figure 5.4 – Delay in Scenario 2 . 62

LIST OF TABLES

Table 2.1 – Blockchain networks properties. Adapted from [24] 24

Table 2.2 – Blockchain platforms for creating blockchain applications. Adapted

from [40] . 25

Table 3.1 – List of Platforms and Papers . 31

Table 3.2 – List of Platforms and Papers comparison . 37

Table 5.1 – Scenario 1 - CPU and Memory Utilization . 61

Table 5.2 – Scenario 2 - Message Delay in Seconds . 63

CONTENTS

1 INTRODUCTION . 19

1.1 MOTIVATION . 20

1.1.1 CONTRIBUTIONS . 21

2 THEORETICAL BACKGROUND . 23

2.1 INTERNET OF THINGS . 23

2.2 BLOCKCHAIN . 24

2.3 SMART CONTRACT . 25

2.4 DATA MARKETPLACE . 27

2.5 MQTT . 29

3 RELATED WORK . 31

3.1 INDUSTRIAL PLATFORMS . 31

3.2 ACADEMIC PROJECTS . 32

3.3 OUR PROPOSAL . 36

4 SYSTEM ARCHITECTURE . 39

4.1 WEB LAYER . 41

4.1.1 DEVICE SELLER CONTROLLER . 41

4.1.2 PURCHASE ORDER CONTROLLER . 43

4.2 DEVICE MANAGEMENT . 45

4.3 DATA PURCHASE MANAGEMENT . 47

4.3.1 DEFINE PO MESSAGE TYPE . 48

4.3.2 UPDATE PURCHASE ORDER BALANCE . 50

4.4 MAPPING MANAGEMENT . 51

4.5 PROCESS NEW MESSAGES . 54

4.6 ETHER TRANSFER MANAGEMENT . 56

5 EVALUATION . 59

5.1 TEST ENVIRONMENT . 59

5.2 TEST SCENARIO PREPARATION . 59

5.3 TEST METHODOLOGY . 60

5.4 SCENARIO 1 - IMPACT OF THE NUMBER OF BUYERS . 60

5.4.1 RESULTS . 61

5.5 SCENARIO 2 - IMPACT OF THE NUMBER OF SELLERS . 62

5.5.1 RESULTS . 62

6 CONCLUSION AND FUTURE WORK . 65

6.1 CONCLUSIONS . 65

6.2 FUTURE WORK . 65

REFERENCES . 67

APPENDIX A – API . 73

A.1 DATA MARKETPLACE USER REGISTRATION . 73

A.1.1 USER TOKEN GENERATION . 73

A.2 SELLER DEVICE REGISTRATION . 74

A.2.1 SELLER DEVICE MESSAGE ASSOCIATION . 75

A.3 PURCHASE ORDER REGISTRATION . 76

A.3.1 PURCHASE ORDER MESSAGE ASSOCIATION . 77

APPENDIX B – MQTT . 79

B.1 CREATE A NEW MQTT USER . 79

B.2 ASSIGN MQTT TOPIC PERMISSION . 79

B.3 CONSUMING AND PUBLISHING MQTT MESSAGES . 80

APPENDIX C – MESSAGE TYPES . 81

C.1 APPLICATION USAGE - FACEBOOK . 81

C.2 APPLICATION USAGE - WHATSAPP . 82

C.3 LUMEN . 82

C.4 PEOPLE LOCATION . 83

C.5 TEMPERATURE . 83

C.6 VOLTAGE . 84

APPENDIX D – ETHEREUM . 85

D.1 DATA MARKETPLACE PLATFORM AND ETHEREUM INTEGRATION 86

D.1.1 SMART CONTRACT . 86

19

1. INTRODUCTION

One of the most valuable assets in the past century was oil, but this is changing.

Today, the data is considered the commodity more valuable, it is the oil of the digital era

[17]. Companies and people are looking for ways to make a profit with this data, especially

because 2.5 quintillion bytes of data are generated every day [23]. Some amount of

these data are generated by the Internet of Things (IoT) devices, and data marketplaces

designed especially for them are emerging.

A data marketplace or data market is a place where people can buy/sell data.

Imagine being able to buy images generated from webcams; data sensed and collected

from Medical IoT devices (MIoT) wearable by patients for research purpose, data collected

from various public IoT devices in Smart Cities. All of these are an example of data that can

be monetized and available in IoT data market. Moreover, the amount of data available

will grow up especially with the estimation of having 20 billion IoT devices in 2020 [22].

In a traditional data marketplace, we have at least the data owner and the data

consumer. In the data market for IoT devices, this is quite the same. Since IoT devices can

be defined as sensors, a device that detects events or changes in the environment and

sends the information to the digital world, the interaction between the ones that own the

data and the ones that want to buy created a vision and model called Sensing as a Service

[36].

Figure 1.1 – The sensing as a service model. Source [38]

Figure 1.1 shows the four conceptual layers of Sensing as a Service model: (i)

sensors and sensor owners; (ii) sensor publishers (SPs); (iii) extended service providers

(ESPs); and (iv) sensor data consumers.

Sensors and Sensor Owners Layer: consists of the sensor devices that de-

tects, measures or sense a physical event such as temperature, humidity and so on. The

sensor owner has the control of a specific sensor at a given moment.

20

Sensor Publishers Layer: this layer detects the available sensors, communi-

cate with the sensor owners and obtain approval to publish the data sensors in the cloud.

Extended Service Providers Layer: can be considered the most intelligent

of all four layers. It can interact with multiple Sensor Publishers Layer and retrieve the

desired information for the Consumers.

Sensor Data Consumer Layer: these are the data consumers, for example,

governments, business organizations, academic institutions and so on. They do not com-

municate directly with the sensors or sensors owners but through the or ESPs.

Some architectures proposed by [33], [8], [15], take advantage of this model but

always add a man in the middle: at least the Sensor Consumer should be a person that

selects the best data source and perform the contract agreement.

1.1 MOTIVATION

There are economical and environmental factors behind the re-usage of exist-

ing devices. For example, if temperature sensors across the city already exist owned by

Company A, and another Company B want this data for a particular street, why to deploy

new devices (that will exist in duplication) if you can buy the data from the Company A?

The current infrastructure already available can be used or shared with multiple partners

creating new value with a minimal investment. If data owners can simple catalog what

type of data they have and the price want to sell an autonomous system can perform the

match and find a buyer for it.

In addition to the use of IoT devices that serve as general purpose business, users

can gain benefits from the user data market. Companies may want to know the users

better and can do that if the users make their data available. Doing that, companies will be

able to optimize their operations, saving costs, and create new products and services that

meets individuals needs [5]. Example of this scenario is a Smart Home with an Internet-

connected refrigerator. The refrigerator manufacturer maybe wants to know the usage

data, temperature settings, number and frequency of door openings, and all of these can

help in better refrigerator designs. The refrigerator owner may allow this data collection if

paid for it.

By analyzing existing data market architectures, there is a need for a definition

and study for a solution that covers the end-to-end process, since the data generation, the

agreement between buyers and sellers, the money exchange and the solution scalability.

21

1.1.1 CONTRIBUTIONS

The original contribution of this work is the definition of an architecture and all

components that automate the selling process of IoT data without human intervention.

With the aim to answer the research questions, this work proposes the following specific

contributions:

• Development of a data matching mechanism that enables buyers to find sellers au-

tomatically.

• Integration of a Payment Management and a Contract Management subsystem with

the proposed architecture.

• Integration of a message broker subsystem with the proposed architecture.

• Performance evaluation of the proposed architecture.

22

23

2. THEORETICAL BACKGROUND

This chapter presents definitions regarding this work proposal. Section 2.1 presents

the Internet of Things concept, section 2.2 presents Blockchain, section 2.3 presents

Smart Contract, section 2.4 presents Data Market and section 2.5 presents MQTT Protocol.

2.1 INTERNET OF THINGS

The internet evolved in five phases as illustrated in Figure 2.1 [35]. All started

with two computers connected together and ended in what we know today as Internet

of Things. In a primary definition, Internet of Things agents are smart, connected devices

with Internet access and some processing capacity. Such appliances can usually sense and

send data to centralized servers. The popularity of the term introduced in the late 1990s

is increasing due to the promises of according [48] allowing "people and things to be

connected Anytime, Anyplace, with Anything and Anyone, ideally using Any path/network

and Any Service." It will help to create a better world for all, where objects around us

know what we like, what we want, and what we need and act accordingly without explicit

instructions [37].

Figure 2.1 – Evolution of the Internet in five phases. Source [35]

The Internet of Things is the pillar for building smart energy systems, smart trans-

portation, smart healthcare, smart buildings, and smart cities [28]. An example is the

Array of Things project, where multiple devices are installed to monitor a set of cities

environment [31].

24

2.2 BLOCKCHAIN

Satoshi Nakamoto is considered the father of the technology we knew as block-

chain. In his paper “Bitcoin: A Peer-to-Peer Electronic Cash System” the mathematical

foundation for the bitcoin cryptocurrency is present. The blockchain can be considered

a stable digital ledger system implemented in a distributed way and usually without a

central authority. It enables users to record transactions in a ledger public such that no

transaction can be changed once published [56].

There are three types of blockchains network: private, public and permission-

based (or consortium). The public ones enable users to join and contribute to an open

network, where anyone can join and work in any core activity. Bitcoin and Ethereum are

examples of these networks.

Private business companies generally run the private blockchains, and a partici-

pant can join only through an official and verified invitation. The private blockchain owner

controls who is allowed to participate in the network, who can make transactions and who

can validate/authenticate the blockchain changes [43].

The permission-based network is a mix of public and private networks. In this

kind of network, a participant may not need permission to join the network, but needs

permission to transact with another participant [9].

The table 2.1 provides a comparison among these three blockchain systems.

