
10.18293/SEKE2017-064

A Knowledge Engineering Process for the

Development of Argumentation Schemes for Risk

Management in Software Projects

Denise da Luz Siqueira
1
, Lisandra M. Fontoura

1
, Rafael H. Bordini

2
, Luis A. L. Silva

1

1
Programa de Pós-Graduação em Ciência da Computação, UFSM. Santa Maria, RS, Brazil

{denise.siqueira, lisandramf, silva.luisalvaro}@gmail.com
2
Programa de Pós-Graduação em Ciência da Computação, PUCRS. Porto Alegre, RS, Brazil

rafael.bordini@pucrs.br

Abstract – The engagement of project stakeholders in

collaborative debates of risk management has an important

contribution to software projects. To promote the identification,

(re)use and critical analysis of stakeholders’ arguments in these

debates, this paper lays out a knowledge engineering process for

the development of “argumentation schemes” for risk

management. This process covers activities of identification,

interpretation and causal-and-effect analysis of typical risk

statements. From such risk management information and reusing

generalized argumentation templates from argumentation

catalogues discussed in the field of Artificial Intelligence, the

process leads to the specification, generalization, validation and

indexing of the developed schemes. As implemented in our

project, a web-based system to support the execution of these

development activities allows the recording of these schemes in a

semi-structured representation format. An argumentation

scheme for risks of non-stable requirements is presented so as to

show the reusable argumentation artifacts that can be produced

when our development process is followed.

Keywords-component: Risk Management; Argumentation

Schemes; Argumentation.

I. INTRODUCTION

Risk management (RM) tasks act on the anticipation and

treatment of risks that have a critical impact to the goals of a

software project. As discussed in the CMMI standard [1], a

more effective management of risks occurs when project

stakeholders are engaged in the discussion of issues regarding

the identification, analysis and response planning of risks. To

support the (re)use of argumentation knowledge in the devel-

opment of collaborative debates of RM, argumentation tech-

niques have been exploited in the research project in which

this work is situated [2-3] and in the solution of problems in

other applications of Artificial Intelligence (AI) [4].

The collaborative debate of risks can be structured and

mediated by argumentation-based communication protocols

[5]. The exploitation of such protocols in a web-based Risk

Discussion System [2-3] allows the capture and reuse of pro-

ject stakeholders’ arguments. The overall idea is to maintain

these arguments in a knowledge repository formed of RM

experiences. In this context, a common problem is that regular

project participants (e.g. clients, managers and software engi-

neers) tend to present risk analysis arguments in which rele-

vant pieces of risk information may not be structured or even

stated explicitly. In such debate situations, information to

explain and justify the risks of a software project may not be

presented and examined critically via users’ arguments. To

approach these issues, the argumentation literature presents

generalized “argumentation scheme” specifications [6] so as to

capture stereotypical patterns of presumptive reasoning. In

contrast with these highly generalized argumentation tem-

plates, domain-specific scheme specifications are also pre-

sented as a form of better supporting debates in selected appli-

cation problems (e.g. [7-8]). Despite the significance of

scheme catalogues for the development of argumentation-

based tasks of knowledge engineering, there are still many

forms of argument to be identified as scheme specifications.

On the assumption that losing any relevant argumentation

knowledge in an application problem degrades the later use-

fulness on what is captured, the present work lays out the main

knowledge engineering activities for the specification of semi-

structured varieties of argumentation schemes for requirement

risks in software projects. As a result of the proposed devel-

opment process, novel schemes were not only presented in [9],

but they were also assessed in collaborative debates in a real-

life software project aiming the design and prototyping of a

virtual tactical simulator (the SIS-ASTROS project).

The remainder of this paper is structured as follows. Sec-

tion II reviews background information about RM and argu-

mentation. Section III presents our scheme development pro-

cess. Section IV discusses related work and Section V reviews

our contribution and identifies future work.