Table 2.1 – Blockchain networks properties. Adapted from [24]
Property Public blockchain Consortium blockchain Private blockchain

Consensus determination All miners Selected set of nodes Within one organization
Read permission Public Public or restricted Public or restricted

Immutability level Almost impossible to tamper Could be tampered Could be tampered
Efficiency (use of resources) Low High High

Centralization No Partial Yes
Consensus process Permissionless Needs permission Needs permission

The core components of any blockchain architecture are [24]:

• Node: user or computer within the blockchain architecture (each has an independent

copy of the whole blockchain ledger)

• Transaction: smallest building block of a blockchain system (records, information,

etc.) that serves as the purpose of blockchain

• Block: a data structure used for keeping a set of transactions which is distributed to

all nodes in the network

• Chain: a sequence of blocks in a specific order

25

• Miners: specific nodes which perform the block verification process before adding

anything to the blockchain structure

• Consensus (consensus protocol): a set of rules and arrangements to carry out block-

chain operations

A blockchain consists of blocks containing details of transactions that occurred.

Each of these blocks contains two parts, the header, and the body. The transaction itself is

in the body, and the header contains the identifier of the previous block and other fields,

making the blocks connected in a chain as shown in Fig 2.2 [2].

Figure 2.2 – Logical representation of a blockchain. Source [2].

Bitcoin is the most famous blockchain platform but there are others. Authors [40]

identified the most popular and most suitable platforms for IoT domains and categorized

them accordingly certain characteristics.

Table 2.2 – Blockchain platforms for creating blockchain applications. Adapted from [40]
Platform Blockchain Crypto currency Smart contracts
Ethereum Public and permission-base Ether (ETH) Yes
Hyperledger Fabric Permission-based None Yes
Multichain Permission-based Multi-currency Yes
Litecoin Public litecoins (LTC) No
Lisk Public and permission-base LSK Yes
Quorum Permission-based ETH Yes
HDAC Permission-based Multiasset Yes

2.3 SMART CONTRACT

Nick Szabo defined in 1993 the term Smart Contract as "A computerized trans-

action protocol that executes the terms of a contract". In other words, we can say it is a

code that validates a negotiation and immediately brings a contract into effect, without

any intermediaries [16].

26

The smart contract is deployed in the blockchain, and each contract is identified

by a unique address, and it contains multiple functions that can be called by any user,

just sending transactions to this address. One of the most prominent blockchain platforms

with smart contract support is Ethereum [7]. It offers a Turing-complete programming

language. Developers usually code smart contracts in high-level languages (e.g., Solidity)

and compile them in a low-level, stack-based bytecode language, referred to as "Ethereum

virtual machine code" or "EVM code".

To deploy a smart contract, the owner sends a transaction to the Ethereum block-

chain, with the bytecode. After deployed, any user can invoke the smart contract by send-

ing a transaction whose recipient is the contract.

Smart contracts can access data from real-world events using oracles but it adds

more complexity, since authentication, security, and trust in oracles have to be provided

[57]. Also, bugs become critical due to the irreversibly and immutable nature of the sys-

tem. A smart contract once deployed cannot be changed.

The figure 2.3 shows an example of Smart Contract in Solidity language. This

contract uses Oraclize to fetch the last ETH/USD from Coinbase Pro APIs. The update pro-

cess starts every time the function updatePrice() is called. For ease development, it does

not charge a contract for its first request of data. The next requests will require the con-

tract to pay the Oraclize fee and the ether necessary to pay for the callback transaction.

Both are taken from the contract balance. If the contract does not have enough funds in

his balance, the request will fail, and Oraclize will not return any data [32].

In February 2019 the Oraclize price for each URL call request is 0.01 ETHER that

is equivalent to US$1.02 as of February 6th 2019.

27

Figure 2.3 – Example of Smart Contract with oracles. Source [32].

2.4 DATA MARKETPLACE

In a neo-classical economic model, the market is where the interaction of buyers

and sellers define the price and the quantity of a good/service, and marketplace is where

multiple market participants execute transactions, i.e., it provides the infrastructure for

trading [46]. Now, the term data marketplace was probably first used in 1998 by [3]. The

authors modeled trading of information between digital libraries, with a focus on the mo-

tivation and behavior of participants and identifying factors that affect cooperation [42].

A survey conducted by [45], found the data market and marketplaces can be categorized

into twelve dimensions – all listed in Figure 2.4.

The survey shows a lot of different ways the information can be available and

charged in a data marketplace. For example, the Pricing Model, a data can be available

without charge (Free); available at no cost for a limited amount of time and paid later

(Freemium); can make unlimited use for a limited time (Flat Rate). It also shows different

formats the data can be available, like XML, CSV, JSON, RDF, and other formats.

Figure 2.5 contains an underlying representation of a data marketplace ecosys-

tem.

• Data Providers/Sellers: Individuals/companies that own information and want to

make it available for a specific price

28

Figure 2.4 – Dimensions List. Source [45].

• Data Marketplace: The data marketplace is managed by an owner (company) that

provides services that allow the integration between Data Providers and Data Users.

• Database with metadata: Contains the data providers description used by

the Buyers to find the Sellers.

• Data Services: Services offered that provide secure access, billing manage-

ment, contract management, data access, and others.

• Data Users/Buyers: Individuals/companies that can pay for data that match cer-

tain criteria.

29

Figure 2.5 – Elements of a data marketplace ecosystem. Adapted from [58].

2.5 MQTT

MQTT stands for MQ Telemetry Transport, and it is a simple and lightweight mes-

saging protocol, useful for devices with low-memory and low-bandwidth available. The

protocol is ideal for the IoT world and mobile applications [29]. Dr. Andy Stanford-Clark of

IBM invented the protocol in 1999, and version 5 is OASIS standard.

The protocol works in a publish/subscribe model (Figure 2.6).

Figure 2.6 – MQTT System [41]

The Devices A publish the message to a topic hosted in a central server (bro-

ker). The Devices B can subscribe to specific topics and receives the particular messages

delivered.

To guarantee a message is delivered correctly or not, the MQTT defines three

levels of Quality of Service (QoS).

QoS 0 - at most once

30

This level guarantees a best-effort delivery. The recipient does not acknowledge

receipt of the message (Figure 2.7) [49].

Figure 2.7 – QoS 0 - Source [49]

QoS 1 - at least once

This level guarantees the message is delivered at least one time to the receiver.

The sender waits for a PUBACK packet from the receiver (Figure 2.8) [49].

Figure 2.8 – QoS 1 - Source [49]

QoS 2 - exactly once

This level guarantees that each message is received only once by the intended

recipients (Figure 2.9) [49].

Figure 2.9 – QoS 2 - Source [49]

31

3. RELATED WORK

A state-of-the-art study regarding existing data monetization architectures fo-

cused on IoT devices was conducted.

The table 3.1 lists papers and existing products that explorer the data marketplace for IoT.

Table 3.1 – List of Platforms and Papers
Platform / Paper Blockchain platform Public Ledger Development Level

IOTA’s data marketplace [20] Yes Tangle Pre-Product
Wibson’s data marketplace [54] Yes Ethereum Product
Project XBR [55] Yes Ethereum Pre-Product
Databroker DAO [12] Yes Ethereum Pre-Product
Datum [14] Yes Ethereum Pre-Product
Weeve [53] Yes IOTA, Ethereum, Hyperledger Pre-Product
Terbine [51] Yes Not available Pre-Product
Datapace [13] Yes Hyperledger Development
Slock [44] Yes Not available Pre-Product
Filament [19] Yes Not available Product
Dajie [11] Yes Not available Product
Mind my value: a decentralized infrastructure for fair
and trusted iotdata trading [25] No Not applicable Proof of concept
Towards a Decentralized Data Marketplace for
Smart Cities [39] Yes Ethereum Proof of concept
When money learns to fly: Towards sensing
as a service applications using bitcoin [30] Yes Bitcoin Theory
Data marketplace for internet of things [27] No Not applicable Proof of concept
Internet of things cloud mediator platform [26] No Not applicable Proof of concept
MARSA: A Marketplace for Realtime
Human Sensing Data [8] No Not applicable Proof of concept
Valorising the IoT Databox: creating value
for everyone [36] No Not applicable Proof of concept
On Supporting Contract-aware IoT
Dataspace Services [4] No Not applicable
IDMoB: IoT Data Marketplace on Blockchain [33] Yes Ethereum Proof of concept
A Peer-to-Peer Architecture for Distributed
Data Monetization in Fog Computing Scenarios [15] Yes Hyperledger, Tangle Proof of concept
Monetization of IoT data using smart contracts [47] Yes Ethereum Proof of concept

3.1 INDUSTRIAL PLATFORMS

IOTA [20] is a distributed ledger that it is based on a directed acyclic graph con-

sensus structure called the ‘Tangle’ rather than a blockchain. Instead of requiring spe-

cial participants—miners—to perform computational proof-of-work and validate blocks of

transactions in exchange for newly minted tokens, network participants themselves per-

form consensus by validating two previous transactions each time they wish to make a

transaction [50]. At the time this work was done the platform was still under testing. It

was possible to get data from devices, but no real-world payments were implemented.

The XBR Project [55] is also under development with a planned go-live on June

2021. It aims at monetizing the access to data services via API. The payments are per-

formed using an XBR cryptographic token based on the Ethereum blockchain [34]. With

the promise to be released this year, Databroker DAO [12] is another marketplace to buy

32

and sell sensor data. It is also based in the Ethereum network and has his unique tokens

named DTX that will serve as the credit to buy and sell sensor data within the platform.

The Datum project is still under development but is another platform for data

storage, and uses BigchainDB and IPFS together with smart contracts and blockchain, al-

lowing data sharing and a marketplace, enabling individuals to monetize their data on

their terms [21]. Weeve envisions the evolution of the IoT into the Economy of Things hav-

ing an unfalsifiable, scalable and secures data marketplace supported by its platform. The

marketplace enables IoT devices to index, process, and trade digital assets in a verifiable

manner [34]. It is also developing a new communication protocol for IoT devices called

TEE-MQTS, that extends MQTT protocol with new cryptographic protections and is creat-

ing a new operation system called Weeve OS for IoT devices [52]. A platform that is in

alpha phase is Terbine [51], providing IoT data generated by public agencies, universities,

and corporations around the world. It will provide a marketplace using blockchain-based

transaction logging and tracking. Datapace is a platform under development that will

provide a global-scale marketplace for IOT sensor data. It has his token named TAS and

will use Cosmos1 for interoperability with other blockchains [13]. Besides that, it uses

Mainflux2 as IoT cloud platform which enables IoT sensor and gateway connectivity and

management.

Other platforms like Dajie[11] uses the blockchain and the IoT for management

energy produced in local homes, allowing people to exchange energy peer to peer in a

local neighborhood at a better price than what they can get feeding that energy back

to the grid. The Filament[19] company offers hardware, software, training, to allow the

connectivity between IoT devices and distributed ledger.

A specific data marketplace for personal information is Wibson[54]. The users

install a smart phone application and can share some personal data, like Facebook account

and mobile device location, and sell the data in exchange for Wibson tokens.

3.2 ACADEMIC PROJECTS

The work presented in [30] explains the Sensing-as-a-Service concept and the

benefits of using Bitcoin in the data integration and payment. It is a purely theoretical

work, with the essential ideas: the data requestor sent the request using the blockchain

platform and the sensor reply the data back, all using the blockchain. The authors also

highlight the problems of this implementation and suggest the data sensors information

be hosted in a decentralized server and not in the blockchain.

1https://cosmos.network/
2https://www.mainflux.com

33

Authors in [27] envision a cloud application where device owners register their

sensors along with standardized device data (like what they measure, location informa-

tion) and the data consumers query the system and retrieve the data. The authors show a

diagram (figure 3.1) with the proposed architecture and also evaluated the device owners

profit with the pricing of measurements, application acquisition rates, and query perfor-

mance.

Figure 3.1 – System Architecture. Source [27]

Figure 3.2 – MARSA Prototype. Source [8]

A similar architecture is defined by [26] with the addition of a module responsible

for performing the negotiation between the data buyers and sellers, but the authors em-

phasize how the proposed platform should behave with a considerable amount of devices.

The application architecture is presented in figure 3.3.

Another architecture is developed by [8] in the MARSA: A Marketplace for Re-

altime Human Sensing Data, including a prototype of the architecture (see figure 3.2).

The authors present techniques for selecting data types and managing data contracts

based on different pricing models, quality of data and incentive models. They also full

implemented the Data Discovery and Cost Model Management making the code source

available.

A business model target that explores the usage of blockchain and smart con-

tracts transactions for IoT data trading is explored by [25]. Authors perform some exper-

imental evaluation and describe the challenges and lessons learned in using such tech-

nologies.

34

Figure 3.3 – Architecture overview. Source [26]

Motivated by the potential valorization opportunities of personal data, the au-

thors on [36] define the term Databox as a protective container for personal data where

data may locate in different geographical location. The Databox is the system (can be

physical or not) responsible for handling the interactions between the Data Owner (usu-

ally a person) and the Data Buyers (companies that want to buy the data). The major

phases in a Databox’s life cycle are despite in the figure 3.4 and explained in the original

paper.

Figure 3.4 – Major phases in a Databox’s life cycle. Source [36]

Moved by the limitations that exist in current data contract management, authors

[4] developed a new extensible framework for data contract management, which takes

into account both technical and business aspects to allow the monitoring of individual IoT

data contracts. Focused on Data contract elements, like Data Rights, Quality of Data,

Quality of Service, Pricing Model, Purchasing Policy, Control and Relationship, the authors

35

implemented a prototype (following the architecture from figure 3.5) and made the code

available.

Figure 3.5 – Architecture of Contract-aware Dataspace Service Platform. Source [4]

Using the benefits or peer-to-peer platforms like Ethereum and Swarm authors

[33] developed a proof-of-concept data marketplace with the code available on Github.

Smart Contracts deployed in Ethereum platform performs the data access validation, and

the content is accessible on Swarm. The core functions description is available. A data

flow sequence envisioned is presented in figure 3.6.

Figure 3.6 – Data Flow Sequence Diagram. Source [33]

The work proposed by [39] uses IPFS[6] as the peer-to-peer platform to store the

data generated by the IoT devices, and implement other mechanisms like a Data Quality

mechanism that allows buyers and sellers to rate each other.

Authors in [15] presents a distributed peer-to-peer data marketplace in a fog

computing scenario, using FIWARE technology for the fog nodes and blockchain for the

communication. There are two communication layers: one for the data and the business

layer. Each layer uses different ledgers: the business layer uses Hyperledger, and the

data layer uses IOTA. The authors don’t provide any source code.

Other author like [47] also uses Smart Contract for the data monetization. In

their paper, the Ethereum platform is used to demonstrate the integration between Device

owner and Customers. The system overview is available in the figure 3.7 and the authors

published their code.

36

Figure 3.7 – A system overview for automating the monetization of IoT data using
Ethereum Smart Contracts. Source [47]

3.3 OUR PROPOSAL

Table 3.2 contains some of the features available or evaluated in the commercial

platforms and papers.

Commercial projects like [20], [54], citexbr and [12], released new cryptocurren-

cies to support their initiatives. It is a valid approach, but, at the same time, the success

of the product will be linked directly with the success of the coin. Using an existing and

well-established cryptocurrency like Bitcoin or Ether reduces this risk and is the strategy

used by this proposal and by [33], [47], [25], [30].

Another critical feature a data market needs to handle is how to exchange the

money between all the involved players. Most of the academic papers like [26], [27] ,

[8], [36] and[4], don’t make any reference for financial side. The current proposal defines

how the money exchange will happen (using Ethereum Smart Contracts and Ether has the

cryptocurrency).

With just a few exceptions ([14], [51], [33], [30]), the authors add support for

real-time messages in their proposals but, there are no references related with the delay

that exists between the data generation and the data consumer. This proposal tackles this

area together with an important one, the Data Matching mechanism.

Only one article [26] references a data matching mechanism, using autonomous

agents, and in their model, the buyer makes agreements with specific sellers. In our

model, the agreement is to the data type. The proposed architecture will try to deliver the

message desired and, it can be for different vendors along the time.

37

Table 3.2 – List of Platforms and Papers comparison

Platform Cryptocurrencie
Money exchange

mecanism defined
Real-time
Support

Auto Data
Matching

Performance
Evaluation

Year

Solution Proposal ETHER Yes Yes Yes Yes 2019

IOTA’s data marketplace [20] New Yes Yes Not available Not available 2015 /

Wibson’s data marketplace [54] New Yes Yes No Not available 2018

Project XBR [55] New Yes Yes Not available Not available 2021

Databroker DAO [12] New Yes Yes No Not available 2018

Datum [14] New Yes No Not available Not available 2017 / 2021

Weeve [53] New Yes Yes Not available Not available 2017

Terbine [51] Not Available Not Available No No Not available 2016

Datapace [13] New Yes Yes No Not available 2017

Dajie [11] Not Available Yes Yes Not applicable Not available Not available

IDMoB: IoT Data Marketplace on Blockchain [33] ETHER Yes No No No 2018

A Peer-to-Peer Architecture for Distributed
Data Monetization in Fog Computing Scenarios [15]

Any Multiple Yes No No 2018

Monetization of IoT data using smart contracts [47] ETHER Yes Yes Not applicable No 2018

Towards a Decentralized Data Marketplace
for Smart Cities [39]

Any Yes Yes No Not applicable 2018

Mind my value: a decentralized infrastructure
for fair and trusted iot data trading [25]

ETHER Yes Yes No Not applicable 2017

On Supporting Contract-aware IoT
Dataspace Services [4]

Not applicable No Yes No Yes 2017

Valorising the IoT Databox: creating
value for everyone [36]

Not applicable No Yes No No 2016

MARSA: A Marketplace for Realtime
Human Sensing Data [8]

Not applicable No Yes No Yes 2016

Data marketplace for internet of things [27] Not applicable No Yes No Yes 2016

When money learns to fly: Towards sensing
as a service applications using bitcoin [30]

Bitcoin Yes No Not applicable No 2014

Internet of things cloud mediator platform [26] Not applicable No Yes Yes No 2014

38

39

4. SYSTEM ARCHITECTURE

In this chapter, the characteristics and definitions of the data marketplace plat-

form of this work are presented. The developed Data Marketplace Platform has the mod-

ules and interactions depicted by Figure 4.1.

Figure 4.1 – System Architecture

The system is divided into sellers and buyers. If you want to sell data, you need

to register the device that contains the data at the marketplace platform, as well as the

account that you desire to receive the incomings. The procedures are similar in case you

wish to buy data; you must register the type of data you want to buy. Next paragraphs

explain these procedures.

The first step consists of a User (Figure 4.1.A) interacting with the platform throw

the web pages or APIs (Figure 4.1.C). The next step is to register a device for selling data

(Figure 4.1.D) or register a Purchase Order for buying data (Figure 4.1.J).

40

To register a Device for selling data, the User needs to inform (throw the Device

Seller Controller - Figure 4.1.D) a Name for the device, a friendly Description, the Ethereum

Account that wants to receive the credits for the data selling, the type of data that will sell

and the amount in Gwei1 that want per message sold. Also, it is necessary to inform if the

device is fixed or mobile. If fixed, need to specify the GPS location and, if mobile, needs to

inform the geographical area the device will be in 90% of the time (example, the city or the

country). The Device Management module (Figure 4.1.E) collects all these data and saves

it into the internal database (Figure 4.1.H). At this time, the device has an internal ID,

and the database module sent back the ID to the Device Management module. With that

information, the MQTT Plugin is executed (Figure 4.1.I), and creates an user specifically

for this device, setting the password and the topic permissions. Subsequently, the user

receives back from the Device Seller Controller (Figure 4.1.D) the MQTT credentials and

the message template to be used when delivering the data.

In order to register a Purchase Order, the user interacts with the Purchase Order

Controller (Figure 4.1.J), passing a Name for the Purchase Order, a friendly Description,

and the characteristics of the messages that want to receive. The Data Purchase Manage-

ment module (Figure 4.1.K) receives all these data and saves it into the internal database

(Figure 4.1.H). Similar to what happens in the Device Registration process, the Purchase

Order now has an internal ID, and an MQTT account is set. Later, the module calls the ETH

API plugin (Figure 4.1.M) and with the information provided by the User, deploys a unique

Smart Contract in the Ethereum Blockchain (Figure 4.1.P) for the Purchase Oder. After-

ward, the User receives back from the Purchase Order Controller (Figure 4.1.J) the MQTT

credentials and the message template to be used when receiving the data. Additionally,

the User receives the Smart Contract address that he should transfer Ether, using a Third

Party Exchange (Figure 4.1.N). The system will only deliver messages to the User if there

are enough credits in the Smart Contract address. Inside the Data Purchase Management

module (Figure 4.1.K) there is a function that executes every 2 hours and updates the

Smart Contract balance in the internal database (Figure 4.1.H) with the amount from the

Ethereum Blockchain (Figure 4.1.P) (see section 4.3.2).