II. RISK MANAGEMENT AND ARGUMENTATION

RM involves the discovery of events that can be a threat to

the success of the software project so that a software develop-

ment organization can plan risk response actions and build

contingency reserves [10]. When analyzing failures in soft-

ware projects, risks can be closely related to the poor man-

agement of requirements [10-12]. In this context, the engineer-

ing of requirements [13] is concerned with the assessment of

clients’ expectations, the evaluation and negotiation of a soft-

ware solution, the validations of software specifications and

the management of client needs as they are transformed into

software specifications. As requirement engineering is an

initial software development task, requirement risks that ended

being materialized in a project are likely to have a significant

impact on the project (product) goals. As reviewed in [14], the

majority of such requirement specifications are described in

natural language or a semi-structured version of it, where just

a small portion relies on formal specification languages.

The analysis of informal arguments relies on the identifica-

tion of argument components. Approaches for argumentation

diagramming [15-16] allow users to organize the components

of an argument not only in terms of premises and conclusion,

but also via detailed elements of the argumentation model due

to Toulmin [17]. The overall idea is to promote users’ critical

thinking and improvement of users’ argumentation skills by

making argumentation elements explicit in semi-formal dia-

grammatic models, as implemented in the Araucaria system

[15], for instance. In AI, argumentation frameworks [4] are

usually investigated via some appropriate version of logic

formalisms of reasoning with arguments. In these settings,

argumentation schemes are developed as part of a standard

knowledge acquisition and representation process (e.g. [18]).

Although not represented as an explicit process model, the

development of such schemes involves the modelling of these

semi-formal or formal argument specifications (or both).

Argumentation schemes are intended to capture presump-

tive patterns of reasoning [6]. The underlying idea is that such

schemes could support the expression of patterns of non-

deductive reasoning, or even fallacies. In our research project,

users' arguments presented in the debate of RM issues are

captured and reused by taking advantage of the structure of

these schemes. In doing so, one exploits an argumentation

scheme as a template for knowledge acquisition in the collabo-

rative RM problem. To help the understanding of the nature of

a scheme, a long-established argument scheme specifying

cause and effect arguments can be presented: Major premise:

Generally, if A occurs, then B will (might) occur. Minor prem-

ise: In this case, A occurs (might occur). Conclusion: There-

fore, in this case, B will (might) occur. The evaluation (or the

validity) of scheme-based arguments presented in collabora-

tive debates is an important argumentation characteristic. In

the representation of argument schemes, this evaluation in-

volves the identification and statement of questions regarded

as critical. As presented in [6], “critical questions” (QCs) for

the argumentation scheme from cause to effect are: How strong

is the causal relation between (X) and (Y)? (If this causal gener-

alization is true at all) Is the mentioned evidence (X) (if there is

any) strong enough to warrant the cause-effect generalization as

stated? Are there other factors (F) that would or will interfere

with the production of the effect (E) in this case? Is (X) the main

(or single) cause for the occurrence of (Y)?

Argumentation scheme specifications for users or systems

to exploit and share scheme repositories are still been investi-

gated. To approach this issue, argumentation mark-up lan-

guages have been proposed in the context of identification and

visualization of argumentation schemes [19-20]. Those pro-

posals are based on semantic web standards, which are often

formalized on the basis of ontology representations. As de-

scribed in [19], the Web Ontology Language (OWL) standard

allows the construction of an ontology for the specification

and annotation of arguments in different degrees of formaliza-

tion, leading to a representation that can be processed by ma-

chines.

III. THE DEVELOPMENT OF ARGUMENTATION SCHEMES FOR

COLLABORATIVE RISK MANAGEMENT

To construct argumentation schemes not only to support the

critical proposition and analysis of requirement risks, but also

to promote the identification and specification of these kinds

of risk-management arguments in a reusable argumentation

template, a knowledge engineering process for scheme devel-

opment should be put forward. Fig. 1 presents the UML activ-

ity diagram laying out our proposal for this process. To illus-

trate these activities, a new domain-oriented argumentation

scheme developed in our project can be used: the “Argumenta-

tion scheme for risks of non-stable requirements”. Such insta-

bility of requirements can be related to a volatile application

domain, where clients either present new requirements in the

course of a project or change requirement specifications made

in the past (or both). In general, external factors of a software

project can lead to new requirements or changes in the re-

quirement specifications. To execute the development activi-

ties, a web-based system was implemented in our project (Fig.