After we have buyers and sellers in the system, the Mapping Management module

(Figure 4.1.F) runs looking for potential sellers for each active Purchase Order (see section

4.4). If a matching happens, the Platform creates a mapping between the Purchase Order

and the Seller and save it in the internal database (Figure 4.1.H)

The Device (Figure 4.1.Q) is the IoT equipment owned by the User, and it requires

an MQTT Client installed to deliver or to receive the data messages.

The platform receives (Figure 4.1.I) and process (Figure 4.1.G) every message

sent by the Sellers. For each message, the Process New Messages module (section 4.5)

checks at the database (Figure 4.1.H) the existing mapping between Purchase Order and

1Gwei is a denomination for 10−9Ether .1Gwei = 0.000000001Ether

41

Seller. For each mapping found, the module evaluates if the message should be delivered

or not. If positive, the module calls the MQTT Plugin (Figure 4.1.I) publishing the message

to the Purchase Order MQTT Topic where the Buyer Device (Figure 4.1.Q) can consume.

Afterward, the module updates inside the database (Figure 4.1.H) the amount pending to

transfer to the seller and the Platform (Sales Commission).

The Ether Transfer Management module (Figure 4.1.L) checks every 12 hours

the amounts recorded in the internal database (off-chain) (Figure 4.1.H) that should be

processed on-chain. The module calls the ETH API (Figure 4.1.M) and transfers from the

Smart Contract to the Seller and Platform wallets only if some criteria are meet (section

4.6).

In this work, a private Ethereum Blockchain network (Figure 4.1.P) is in use. A

node running Go Ethereum version 1.8.27 is setup which provides all necessary APIs (Fig-

ure 4.1.O).

4.1 Web Layer

The Web Layer is responsible for the interaction between the User and the plat-

form. A User can manage a Seller Device or can administer a Purchase Order (a request

to buy some data). All these interactions can happen through web pages or APIs. The

Web Layer is develop using Microsoft ASP .Net Core and hosted as an App Service in Mi-

crosoft Azure platform. A GitHub project 2 was used. The basic functionalities of a web site

platform (user registration, user permissions) are already there.

The APIs definition created for the platform is available in Appendix A.

4.1.1 Device Seller Controller

The Device Seller Controller contains the pages (and APIs) the user interacts with

to register a new Seller device. The main two actions involved are the Device register

itself and the process to associate the messages it can deliver.

Seller Device Registration

Figure 4.2 shows the page the User needs to fill when registering a new Device.

The User should give a Device Name, a Device Description, indicates if the Device is En-

abled or Not and, the ETH Account that wants to receive the ETHER credits. It also needs

2https://github.com/go2ismail/Asp.Net-User-Role-Membership-Example

42

to indicate if the Device is fixed in a single location or is mobile. Further, needs to indicate

in the Google Maps the Device location (in case static) or the area the Device can be.

Figure 4.2 – Seller Device Registration Form

After submitting this form, the User receives back the MQTT information (user

name, password, topic) to be used when delivering the messages.

Seller Device Message Association

The User should associate one or more message types to the Seller Device. A

message type defines what kind of information the User would like to sell. Currently, the

following message types are in the platform:

• Application Usage - Facebook: Some applications monitor how many hours a user

spent in a mobile app. It is possible to sell, for example, how many hours I utilized

Facebook during a specific range of dates.

• Application Usage - WhatsApp

• Lumen

• People Location

• Temperature

• Voltage

43

Figure 4.3 shows the page the User needs to fill when associating a message type

with a Device. Besides the message type, it needs to define the amount in Gwei that want

to receive per message sold.

After submitting this form, the User receives back the JSON message template to

be used when delivering the messages.

Appendix C contains more explanation about each message type.

Figure 4.3 – Seller Device Message Association Form

4.1.2 Purchase Order Controller

The Purchase Order Controller contains the pages (and APIs) the user interacts

with to register a new Purchase Order (a new request to buy data). The user records the

PO first and later associate the message types that want to receive.

Purchase Order Registration

When a User wants to buy some data, it goes to a form (Figure 4.4) and fills with

a Name, a friendly Description, indicates if the request is Active or not, and the Ethereum

account that will receive any Ether back when the Purchase Order ends.

After submitting this form, the User receives back the MQTT information (user

name, password, topic) to be used for receiving the messages. Also, it receives the Smart

44

Contract address. Using a third party exchange, the user needs to transfer Ether to this

address; otherwise, the platform will not deliver any message.

Figure 4.4 – Purchase Order Registration Form

Purchase Order Message Association

After the PO is created, the user can associate the messages want to receive.

First, it is necessary to select the message type (same as from section 4.1.1) and define

how much in Gwei wants to pay per message delivered. The Gwei amount specified is

the maximum amount, and, the platform can deliver messages that cost up to this value

(seller price plus platform commission). After defining the price, the Buyer should specify

other settings:

• Delimited area of interest: the Buyer can set in the Google Maps (or throw GPS

coordinates) the region that wants the messages. It can be a street, a city, an entire

country or all the world;

• Static or mobile devices: if a region of interest is delimited, the Buyer can specify if

he wants the messages from the devices that are installed in that area (like a fixed

thermometer) or can be from mobile devices;

• Minimum time between messages: the Buyer can specify if he wants all messages

that meet the selected criteria or if it should exist a minimal interval between each

one;

• Limits for a specific Time Window: it is possible to define a time window (Minute,

Hour, Day) and add additional restrictions:

45

– Can set to receive only messages from unique users. For example, if the time

window is an hour and a Seller sent two messages, the Buyer will only receive

the first one;

– Define the maximum number of unique users. For example, if the time window

is an hour and the maximum number of unique users is 10, only the messages

from the ten first users are delivered;

– Define the maximum spent amount. For example, if the time window is one day

and the maximum amount is one Ether, once this amount is reached, no new

message will be delivered until the next day.

Figure 4.5 – Purchase Order Message Association Form

4.2 Device Management

Device Management (Figure 4.1.E) is responsible for receiving the information

entered by the Users in the Web Layer related with the Seller Devices (section 4.1) and

processing it. The primary goal is to register the Seller Device into the platform. Figure

4.6 shows this process.

46

Figure 4.6 – Seller Device Registration

A User submits in the web page (or using the API) the Seller Device Name, the

Description, and the Ethereum Account to receive the credits. The Device Management

module initiates the process to register the Seller Device into the platform. With this

information, the Device Management module creates the device at the database level.

Once created, the device receives a unique identifier and, with this identifier, an MQTT

account is set up at the RabbitMQ platform (MQTT APIs information in Appendix B). The

MQTT user name starts with "prod_" and the MQTT Topic name to deliver the messages

starts with "inData/prod_.", appending the Seller Device unique identifier to the names.

Following, the User receives the MQTT credentials and topic name.

After the Seller Device is created in the platform, the User can associate one or

more messages type the device can deliver. Figure 4.3 contains the process. First, the

User requests the list of available message types that are categorized. The list is at the

database level and is available in Appendix C. Once the User receives the list, he selects

the message type that his Seller Device can deliver and set the price (in Gwei) he wants to

receive per message sold. Later, the platform receives back the message type and price

fixed by the User and save it at the database. Subsequently, the database level sends

back the JSON message template the User should use when delivering the messages.

47

Figure 4.7 – Seller Device Message Association

4.3 Data Purchase Management

When a User wants to buy some data, the Data Purchase Management module

(Figure 4.1.K) handles the process which Figure 4.8 has the details.

The Purchase Order (PO) starts when the User submits the interest to buy some

data. The Data Purchase Management module initiates the process after the Buyer pro-

vides a Name, a Description, and the Ethereum Account to receive any remain balance

when the PO closes. With this information, it creates a PO ID at the database and, similar

to what occurs with the Seller Device, it calls the MQTT API and creates a user and a topic

specific for the PO. The topic will be used to receive the data. After creating the MQTT

user, the platform deploys a Smart Contract in the Ethereum Blockchain. The Smart Con-

tract code and how to interact with the Ethereum blockchain is available in Appendix D.

Each PO has a unique Smart Contract associated. The Smart Contract address and MQTT

information are stored at the database and shared with the User. The User now knows

where to receive the data (MQTT) and the Ethereum address he should transfer amounts

to if he wants to start receiving any message. You can imagine that the PO/Smart Contract

48

Figure 4.8 – Purchase Order Registration Process

is a pre-paid cellphone. Once created, the User should transfer funds using a Third Party

Exchange (Figure 4.1.N) and, the platform will manage these funds.

After the PO is created, the user can associate different message types (Appendix

C) and, for each message type, specify a sort of settings (section 4.3.1).

4.3.1 Define PO Message Type

After creating a PO, the User should define the type of messages that want to

receive (and pay for). Figure 4.9 illustrate the process.

The Buyer receives from the platform the list of message types available and,

after selecting the message type, another set of definitions are necessary. Figure 4.10

contains the decisions the Buyer should take.

The obvious question is to define how much the user wants to pay per message.

After that, the user needs to define if want to receive messages for devices located in a

specific region or not. If yes, when in the platform web site, can select the region in a

Google Maps (using the API should provide GPS coordinates). When defining a region, it is

49

Figure 4.9 – Purchase Order Message Association

possible to set the option to receive data only for devices fixed in that location (not from

mobile devices). Subsequent is possible to set the minimum time between each message

delivered, like to receive one message per minute or one message every hour. Next can

define an additional set of limits. It can limit the maximum amount that wants to spend in

a specific time window (for example, not to spend more than 0.10 Ether in the one-hour

period). Another limit is about unique Seller devices. The Buyer can choose to receive only

one message per unique Seller during the time window and set the maximum number of

different Sellers that want the messages.

After all these definitions, the Purchase Order Controller receives the data, and

it goes to Device Management and the DB Interface. The message setting defined by

the User is associated with the PO in the database and, the database provides back the

JSON template in which the messages will be delivered to the Buyer. The Data Purchase

Management module also updates the Smart Contract with the message settings just de-

fined. The Smart Contract has a variable that stores the type of messages requested by

the buyer.

50

Figure 4.10 – Purchase Order Message Settings

4.3.2 Update Purchase Order Balance

The platform handles most of the transactions off-chain, which means it happens

outside the Blockchain. The interaction with the Blockchain should be as minimal as pos-

sible to avoid delays in the process and to reduce the costs associated with the transfers.

51

For that reason, a background process runs every two hours and get from the database

all active Purchase Orders. For each of the PO, that is represented by a Smart Contract

in the Blockchain, the platform calls the ETH API and retrieves the balance. The process

is illustrated in Figure 4.11. The amount updated in the database is used in the process

responsible for delivering the messages (see section 4.5).

Figure 4.11 – Purchase Order Balance Update

4.4 Mapping Management

The platform assumes that many sellers with different message types and prices

are available. Every 6 hours, a background process runs and creates a list of potential

sellers for each active PO in the platform. Figure 4.12 shows the steps.

A background process starts the process, and the Mapping Management module

retrieves from the database all active Purchase Orders and all Active Seller devices. After

52

that, an interaction process initiates between each message type associated with a PO

and each message type associated with the Seller device. The conditions below should

match to have the Seller device associated with the PO:

• The message type should be the same;

• The message price defined by the Seller plus the platform commission (20% of the

user’s price) should be less or equal the maximum amount set by the Buyer;

• The device type (static or mobile) should be in sync with the Buyer request;

• The area the device can be is inside the area of the Buyer interest (if applicable)

If all match, an association is made and stored at the database. The platform

executes this process for all active Sellers and POs.

53

Figure 4.12 – Seller Device and Purchase Order Mapping

54

4.5 Process New Messages

Every minute a background process calls the Process New Messages module and

initiates the activity. The first step is to update the Purchase Order limits (for the applicable

ones). A Buyer can set, for example, the maximum amount he wants to spend in an hour or

day. The Update Limits is responsible for zeroing the amounts once the period ends. After

that, the module calls the MQTT Plugin and retrieves all messages that are in the MQTT

server. The messages received are all saved at the database. An iteration process starts

for every single Seller message that arrived. The system compares first if the message

sent by the Seller is in the correct format. If yes, it checks if exist any mapping between

the Seller and any PO. For the sellers that have mapping, additional actions are executed

before delivering the message to the Buyer. The checking are:

• Confirm the Purchase Order is still active. The platforms map the POs with the Sellers

every 6 hours, and there is a chance the PO was inactivated during this period;

• Confirm if the Purchase Order has enough balance;

• Confirm if the data is from the desired location. The Seller set the device area but,

for some reason, may deliver from another location;

• Confirm all other limits are satisfied. The other limits are:

– The minimum time between each message;

– The maximum amount spent during the time window;

– If the PO limited to receive data only from unique users during the time window

and a message from the Seller was sent before;

– If the PO limited the maximum number of Sellers in the time window and this

number was already reached.

For the messages and POs that satisfy all these criteria, the platform updates the

limits and create off-chain transactions at the database. The off-chain transactions are

the records that indicate the amount of Gwei pending to be transferred from the Smart

Contract to the Seller and the Platform. Subsequently, the platform calls the MQTT Plugin

and delivers the message to the Buyer topic. The process is executed over and over again

for each single Seller Device and PO mapping.

55

Figure 4.13 – Process New Message

56

4.6 Ether Transfer Management

A background process (Figure 4.14) runs every 12 hours and receive from the

database all pending transactions (the ones generated in section 4.5), and group by PO

and Seller. The platform transfers the Ether from the PO (Smart Contract) to the Seller

wallet only if the Seller has more than 0.032 Ethers (around U$10) pending to receive or

has pending transactions (messages delivered but not paid yet) that happened more than

six months ago. For these scenarios, the Ether Transfer Management module calls the

ETH API, and all the pending amounts are transferred from the PO Smart Contract to the

Seller and Platform wallet address. The ETH API provides back the transaction ID (a unique

identifier in the Blockchain platform), and the transactions are marked as processed.

57

Figure 4.14 – Ether Transfer Management

58

59

5. EVALUATION

This chapter presents the evaluation tests performed in the data marketplace

platform. The main goal of the tests is to evaluate the average time it takes between the

seller sent, and the buyer receives the message (Figure 5.1), and how long the platform

takes to create the mapping between seller and buyer.

Figure 5.1 – Delay

5.1 TEST ENVIRONMENT

The platform was deployed in the Microsoft Azure cloud. The database (Microsoft

SQL Server version 12.0.2000.8) and the Web Site run as Azure Services. Two other virtual

machines are in place.

Virtual Machine A

Purpose: hosts the RabbitMQ (version 3.7) and the Background services (writing

in C# language) responsible for processing the data in, delivering the data out, transfer

the Ether, create the mapping between sellers and vendor.

Configuration: Windows Server 2016, 4CPUs and 16Gb of memory

Virtual Machine B

Purpose: host the Ethereum private blockchain (Go Ethereum version 1.8.27).

Configuration: Windows Server 2016, 2CPUs and 8Gb of memory

5.2 TEST SCENARIO PREPARATION

A total of 11000 different users were created in the data marketplace system

using C# code and the platforms APIs. For each user, an Ethereum account was created in

the private blockchain. A total of 10000 users were set as Sellers and 1000 as Buyers. For

each buyer, a Purchase Order was created, and the respective Smart Contract deployed.

60

Every seller publishes a People Location data, and all the buyers are interested.

The maximum price per message, the location area of interest are set, but no other addi-

tional limit is in use.

5.3 TEST METHODOLOGY

A CSV file (Figure 5.2.a) is created with the seller MQTT credentials and message

content to be delivered. A python script (Figure 5.2.b) loads the CSV file and publish each

message to the platform MQTT inbound topic (Figure 5.2.c). Another python script (Figure

5.2.d) saves the data received in the MQTT inbound into the Microsoft SQL database (Fig-

ure 5.2.e). A C# background service (Figure 5.2.f) monitors the messages saved into the

Microsoft SQL database and process each one. It performs all necessary validations, and

for the messages with a designed buyer, it publishes into the MQTT topic (Figure 5.2.g).

The buyer side has a python script (Figure 5.2.h) that receives the message and saves

it into another SQL database (Figure 5.2.i). The test represents the end-to-end process,

starting in the data generation by the seller until the buyer consumes it.

Figure 5.2 – Test Workflow

5.4 SCENARIO 1 - IMPACT OF THE NUMBER OF BUYERS

The data information sent by a seller can be sold to multiple buyers.

The impact of memory, and CPU consumption in the Platform server (Virtual Ma-

chine A) and the delay the message takes between the seller generates, and the time the

buyer receives it are evaluated. Also, the time the background process responsible for

generating the list of potential buyers for a specific seller takes longer when the number

61

of buyers increase. The test started with one buyer and was increased to 10, 100, 200,

300, 400, 500, and 1000. For each variation, the same test was performed five times.

5.4.1 RESULTS

The background process responsible for generating the list of potential buyers for

a specific seller takes 1 second in all scenarios.

The CPU and memory consumption for all the affected services remain stable

during all the execution (Table 5.1).

Table 5.1 – Scenario 1 - CPU and Memory Utilization
Service Memory CPU
RabbitMQ 100MB 15%
Pythong Script IN 5MB 1%
C# Background Service 25MB 1%

The time it takes between the seller generates the message and the last buyer

to receive it increased proportionally (Figure 5.3).

Figure 5.3 – Delay in Scenario 1

Figure 5.3 shows that when we had ten buyers that should receive the message,

the 10th buyer received the message at maximum 4 second from the time the seller sent

the message. In the worst-case scenario, the 1000th buyer received the message 194 sec-

onds after the time the seller sent the message to the platform. This delay occurs because

the process responsible for processing and delivering the message is all sequential. The

current code generates the list of potential buyers and performs the additional checks and

message delivery sequentially, one buyer after the other. This piece can be parallelized,

62

and each buyer processed individually and concurrently since one process does not impact

the other.

5.5 SCENARIO 2 - IMPACT OF THE NUMBER OF SELLERS

A buyer can be interested in receiving the message from multiple devices. In this

scenario, during the test, a message from a different seller was sent each 0.15 seconds.

There is only one buyer, and the number of sellers were increased, starting at 1, 10, 100,

200, 300, 400, 500 and 1000. For each variation, the same test was performed five times.

5.5.1 RESULTS

The background process responsible for generating the list of potential buyers for

a specific seller takes maximum of 6 seconds.

The CPU and memory consumption for all the affected services are the same from

section 5.4.1.

Figure 5.4 – Delay in Scenario 2

Figure 5.4 shows that when we had ten sellers delivering the message with 0.15

seconds interval, the buyer received the message from the 10th seller with a maximum

delay of 4 seconds from the time the seller sent the message. When was increased the

number to 1000 sellers sending a message with a 0.15 seconds interval, the maximum

delay increases to 335 seconds. Table 5.2 shows the minimal, maximum, and average

delay in seconds for the tests.

As mentioned in section 5.4.1, the delay occurs because the process responsible

for processing and delivering the message is all sequential. We should at least separate

63

Table 5.2 – Scenario 2 - Message Delay in Seconds
Number of Sellers Minimum Delay Average Delay Maximum Delay
1 1 1 1
10 1 3 4
100 1 19 33
200 1 35 65
300 1 53 102
400 1 72 140
500 1 80 155
1000 1 165 335

the two process and run in parallel — one process generating the messages and the other

one consuming and publishing it.

64

65

6. CONCLUSION AND FUTURE WORK

In this chapter the conclusions for this work and the future directions are pre-

sented.

6.1 CONCLUSIONS

In a world with the estimate of having 20 billion IoT devices in 2020 [22] with a po-

tential data marketplace of $3.6 trillion [1], it is understandable the emerging of research

in this area, including a few startups ([20], [12], [55]).

This work has a purpose of showing a data marketplace architecture that con-

tains a data matching mechanism that allows buyers to find the sellers automatically, in-

tegrating a payment and contract management mechanism, together with a data broker,

keeping an eye on the system performance.

After analyzing and documenting the features of existing projects and papers

related to our research, this data marketplace architecture was created.