2 - A). The activities of that process are as follows.

 To select risk statements: it aims to compile a list of related

requirement risk statements (here taken as arguments), to be

structured as a reusable task-oriented argumentation scheme

specification. To do so, the input artefacts are information

repositories containing typical risk statements (or risk factors)

[12, 21] in software projects. In addition to risk factors, con-

crete experiences of argumentation-based RM obtained in the

past can be exploited in this activity. Moreover, development

steps can be directed to the consultation with field experts in

RM aiming to identify what risk factors are most subject to

pro and con stakeholders’ arguments. An example of such

typical risk statements refers to arguments related to the

proposition of risks about non-stable requirements. These

kinds of requirement risk statements are the output artefact of

this activity.

To describe risk interpretations: it aims to exploit risk in-

terpretations in the understanding of the selected risk state-

ments. Using these statements as input artefacts, this kind of

risk argument can be augmented with the recording of their

risk interpretations that are worth exploiting in user debates.

The risk of requirements that are not stable, for example, can

be contextualized in terms of constant changes in requirement

specifications in a given software project. For this kind of risk,

for instance, a possible interpretation can be stated as changes

in the business domain while the project is running. Here,

development steps are the consultation of available sources of

risk interpretations, the discussion of such interpretations with

field experts, and the collection of risk interpretation state-

ments. The output artefact of this activity is this list of risk

interpretations along with their selected risk statement.

To analyze risk causes and effects: it aims to assess the

causal factors that may lead to the materialization of the risk in

a software project. To do so, a cause-and-effect diagram called

Ishikawa diagram [22] can be used as illustrated in Fig. 2 (A).

This diagram contributes to the understanding of the risk na-

ture, and the consequent representation of a scheme that cap-

tures such kind of problem. The input artefacts here are the

constructed list of risk interpretations along with their selected

risk statements. In this cause-and-effect analysis, risk interpre-

tations can be taken as risk causes in the Ishikawa diagram.

Interpretations can also be analyzed according to different

software development contexts such as project, client and

business, for instance. Here, development steps are the consid-

eration of the identified risk as an effect in this diagram, the

identification of causal factors related to the materialization of

this risk, and the representation of these pieces of information

in the cause-and-effect diagram modelling and refinement.

The cause-and-effect diagram constructed is the output arte-

fact of this activity.

To reuse existing argumentation schemes: it aims to iden-

tify reusable templates in scheme catalogues in the construc-

tion of a task-oriented scheme specification. In our project, the

generalized formulation of the “argumentation scheme from

cause to effect” [6] was used in the specification of the cause-

and-effect kinds of requirement risk arguments. Although our

schemes were motivated by this cause-and-effect template,

other requirement risk schemes may also be constructed from

other generalized argumentation patterns. For example, risk

assessment argumentation schemes could be specified to sup-

port the analysis of key stakeholders’ claims as such argu-

ments are understood via the “argumentation scheme from

expert opinion” [6]. Here, development steps are the selection

of argumentation scheme catalogues and consequent assess-

ment of schemes available in them. In effect, this activity aims

to find out generalized argumentation schemes, where their

premises, conclusion and CQs are adjusted to reflect the de-

bate needs of RM tasks. Here, the output artefacts are the

formulations of generalized schemes to be reused in the speci-

fication of new argumentation templates for RM.

To represent scheme premises, conclusion and critical

questions: it aims to deal with the concrete specification of the

proposed argumentation scheme for RM. Here, the input arte-

facts are the selected risk statements, the risk interpretations

identified, the results of the cause-and-effect analysis devel-

oped through the Ishikawa diagram and the generalized

scheme specifications to be reused. In practice, scheme prem-

ises can be modelled from the causal risk statements analyzed

in the cause-and-effect diagram. In effect, these premises can

be described so as to capture risk interpretations. The conclu-

sion of the proposed scheme is the very statement of the kind

of risk that is the motivation for the scheme construction.