The proposed architecture contains a critical item that only one paper [26] refers:

we need to decide the seller on behalf of the buyers and, this aspect is in the core of our

architecture model. Imagine a system with millions of connected devices, all looking to

sell his data and other millions of devices wanting to buy these data. How to make the

choose an option? A parallel in how Uber works today is possible. When calling an Uber,

there is no option to choose the driver. The Uber platform chooses him. In Uber’s case, it is

only necessary to inform the origin and destination, and it can choose the driver. In a data

marketplace, what are the necessary inputs from the buyers to select the best sellers?

This work provided a few insights into this space.

A proof of concept covering all characteristics of the marketplace was developed

and tested. The proposed architecture was integrated with MQTT for the data broker and

with Ethereum blockchain for the contract management and money transfer mechanism,

making it possible and end-to-end test in a controlled environment.

As a result, this work has achieved its proposal. A proposal architecture was

established and validated. The performance was also validated in the proof of concept.

6.2 FUTURE WORK

The work presented here contains the foundation for a data marketplace focused

on IoT devices, but it is not a complete one. It is necessary to explore some areas.

66

The current architecture assumed that the messages delivered by the sellers

are genuine and authentic. It can be true if only certified sellers are allowed to join the

marketplace but, doing that, it will limit the potential number of sellers. If in the other

way, we allow anyone to be a seller, it is necessary to add mechanisms for the buyers to

reject messages from "fake" sellers, devices that sent incorrect or wrong data only for the

money.

As mentioned in section 5.4.1, it is necessary to recode the piece responsible for

processing and delivering the messages. It is not feasible a considerable delay between

the information generation and the time the consumer receives it. In a scenario where we

look for some historical data for a particular analysis, this can be acceptable but, in some

other scenario, where, for example, one particular device is looking to receive the data

from a neighbored device to make some decision, this is not tolerable.

Only a few APIs are currently available for the devices and POs management. It

is necessary to create new ones, responsible for editing the current devices/POs and ones

responsible for querying the type of data available in the marketplace with the respective

prices. The web interface should provide the minimum, maximum, and type of available

messages. With the prices information, the user can decide how much in Ether to transfer

to the Smart Contract.

In the current architecture, the pricing model is based on the number of mes-

sages sold. However, there are others [45]. Buyers may want to pay a fixed amount and

receive all messages from a specific time, like one day. In this model, how to reward the

sellers? Also, if a specific buyer wants a minimal number of messages during a specified

interval, how to enforce SLA with the sellers?

When dealing with people’s data, some regulatory compliances should be fol-

lowed, depending on the source of the data. There are, for example, specific rules for

Europe (EU GPDR) [18], Brazil (General Law on the Protection of Personal Data (LGPD))

[10] and so many other regions. In a global data marketplace platform, laws for these

different regions should also be taken into consideration for future work.

67

REFERENCES

[1] Accenture. “Value of data: The dawn of the data marketplace”. Source: https:

//www.accenture.com/us-en/insights/high-tech/dawn-of-data-marketplace, Jul 2019.

[2] Ali, M. S.; Vecchio, M.; Pincheira, M.; Dolui, K.; Antonelli, F.; Rehmani, M. H.

“Applications of blockchains in the internet of things: A comprehensive survey”, IEEE

Communications Surveys & Tutorials, vol. 21–2, Dec 2018, pp. 1676–1717.

[3] Armstrong, A. A.; Durfee, E. H. “Mixing and memory: Emergent cooperation in an

information marketplace”. In: Proceedings of the International Conference on Multi

Agent Systems, 1998, pp. 34–41.

[4] Balint, F.-B.; Truong, H.-L. “On supporting contract-aware iot dataspace services”.

In: Proceedings of the IEEE International Conference on Mobile Cloud Computing,

Services, and Engineering, 2017, pp. 117–124.

[5] Bates, J. “Thingalytics: Smart Big Data Analytics for the Internet of Things”. Software

AG, 2015, 175p.

[6] Benet, J. “Ipfs-content addressed, versioned, p2p file system”, arXiv preprint, vol.

1407.3561, Jul 2014, pp. 1–11.

[7] Buterin, V. “Ethereum white paper, 2014”. Source: https://github.com/ethereum/

wiki/wiki/White-Paper, Jan 2019.

[8] Cao, T.-D.; Pham, T.-V.; Vu, Q.-H.; Truong, H.-L.; Le, D.-H.; Dustdar, S. “Marsa:

A marketplace for realtime human sensing data”, ACM Transactions on Internet

Technology, vol. 16–3, Aug 2016, pp. 16–21.

[9] Consultants, H. “What are the differences between public, private and permissioned

blockchain network?” Source: https://www.hashcashconsultants.com/media/

differences-between-public-private-and-permissioned-blockchain-network/, Jan

2019.

[10] da República, P. “Lei geral de proteção de dados pessoais”. Source: http://www.

planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/L13709.htm, Jul 2019.

[11] Dajie. “Dajie”. Source: https://dajie.eu, Jan 2019.

[12] DAO, D. “Databroker dao”. Source: https://databrokerdao.com, Jan 2019.

[13] Datapace. “Datapace”. Source: https://datapace.io/datapace_whitepaper.pdf, Jan

2019.

68

[14] Datum. “Datum”. Source: https://datum.org/, Jan 2019.

[15] de la Vega, F.; Soriano, J.; Jimenez, M.; Lizcano, D. “A peer-to-peer architecture for

distributed data monetization in fog computing scenarios”, Wireless Communications

and Mobile Computing, vol. 2018, Sep 2018, pp. 15.

[16] Di Pierro, M. “What is the blockchain?”, Computing in Science & Engineering, vol. 19–

5, Sep 2017, pp. 92–95.

[17] Economist, T. “The world’s most valuable resource is no longer oil, but data”, The

Economist, vol. 423, May 2017, pp. 7.

[18] EUR-Lex. “General data protection regulation”. Source: https://eur-lex.europa.eu/eli/

reg/2016/679/oj, Jul 2019.

[19] Filament. “Filament”. Source: https://filament.com, Jan 2019.

[20] Foundation, I. “Iota”. Source: https://data.iota.org/, Jan 2019.

[21] Haenmi, R. “White paper v15”. Source: https://datum.org/assets/Datum-WhitePaper.

pdf, Jan 2019.

[22] Hung, M. “Leading the iot”. Source: https://www.gartner.com/imagesrv/books/iot/

iotEbook_digital.pdf, Jan 2019.

[23] IBM. “10 key marketing trends for 2017 and ideas for exceeding customer

expectations”. Source: https://public.dhe.ibm.com/common/ssi/ecm/wr/en/

wrl12345usen/watson-customer-engagement-watson-marketing-wr-other-\

papers-and-reports-wrl12345usen-20170719.pdf, Oct 2018.

[24] Lastovetska, A. “Blockchain architecture basics:

Components, structure, benefits creation”. Source:

https://mlsdev.com/blog/156-how-to-build-your-own-blockchain-architecture/, Jan

2019.

[25] Missier, P.; Bajoudah, S.; Capossele, A.; Gaglione, A.; Nati, M. “Mind my value: a

decentralized infrastructure for fair and trusted iot data trading”. In: Proceedings of

the International Conference on the Internet of Things, 2017, pp. 1–15.

[26] Misura, K.; Zagar, M. “Internet of things cloud mediator platform”. In: Proceedings

of the International Convention on Information and Communication Technology,

Electronics and Microelectronics, 2014, pp. 1052–1056.

[27] Mišura, K.; Žagar, M. “Data marketplace for internet of things”. In: Proceedings of the

International Conference on Smart Systems and Technologies, 2016, pp. 255–260.

69

[28] Mohanty, S. P.; Choppali, U.; Kougianos, E. “Everything you wanted to know about

smart cities: The internet of things is the backbone”, IEEE Consumer Electronics

Magazine, vol. 5–3, Jul 2016, pp. 60–70.

[29] MQTT. “Mqtt faq”. Source: http://mqtt.org/faq/, Jul 2019.

[30] Noyen, K.; Volland, D.; Wörner, D.; Fleisch, E. “When money learns to fly: Towards

sensing as a service applications using bitcoin”, arXiv preprint, vol. 1409.5841, 2014,

pp. 1–6.

[31] of Things, A. “Array of things”. Source: https://arrayofthings.github.io, Oct 2018.

[32] Oraclize. “Oraclize quick start”. Source: http:

//docs.oraclize.it/#ethereum-quick-start, Jan 2019.

[33] Özyilmaz, K. R.; Doğan, M.; Yurdakul, A. “Idmob: Iot data marketplace on blockchain”.

In: Proceedings of the Crypto Valley Conference on Blockchain Technology, 2018, pp.

11–19.

[34] Panarello, A.; Tapas, N.; Merlino, G.; Longo, F.; Puliafito, A. “Blockchain and iot

integration: A systematic survey”, Sensors, vol. 18–8, Aug 2018, pp. 2575.

[35] Perera, C.; Liu, C. H.; Jayawardena, S.; Chen, M. “A survey on internet of things from

industrial market perspective”, IEEE Access, vol. 2, Jan 2015, pp. 1660–1679.

[36] Perera, C.; Wakenshaw, S. Y.; Baarslag, T.; Haddadi, H.; Bandara, A. K.; Mortier, R.;

Crabtree, A.; Ng, I. C.; McAuley, D.; Crowcroft, J. “Valorising the iot databox: Creating

value for everyone”, Transactions on Emerging Telecommunications Technologies,

vol. 28–1, Jan 2017, pp. e3125.

[37] Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. “Context aware computing

for the internet of things: A survey”, IEEE Communications Surveys & Tutorials,

vol. 16–1, Apr 2014, pp. 414–454.

[38] Perera, C.; Zaslavsky, A.; Christen, P.; Georgakopoulos, D. “Sensing as a service

model for smart cities supported by internet of things”, Transactions on Emerging

Telecommunications Technologies, vol. 25–1, Jan 2014, pp. 81–93.

[39] Ramachandran, G. S.; Radhakrishnan, R.; Krishnamachari, B. “Towards

a decentralized data marketplace for smart cities”. In: Proceedings of the

International Smart Cities Conference, 2018, pp. 1–8.

[40] Reyna, A.; Martín, C.; Chen, J.; Soler, E.; Díaz, M. “On blockchain and its integration

with iot. challenges and opportunities”, Future Generation Computer Systems,

vol. 88, Nov 2018, pp. 173–190.

70

[41] Sasaki, Y.; Yokotani, T.; Mukai, H. “Comparison with assured transfer of information

mechanisms in mqtt”. In: Proceedings of the International Japan-Africa Conference

on Electronics, Communications and Computations, 2018, pp. 95–98.

[42] Schomm, F.; Stahl, F.; Vossen, G. “Marketplaces for data: an initial survey”, ACM

Special Interest Group on Management of Data Record, vol. 42–1, Mar 2013, pp. 15–

26.

[43] Seth, S. “Public, private, permissioned blockchains compared”. Source: https:

//www.investopedia.com/news/public-private-permissioned-blockchains-compared/,

Apr 2019.

[44] Slock. “Slock”. Source: https://slock.it, Jan 2019.

[45] Stahl, F.; Schomm, F.; Vossen, G. “The data marketplace survey revisited”, Working

papers, ERCIS-European Research Center for Information Systems, 2014, 19p.

[46] Stahl, F.; Schomm, F.; Vossen, G.; Vomfell, L. “A classification framework for data

marketplaces”, Vietnam Journal of Computer Science, vol. 3–3, Mar 2016, pp. 137–

143.

[47] Suliman, A.; Husain, Z.; Abououf, M.; Alblooshi, M.; Salah, K. “Monetization of iot data

using smart contracts”, IET Networks, vol. 8–1, Jan 2019, pp. 32–37.

[48] Sundmaeker, H.; Guillemin, P.; Friess, P.; Woelfflé, S. “Vision and challenges for

realising the internet of things”, Cluster of European Research Projects on the

Internet of Things, European Commision, vol. 3–3, Mar 2010, pp. 34–36.

[49] Team, T. H. “Quality of service 0,1 2 - mqtt essentials: Part 6”. Source: https://www.

hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/, Jul 2019.

[50] Tennant, L. “Improving the anonymity of the iota cryptocurrency”, Oct 2017.

[51] Terbine. “Terbine”. Source: https://terbine.com/, Jan 2019.

[52] Weeve. “Product highlights”. Source: https://weeve.network/cache/assets/

fo0rvac1gv8v/35yrjNec7mK64gaaicyw2e/ac89a1e284e156f006c362a39e100527/

Weeve_Product_Highlights.pdf, Jan 2019.

[53] Weeve. “Weeve”. Source: https://weeve.network/, Jan 2019.

[54] Wibson. “Wibson”. Source: https://wibson.org/wp-content/uploads/2018/10/

Wibson-Technical-Paper-v1.1.pdf, Jan 2019.

[55] XBR. “Xbr”. Source: https://xbr.network/, Jan 2019.

71

[56] Yaga, D.; Mell, P.; Roby, N.; Scarfone, K. “Blockchain technology overview”, arXiv

preprint, vol. 1906.11078, Jun 2019, pp. 1–68.

[57] Zhang, F.; Cecchetti, E.; Croman, K.; Juels, A.; Shi, E. “Town crier: An authenticated

data feed for smart contracts”. In: Proceedings of the ACM SIGSAC Conference on

Computer and Communications Security, 2016, pp. 270–282.

[58] Zuiderwijk, A.; Loukis, E.; Alexopoulos, C.; Janssen, M.; Jeffery, K. “Elements for the

development of an open data marketplace”. In: Proceedings of the Conference for

E-Democracy and Open Government, 2014, pp. 309–322.

72

73

APPENDIX A – API

APIs are in place, and users (or machines) can manage their needs using scripts.

A.1 Data Marketplace User Registration

As a first step, a user should register himself in the platform.

API Url: /api/User/CreateUser

Action: POST

Input Format: JSON

Input fields: FirstName, LastName, Email, Password, ConfirmPassword

Output: User Email if the registration works

Input Message Example:

1 {

2 "FirstName": "First Name API",

3 "LastName": "Last Name API",

4 "Email": "UserAPI@Useremail.com",

5 "Password": "PasswordAPI123",

6 "ConfirmPassword": "PasswordAPI123"

7 }

A.1.1 User Token Generation

JSON Web Tokens 1 are in use for API authentication. Before calling the APIs re-

sponsible for managing the Seller Devices and Purchase Orders, the user should generate

a token and use it to authenticate in the other services.

API Url: /api2/GenerateToken

Action: POST

Input Format: JSON

Input fields: UserID, Password

Response: JSON with access token

Input Message Example:

1https://jwt.io/introduction

74

1 {

2 "UserID": "UserAPI@Useremail.com",

3 "Password": "PasswordAPI123"

4 }

Response Message Example:

1 {

2 "authenticated": true,

3 "created": "2019-06-17 17:12:31",

4 "expiration": "2019-06-17 17:21:51",

5 "accessToken": "eyJhbGciOiJSUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1

bmlxdWVfbmFtZSI6WyJVc2V

6 yQVBJQFVzZXJlbWFpbC5jb20iLCJVc2VyQVBJQFVzZXJlbWFpbC5jb20

iXSwianRpIjoiZDc2Mzc4ZDM

7 wN2Y0NDdhMmJiYjk4M2ZmYjkwNTQwZTYiLCJuYmYiOjE1NjA3OTE1NTEsImV4cCI6MTU

2MDc5MjExMSw

8 iaWF0IjoxNTYwNzkxNTUxLCJpc3MiOiIwMTIzNDU2Nzg5

QUJDREVGIiwiYXVkIjoiMDEyMzQ1Njc4OUF

9 CQ0RFRiJ9.YWKkZSS3hKlCtnIxZETNaCt8_Ftu9utjNqWJ_ViJpECaYmap5ClX9V91

gpR6NGCMM9XUeK

10 1jE8sIlIcdDLPulv-jt04pINn2x4SEgDnbk8jgbs21fgaufL9aVReDBCIwXS_7

AKVJVuqTpKMZWpRgoc

11 1IuXEAqm9ANGoSqVPYaBiUNAuGtV7HBlDkOHxyM2OgUrBNeSiICOGEYU9SATVi2o1k77

dHwnkQbrkRr

12 k7r4xATB59b8DV6uAFb8OOZtSsnhf4a4ep3-8i0Qqz9KgNhEDUhSGxi-B2zWOp0jjecQ

8_sioe-2JaXw

13 y-G5r4nBuE75citJV_5gjnM3MYVPhCvfQ",

14 "message": "OK"

15 }

A.2 Seller Device Registration

API Url: /api2/Devices/Create

Authentication: Required. JSON Token

Action: POST

Input Format: JSON

75

Input fields: Name, Description, Enabled, MACAddress, ETHAccount, IsFixed,

GPSLocation

Response: JSON message with the device information, including MQTT Queue,

user name and password

Input Message Example:

1 {

2 "Name": "Temperature Sensor - My Room",

3 "Description": "This is my temperature sensor installed in my room",

4 "Enabled": 1,

5 "MACAddress": "00-0D-3A-1C-F7-A9",

6 "IxFixed" : 1,

7 "ETHAccount": "0x96eea2090f2b4c30f6b438dd8272ca8c27bc0948",

8 "GPSLocation": "(-29.82113,-51.20797)"

9 }

Output Message Example:

1 {

2 "DeviceID": 1026,

3 "UserID": 1204,

4 "Name": "Temperature Sensor - My Room",

5 "Description": "This is my temperature sensor installed in my room",

6 "Enabled": 1,

7 "MACAddress": "00-0D-3A-1C-F7-A9",

8 "ETHAccount": "0x96eea2090f2b4c30f6b438dd8272ca8c27bc0948",

9 "PriceTypeID": 0,

10 "MQTTUser": "prod_1001026",

11 "MQTTPwd": "c477fd3-",

12 "MQTTQueue": "/inData/prod_1001026/",

13 "IsFixed": 1,

14 "GPSLocation": "(-29.82113,-51.20797)"

15 }

A.2.1 Seller Device Message Association

API Url: /api2/Devices/AddMessageMap

Authentication: Required. JSON Token

Action: POST

76

Input Format: JSON

Input fields: MsgID, DeviceID, PriceAmountUser, MsgFrequencyAmount, Fre-

quencyTypeID

Response: JSON message with template to be used when delivering the data

Input Message Example:

1 {

2 "MsgID": 1,

3 "DeviceID": 1026,

4 "PriceAmountUser": 10000,

5 "MsgFrequencyAmount": 1,

6 "FrequencyTypeID": 4

7 }

Output Message Example:

1 {

2 "Location" : "",

3 "Type" : "Msg",

4 "Date" : "",

5 "MsgID" : 1,

6 "Value": ""

7 }

A.3 Purchase Order Registration

API Url: /api2/Requests/Create

Authentication: Required. JSON Token

Action: POST

Input Format: JSON

Input fields: Name, Description, Enabled, ETHAccount

Response: JSON message with

Input Message Example:

1 {

2 "Name": "Buy Temperature Data",

3 "Description": "Request to buy temperature data for multiple

locations",

4 "ETHAccount" : "0x39848570802da1e37f67856c78f9040d38188e9e",

77

5 "Enabled" : 1

6 }

Output Message Example:

1 {

2 "RequestID": 109,

3 "UserID": 1204,

4 "Name": "Buy Temperature Data",

5 "Description": "Request to buy temperature data for multiple

locations",

6 "Enabled": 1,

7 "ETHAccount": "0x39848570802da1e37f67856c78f9040d38188e9e",

8 "MQTTUser": "cons_100109",

9 "MQTTPwd": "6ab55a7-",

10 "MQTTQueue": "/outData/cons_100109/",

11 "CloseUser": null,

12 "CloseDate": null,

13 "ETHContract": "0x394217adf3a7629c812e1fd8a70818ae2b3a1889",

14 "TransactionHashClosed": 0

15 }

A.3.1 Purchase Order Message Association

API Url: /api2/Requests/AddMessageMap

Authentication: Required. JSON Token

Action: POST

Input Format: JSON

Input fields: MsgID, RequestID, AmountUnit, UniqueUsers, OnlyFixedDevices,

MinimumTimeBetweenMessages, ExpectedDistinctUsers, FrequencyTypeID, MaximumAmount,

GPSLocation

Response: JSON message with template to be used when consuming the data

Input Message Example:

1 {

2 "MsgID":1,

3 "RequestID":109,

4 "AmountUnit": 15000,

78

5 "UniqueUsers": 1,

6 "OnlyFixedDevices": 0,

7 "MinimumTimeBetweenMessages": 0,

8 "ExpectedDistinctUsers": 0,

9 "FrequencyTypeID": 6,

10 "MaximumAmount": 0,

11 "GPSLocation": "(-30.09479,-51.19595), (-30.06608,-51.09909), (-30.01

955,-51.08505), (-30.00155,-51.17401), (-29.99833,-51.23348), (-3

0.03733,-51.26)"

12 }

Output Message Example:

1 {

2 "Location" : "",

3 "Type" : "Msg",

4 "Date" : "",

5 "MsgID" : 1,

6 "Value": ""

7 }

79

APPENDIX B – MQTT

The current platform uses RabbitMQ 3.7 1 for the message integration. This tool

has APIs for managing users, and messages, available for .Net platform 2.