Moreover, CQs can be formulated according to risk interpreta-

tions and the results of the cause-and-effect analysis. To struc-

ture a set of CQs, a knowledge engineer can exploit the argu-

ment nature of each question, checking if these questions cap-

ture exceptions to the structural rule of the scheme, for in-

stance. In the “Argumentation scheme for risks of non-stable

requirements”, for example, a question asks whether the pro-

jects’ application domain is really volatile, resulting in the

constant changes in the specified requirements. Such questions

show how debate users can attack the nature of the require-

ment risk arguments captured by this scheme, which is the true

instability of the project requirements. In this activity, the

output artefact is the concrete scheme specification, where this

model is the object of additional steps of generalization, revi-

sion and validation.

Figure 1. The process of argumentation-scheme development

To generalize the scheme specification: it aims to adapt the

proposed scheme so that a more reusable task-oriented tem-

plate specification is produced. Despite the general utility of

generalized scheme formulations [6], risk-based schemes

ought to be specified in a language that regular stakeholders

are more likely to cope with, promoting the understanding and

reuse of these templates in collaborative debates. In addition to

the rewriting of the terms and sentences used in the scheme

description, this generalization activity is directed to the iden-

tification of scheme variables. These variables indicate places

where these templates can be instantiated by debate partici-

pants. In debates, this is done when stakeholders use informa-

tion from a current project situation in the construction of their

scheme-based arguments. For instance, the first premise of the

argumentation scheme for risks of non-stable requirements

expresses that if the business domain is volatile, there will

(might) have non-stable requirements. In the context of the

collaborative debate of requirement risks in a particular pro-

ject, this “business domain” term can be instantiated with the

current project application domain. Here, the output artefact is

the task-oriented scheme specification, which is now general-

ized to capture arguments for the RM problem.

To review and validate the scheme specification: it aims to

evaluate the quality of the proposed scheme. To do so, a

checklist is used in the revision and validation of this specifi-

cation, which is the input artefact of this activity. In effect, this

qualitative checklist should be adapted to knowledge engi-

neers’ needs so as to approach the construction of schemes for

supporting the development of selected RM tasks. Items that

are detailed in such checklists assess the underlying under-

standing of the argumentation scheme specification achieved,

as well as the kinds of risk arguments that the scheme intends

to capture. Other aspects can also be reviewed are: if the risk

proposal is stated in an objective way in the scheme conclu-

sion, if the vocabulary used to describe the scheme elements is

usual in the problem scenarios where these schemes ought to

be exploited, if key CQs are listed in the scheme representa-

tion and if the level of detail used in the scheme specification

is appropriate for typical stakeholders. The output artefacts of

this activity are the proposed scheme along with a list of pos-

sible inconsistencies identified in these revision and validation

tasks. Once such a checklist is completed a scheme specifica-

tion can be approved due to the fact that this specification

shows selected characteristics of quality. As modelled in our

project through the exploitation of this development process, a

resulting argumentation scheme for risks of non-stable re-

quirements is specified as:

Argumentation scheme for risks of non-stable requirements

Risk interpretations: changes in the business domain during

the project development; large number of change requests

regarding requirements coming from clients; lack of criteria

for managing requirement changes in the project;

Major premise: If the business domain (D) is volatile, there

will (might) have non-stable requirements (R)

Minor premise: In project (P), the business domain (D) is

volatile

Conclusion: There are non-stable requirements (R)

Critical questions: Is there evidence (X) that the high number

of requests for changes in the requirement specifications is

having a negative effect in project (P)? Are all requests for

change (C) regarding requirement specifications (R) being

accepted? Is the non-stability of requirements (R) due to the

fact that the business domain (D) is changing frequently? To

this scheme, the CQs, as in generalized formulations of argu-

mentation schemes from cause to effect, are: How strong is the

causal relation between the volatility of the business domain

(D) and the instability of the project requirements (R)? Is the

volatility of the business domain (D) the main (or single)

cause for the instability of the project requirements (R)? Is

there evidence (X) that the business domain (D) is volatile?

To the engineering of requirements, debate participants can

question if the requirement engineering techniques are in place

in the project, if there is a proper exploitation of these tech-

niques, if the people involved in the development of require-

ment engineering tasks have the skills to adequately execute

these tasks. The templates for these requirement engineering

related CQs are: Are there requirement (elicitation, analysis,

specification, validation, and management) techniques (T) to

support (X) so that risk (R) is not in the project (P)? Are there

requirement (elicitation, analysis, specification, validation, and

management) techniques (T) being exploited properly by pro-

ject stakeholders (K) so that risk (R) is not in the project (P)?