B.1 Create a new MQTT User

Both Seller Devices and POs need user setup in the MQTT environment for send-

ing and receiving messages.

The system calls the RabbitMQ API (http://localhost:15672/api/users/new_user),

replacing the new_user by the desired username, including a JSON message with the new

user password and an optional tag. We use the tag to identify if the user is Buyer (Con-

sumer) or a Seller (Producer).

Example of JSON message:

1 {

2 "password":"90cd2bd-",

3 "tags":"Producer"

4 }

B.2 Assign MQTT Topic Permission

A user can only publish or consume from his topic. For this, after creating the

user, the platform adjust some permissions, executing the API (http://localhost:15672/api/topic-

permissions/%2F/new_user), passing a JSON message.

For a Seller Device, the JSON message responsible for setting the permission is:

1 {

2 "exchange":"amq.topic",

3 "write":"new_user.*",

4 "read":""

5 }

For a Purchase Order (Buyer), the JSON message is:

1https://www.rabbitmq.com
2https://www.rabbitmq.com/dotnet-api-guide.html

80

1 {

2 "exchange":"amq.topic",

3 "write":"",

4 "read":"new_user.*"

5 }

B.3 Consuming and Publishing MQTT Messages

The SAEA 3 and the Eclipse Paho MQTT Python 4 are in use for the MQTT messages

interactions.

3https://github.com/yswenli/SAEA
4https://pypi.org/project/paho-mqtt/

81

APPENDIX C – MESSAGE TYPES

The platform has cataloged a different set of data types for selling. Buyers and

Sellers should follow the message template when delivering or consuming a message. The

format is available for the user in the Web Layer (section 4.1).

The Basic Message template is:

1 {

2 "Location": "",

3 "Type": "msg",

4 "Date": "",

5 "MsgID": X,

6 "Value":""

7 }

Fields Definition:

• Location: The device latitude and longitude position;

• Type: Fixed value of "msg";

• Date: The date the information applies in ISO 8601 1 format;

• MsgID: Integer number related to the message type;

• Value: Amount measured for the specific data type.

C.1 Application Usage - Facebook

Provides the number of seconds a person used the Facebook application during a

specific time window.

The MsgID has a value of 7.

The Location is the coordinates the person is when delivering the information.

Example.: a person arrived PUC-RS Building 32 on June 28th, 2019 at 07 PM BRT,

and between June 27th, 2019 01 AM BRT and June 28th, 2019 7 PM BRT, used Facebook

for 2 hours.

1 {

2 "Location": "(-30.061183,-51.173791)",

3 "Type": "msg",

1https://www.iso.org/iso-8601-date-and-time-format.html

82

4 "Date": "2019-06-28T19:00:00-03:00",

5 "MsgID": 7,

6 "StartDate": "2019-06-27T01:00:00-03:00",

7 "EndDate": "2019-06-28T19:00:00-03:00",

8 "Value":"7200"

9 }

C.2 Application Usage - WhatsApp

Provides the number of seconds a person used the WhatsApp application during

a specific time window.

The MsgID has a value of 10.

The Location is the coordinates the person is when delivering the information.

Example.: a person arrived PUC-RS Building 32 on June 28th, 2019 at 07 PM BRT,

and between June 27th, 2019 01 AM BRT and June 28th, 2019 7 PM BRT, used WhatsApp

for 3 hours.

1 {

2 "Location": "(-30.061183,-51.173791)",

3 "Type": "msg",

4 "Date": "2019-06-28T19:00:00-03:00",

5 "MsgID": 10,

6 "StartDate": "2019-06-27T01:00:00-03:00",

7 "EndDate": "2019-06-28T19:00:00-03:00",

8 "Value":"10800"

9 }

C.3 Lumen

It provides the amount in Lumen is emitted by a light source.

The MsgID has a value of 12.

The Value has two decimal precision.

Example.: device located at Arena do Grêmio stadium emits 1600lm (100 W) in

June 29th, 2019. The message, in this situation, is:

1 {

2 "Location": "(-29.973592,-51.194894)",

83

3 "Type": "msg",

4 "Date": "2019-06-29T13:00:00Z",

5 "MsgID": 12,

6 "Value":"1600.00"

7 }

C.4 People Location

Indicates that a person was in a specific location at that time.

The MsgID has a value of 5.

Example.: a person arrived PUC-RS Building 32 on June 28th, 2019 at 07 PM. The

message, in this situation, is:

1 {

2 "Location": "(-30.061183,-51.173791)",

3 "Type": "msg",

4 "Date": "2019-06-28T19:00:00-03:00",

5 "MsgID": 5

6 }

C.5 Temperature

For delivering and consuming the temperature in Celcius.

The MsgID has a value of 1.

The Value has two decimal precision.

Example.: device located at Arena do Grêmio stadium measured 25.30ºC in June

29th, 2019. The message, in this situation, is:

1 {

2 "Location": "(-29.973592,-51.194894)",

3 "Type": "msg",

4 "Date": "2019-06-29T13:00:00Z",

5 "MsgID": 1,

6 "Value":"25.30"

7 }

84

C.6 Voltage

For delivering and consuming the voltage in Volts.

The MsgID has a value of 3.

The Value has two decimal precision.

Example.: device located at Arena do Grêmio stadium measured 113.45V in June

29th, 2019. The message, in this situation, is:

1 {

2 "Location": "(-29.973592,-51.194894)",

3 "Type": "msg",

4 "Date": "2019-06-29T13:00:00Z",

5 "MsgID": 3,

6 "Value":"113.45"

7 }

85

APPENDIX D – ETHEREUM

Ethereum has the main and the test network but, for this validation, a private

network is in use to avoid costs associated with transactions (Smart Contract deploy, Ether

transfer).

The private network 1 is running in a dedicated Azure Virtual Machine with 2 CPUs

and 8Gb of memory. The machine has an Ethereum node operating with Go Ethereum 2

version 1.8.27.

The custom Genis file is:

1 {

2 "nonce": "0x0000000000000055",

3 "mixHash": "0x00

00000000",

4 "parentHash": "0x000

00000000000",

5 "difficulty": "0x0400",

6 "gasLimit": "0x8000000",

7 "timestamp": "0x0",

8 "extraData": "",

9 "coinbase": "0x00",

10 "alloc": {},

11 "config": {

12 "chainId": 100,

13 "homesteadBlock": 0,

14 "eip155Block": 0,

15 "eip158Block": 0,

16 "eip160Block": 0,

17 "byzantiumBlock": 0

18 }

19 }

The Ethereum node runs with the command:

1 geth --identity nodeSOL --nodiscover --networkid 13 --port 60303 --lightkdf --cache 16 --maxpeers 10 --rpc

2 --rpcapi personal,web3,eth --rpccorsdomain "*" --datadir "C:\ETH\data-private3"

3 --etherbase "0x141f9017737cd8f6ecf7161c152262db102390d7" --minerthreads 1 --mine

1https://github.com/ethereum/go-ethereum/wiki/Private-network
2https://geth.ethereum.org/

86

D.1 Data Marketplace Platform and Ethereum Integration

The DMP modules are in C# language, and the integration between the modules

and the Ethereum is through Nethereum library 3.

D.1.1 Smart Contract

The Ethereum Smart Contract is written in Solidity language. The current code

is:

1 pragma solidity ^0.5.0;

2 contract DataRequest {

3

4 address owner = msg.sender;

5 address buyerETHAddress;

6 string strDataTypeRequested;

7 bool contractStatus;

8

9 function deposit() payable public {

10 }

11

12 function setContractInfo(address _buyerETH, string memory _strDataType)

13 public onlyOwner {

14 buyerETHAddress = _buyerETH;

15 strDataTypeRequested = _strDataType;

16 }

17

18 function transfer(address payable to, uint256 amount) public onlyOwner {

19 to.transfer(amount);

20 }

21

22 function getBalance() public view returns (uint256) {

23 return address(this).balance;

24 }

25

26 function getStatus() public view returns(bool){

27 return contractStatus;

28 }

29

30 function setStatus(bool _newStatus) public OwnerORBuyer

31 {

32 contractStatus = _newStatus;

33 }

3https://nethereum.com/

87

34

35 modifier onlyOwner {

36 require(

37 msg.sender == owner

38);

39 _;

40 }

41

42 modifier OwnerORBuyer {

43 require(

44 msg.sender == owner || msg.sender == buyerETHAddress

45);

46 _;

47 }

48 }

There is an extension 4 for Visual Studio code that generates C# class (with

Nethereum support) from a Solidity code.

In our case, to deploy the Smart Contract, we need to use:

1 var account = new Account(privateKey); //DMP primary account

2 var web3 = new Web3(account, url); //Ethereum Private Node

3

4 DataRequestDeployment dep = new DataRequestDeployment();

5 DataRequestService.DeployContractAndWaitForReceiptAsync(web3, dep);

Also, to transfer the amount from the contract to a specific address (like a seller),

the main code responsible is:

1 DataRequestService dServices = new DataRequestService(web3, strContract); //

Contract Address

2 dServices.TransferRequestAndWaitForReceiptAsync(strReceiverAccount, strAmount *
1000000000); //Receiver Address and convert Gwei to Wei

4https://github.com/juanfranblanco/vscode-solidity