Are the knowledge and experience of requirement engineers

(E) adequate to do (T) so that risk (R) is not in the project (P)?

In order words, it amounts to ask whether requirement engi-

neers (E) have the right set of skills to develop the requirement

engineering task (T). For instance, these requirement engineer-

ing questions in the context of the argumentation scheme for

risks of non-stable requirements can be stated as: Are there

requirement validation tasks (T) to support the exploitation of

a volatile business domain (D) so that a risk of non-stable

requirements is not in the project (P)? Are there requirement

validation techniques (T) being exploited properly by project

stakeholders (K) so that a risk of non-stable requirements is

not in the project (P)? Are the knowledge and experience of

requirement engineers (A) adequate to exploit a volatile busi-

ness domain (D) so that a risk of non-stable requirements is

not in the project (P)?

To index the scheme: it aims to organize the domain-
oriented argumentation scheme proposed according to an
indexing structure. This indexing consists of linking the
scheme developed in a hierarchy of argument types. This ar-
gument-type concept aims to capture the nature of an argu-
mentation scheme in an application problem, indicating what
the scheme is about. Taking the approved argumentation
scheme specification as input artefact, this specification is
linked to a hierarchical list of argument types in this activity.
For instance, the argumentation scheme for risks of non-stable
requirements is an instance of requirement risks, which can
also be understood as a type of argument for the requirement
risk management. In essence, these indexing steps connect the
new scheme specification to concepts used by users in the
search of reusable schemes in argumentation repositories.
Here, the output artefact is the indexed argumentation scheme.

<owl:Classrdf:ID="RequirementRiskScheme">
<rdfs:subClassOfrdf:resource="#ArgumentScheme"/>
...
<owl:Class rdf:ID=
"ArgumentationSchemeForRisksOfNon-StableRequirements">
<rdfs:subClassOfrdf:resource=
"#RequirementRiskManagementScheme"/>
</owl:Class>
<owl:ObjectProperty rdf:ID=
"supportsArgumentationSchemeForRisksOfNon-
StableRequirements">
<rdfs:domain>
<owl:Class>
<owl:unionOfrdf:parseType="Collection">
<owl:Class rdf:about=
"#ASI1Changes_in_the_business_domain_during_the_project_devel
opment(Pflrrger&Atlee(2009))"/>)"/>
...
<owl:Class
rdf:about="#ASP1If_the_business_domain_(D)_is_volatile,_there_wil
l_(might)_have_non-stable_requirements_(R)"/>
<owl:Class
rdf:about="#ASP2In_the_project_(P),_the_business_domain_(D)_is_
volatile"/>
<owl:Class rdf:about=
"#ASCThere_are_non-stable_requirements_(R)"/>
<owl:Class rdf:about=
"#ASCQ1Is_the_non-stability_of_the_requirements_(R)_due_
to_the_fact_that_the_business_domain_(D)_is_changing_frequently
?"/>
...
</owl:ObjectProperty>
<owl:ObjectPropertyrdf:ID="ArgumentSchemeHasVariables">
<rdfs:domain rdf:resource=
"# ArgumentationSchemeForRisksOfNon-StableRequirements"/>
<rdfs:range>
<owl:Class>
<owl:unionOfrdf:parseType="Collection">
<owl:Classrdf:about="#D_Business_Domain"/>
...

Figure 2. (A) A web-based system to support the execution of the scheme development activities proposed and (B) an excerpt of the argumentation scheme for

risks of non-stable requirements represented in OWL

To include the scheme in a repository: it aims to construct a

reusable argumentation repository, allowing the answer of

queries and consequent reuse of developed argumentation

schemes. The input artefact of this activity is the resulting

scheme along with its indexing concepts. To compute infer-

ences from scheme-based arguments stores in argumentation

repositories, schemes need to be represented in computable

formats of knowledge representation. As developed in our

project, risk-related schemes are represented in the OWL for-

mat [23]. In this semi-structured model, scheme specifications

can be queried by users and their computation tools. Fig. 2 (B)

shows how the argumentation scheme for risks of non-stable

requirements is represented in OWL. There, a class model is

used in the capture of scheme interpretations, premises, con-

clusion and CQs. Scheme variables are also captured as

classes, and relationships between scheme concepts are repre-

sented using class properties in this OWL model. In this final

activity, the output artefact is the scheme developed which is

represented in a semi-structured computational format.

IV. DISCUSSION

The definition of software development processes [24] al-

low stakeholders to standardize activities to be followed, the

communication language to be used, and the techniques to be

explored so that software development goals are achieved. To

capture best practices, process models should not be immuta-

ble, since they need to evolve constantly to better support

users in the solution of different problems. However, such

improvements are possible provided that activities and arte-

facts that form these process structures are identified, allowing

software engineers to evaluate and improve them continually.

In this paper, we clearly identify a knowledge engineering

process for the development of argumentation schemes for

RM in software projects. Along with the discussion of each

development activity identified there, the usefulness of this

process is illustrated with the presentation of an argumentation

scheme for risks of non-stable requirements (in addition to

schemes presented in [9]), showing the reusable argumentation

artefacts that can be obtained when this development process

is followed.

Most of the knowledge engineering work related to infor-

mal argumentation is focused on individual argument elements

and their component parts that are identified in textual descrip-

tions. This is usually developed through text-oriented annota-

tion and diagramming resources adjusted to the analysis of

argumentation concepts as implemented by the Araucaria

system [15]. In this setting, generalized specifications of ar-

gumentation schemes [6] are also explored by users in the

investigation of argumentation instances. As part of the devel-

opment of critical argumentation skills, users are asked to

recognize that an argument highlighted in such texts can be

characterized by a given scheme. Although this line of argu-

mentation work is relevant to the development activities pro-

posed in this paper, these techniques are not directed or even

organized as a knowledge engineering process for the specifi-

cation of new instances of domain-specific argumentation

schemes. Our process also considers the challenging linguistic

and semantic analysis of large amount of textual information

in specific domains, as shown by schemes for computer sys-

tem safety engineering [7] and biological domains [8].

V. CONCLUDING REMARKS

Collaboration among project stakeholders in the engineer-

ing of requirements is crucial to achieve effective RM. The

problem is that there is a significant gap between the informa-

tion that is available in textual descriptions of RM users’ ar-

guments and the modelling and refinement steps resulting in

generalized formulations of argumentation schemes.

In this paper, we approach the collection and structuring of

well-formed stakeholders’ arguments in collaborative debates

of RM. In this context, this work contributes to the issue of

laying out reusable argument templates to support these users

in the construction of deeper analyzes of risks in their projects.

In doing so, we detail a knowledge engineering process for the

development of argumentation schemes for RM. We also

describe a web-based system for supporting users on the de-

velopment of the proposed scheme specification activities,

aiming to facilitate the explicit representation of schemes in

OWL. Preliminary evidence for the overall validity of this

knowledge engineering process is demonstrated by a reusable

set of argumentation schemes for the analysis of requirement

risks in software projects as shown in [9].

Future work will involve attempting to exploit semi-

structured approaches (e.g. OWL based) during the develop-

ment scheme activities, rather than relying on informal scheme

representations. We also plan to specify new scheme instances

to be explored by project stakeholders in collaborative debates

in different software project application domains. It amounts

to involve both knowledge engineers and risk management

experts to further experiment the proposed knowledge engi-

neering process for the specification of schemes.

ACKNOWLEDGMENT

We thank the Brazilian Army for the financial support

through the SIS-ASTROS Project (813782/2014), developed

in the context of the PEE-ASTROS 2020.

REFERENCES

[1] SEI, "CMMI® for Development, Version 1.3." p. 482.

[2] F. Severo, L. M. Fontoura, and L. A. L. Silva, “A Dialogue Game

Approach to Collaborative Risk Management ” in The 25th Int. Conf.
on Software Engineering and Knowledge Engineering, Boston, MA,

2013, pp. 548-551.

[3] R. C. B. Pozzebon et al., “Argumentation Schemes for the Reuse of
Argumentation Information in Collaborative Risk Management,” in

Proc. of the 15th IEEE Int. Conf. on Information Reuse and Integration,

Redwood City, CA, 2014, pp. 179-186.
[4] C. Chesñevar, A. Maguitman, and R. P. Loui, “Logical Models of

Argument,” ACM Computing Surveys, vol. 32, no. 4, pp. 337-383,

2000.
[5] P. Mcburney, and S. Parsons, “Dialogue Games for Agent

Argumentation,” in Argumentation in Artificial Intelligence, Boston,

MA, 2009, pp. 261-280.

[6] D. Walton, C. Reed, and F. Macagno, Argumentation Schemes:

Cambridge University Press, 2008.

[7] T. Yuan, and T. Kelly, “Argument Schemes in Computer System
Safety Engineering,” Informal Logic, vol. 31, no. 2, pp. 89-109, 2011.

[8] N. L. Green, “Identifying Argumentation Schemes in Genetics

Research Articles,” in Proc. of the 2nd Workshop on Argumentation
Mining, Denver, Colorado, 2015, pp. 12–21.

[9] D. L. Siqueira et al., “Argumentation Schemes for the Collaborative
Debate of Requirement Risks in Software Projects,” To Appear at The

29th Int. Conf. on Software Engineering & Knowledge Engineering

(SEKE 2017), Pittsburgh, USA, 2017.
[10] PMI, “PMBOK Guide: A guide to the Project Management Body of

Knowledge,” 2013.

[11] K. Fenech, and C. De Raffaele, “Overcoming ICT Project Failures – a
Practical Perspective,” in World Congress on Computer and

Information Technology (WCCIT), Sousse, Tunisia, 2013, pp. 1-6.

[12] M. Warkentin et al., “Analysis of Systems Development Project Risks:
An Integrative Framework,” ACM SIGMIS Database: the DATABASE

for Advances in Information Systems, vol. 40, no. 2, pp. 8-27, 2009.

[13] K. E. Wiegers, and J. Beatty, Software Requirements, 3ª ed.: Microsoft
Press, 2013.

[14] E. Bagheri, and F. Ensan, “Consolidating Multiple Requirement

Specifications through Argumentation,” in ACM Symposium on
Applied Computing (SAC '11), TaiChung, Taiwan, 2011, pp. 659-666.

[15] C. Reed, and G. Rowe, “Araucaria: Software for Argument Analysis,

Diagramming and Representation,” Int. Journal on Artificial
Intelligence Tools, vol. 13, pp. 961-979, 2004.

[16] C. Reed, D. Walton, and F. Macagno, “Argument Diagramming in

Logic, Law and Artificial Intelligence,” The Knowledge Engineering
Review, vol. 22, no. 1, pp. 87-109, 2007.

[17] S. E. Toulmin, The Uses of Argument (Updated edition 2003),

Cambridge: Cambridge University Press, 1958.
[18] A. T. G. Schreiber et al., Knowledge Engineering and Management -

The CommonKADS Methodology, Cambridge: The MIT Press, 2000.

[19] I. Rahwan et al., “Representing and Classifying Arguments on the
Semantic Web,” The Knowledge Engineering Review, vol. 26, pp. 487-

511, 2011.

[20] I. Rahwan, F. Zablith, and C. Reed, “Laying the foundations for a
World Wide Argument Web,” Artificial Intelligence, vol. 171, no. 10-

15, pp. 897-921, 2007.

[21] B. Lawrence, K. Wiegers, and C. Ebert, “The top risk of requirements
engineering,” Software, IEEE, vol. 18, pp. 62-63, 2001.

[22] K. Ishikawa, Introduction to Quality Control: Springer, 1989.

[23] M. K. Smith, C. Welty, and D. McGuinness. "OWL Web Ontology

Language Guide," https://www.w3.org/TR/owl-guide/.
[24] M. Hull et al., “Software development processes — an assessment,”

Information and Software Technology, vol. 44, no. 1, pp. 1-12, 2002.

http://www.w3.org/TR/owl-guide/

