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ABSTRACT

In this work we report an analytical representation for the solution of the radiative-conductive SN equation
in a plane-parallel atmosphere in a heterogeneous domain considering an arbitrary continuous functions
for the albedo. The basic idea consists in the application of the decomposition procedure to the non-linear
radiative-conductive SN problem that are easily solved by the well know LTSN method. The length of
the recursive system is properly chose in order to get a prescribed accuracy for the results. We also
present numerical simulations for the results.

1. INTRODUCTION

A great variety of solutions is found in literature for the radiative transfer problem in
plane parallel atmosphere either for constant albedo, as well as, for polynomial and ex-
ponential albedo function. For illustration see the works [1, 5, 6, 8, 11, 18]. However
for nonlinear radiative-conductive transfer problem the literature is restricted to constant
albedo [14, 16, 17, 19]. In this work we step forward reporting an analytical representa-
tion of the solution for the radiative-conductive transfer problem considering albedo as
continuous function. To reach this goal following the idea of the Decomposition method,
we construct a recursive system of radiative-conductive transfer equation with constant
albedo, considering the contribution of spatial dependence of the albedo as source. The
size of the recursive system is selected in order to get a prescribed accuracy for the re-
sults. It is worthwhile to mention that the first equation satisfies the original boundary
conditions meanwhile the remaining ones satisfy the null boundary conditions. We must
emphasize that the solution of all equations of the recursive system are known. From the



numerical simulations performed we notice the instability of the results for this sort of
problems for small values of the Nc parameter. The explanation for this behavior comes
from the considered double precision for the arithmetic length chord. Therefore in this
work all simulations are done for the ensuing values of the Nc parameter: 0.1 and 0.5. In
addition we must recall that the mathematical analysis of existence and uniqueness of the
solution for the problem discussed is found in the works [3, 4]. Without loosing general-
ity, we specialize the application of the aforementioned solution to the polynomial albedo
functions. Finally we report numerical simulations and comparisons against literature
results.

2. THE RADIATIVE-CONDUCTIVE SOLUTION

In order to construct an analytical solution for the radiative-conductive problem in an
inhomogeneous emitting, absorbing and grey plane-parallel slab of optical thickness dis-
cussed, let us consider the SN problem:

∂

∂τ
In(τ) +

1

µn
In(τ)− ω(τ)

2µn

L∑
l=0

βlPl(µn)
N∑
k=1

Pl(µk)Ik(τ)wk =
(1− ω(τ))

µn
Θ4(τ), (1)

for n = 1 : N and subject to the reflecting and emitting boundary condition

In(0) = ε1Θ
4
1 + ρs1IN−n+1(0) + 2ρd1

N/2∑
k=1

wkµkIn−k+1(0), (1a)

IN−n+1(L) = ε2Θ
4
2 + ρs2In(L) + 2ρd2

N/2∑
k=1

wkµkIk(L), (1b)

for n = 1 : N/2. Here, µn are the discrete directions in a decreasing order, In(τ) =
I(τ, µn), τ ∈ [0, τ0] is the optical depth, ω(τ) is the scattering albedo, βl are the expansion
coefficients of the phase function, Pl are the Legendre polynomials, L the highest order of
polynomials and Θ is the dimensionless temperature. In the boundary conditions, ρsi and
ρdi for i = 1, 2, are respectively the specular and diffuse reflections with are related to the
emissivity by 1 = εi + ρsi + ρdi , and wk are the Gaussian weights for the approximation of
the integral term using a discrete set of directions µk, k = 1 : N .

The dimensionless radiative flux is given by its relation to the intensity

q∗r = 2π
∫ 1

−1
I(τ, µ)µ dµ ≈ 2π

N∑
k=1

Ikµkwk, (2)

and the energy equation for the temperature reads as
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d2

dτ 2
Θ(τ) =

1

4πNc

d

dτ
q∗r(τ), (3)

subject to prescribed temperatures at the boundary

Θ(0) = Θ1 and Θ(τ0) = Θ2. (4)

Here Nc is called the conduction-to-radiation parameter [12], defined by

Nc =
kβext

4σn2T 3
r

, (5)

where k, βext, σ, n and Tr are respectively the thermal conductivity, the extinction coef-
ficient, the Stefan-Boltzmann constant, the refractive index and a reference temperature.
The solution (3) is given analytically by:

Θ(τ) = Θ1 + (Θ2 −Θ1)
τ

τ0
− 1

4πNc

τ

τ0

∫ τ0

0
qr∗(τ ′)dτ ′ +

1

4πNc

∫ τ

0
qr∗(τ ′)dτ ′. (6)

Now, we recall that the equation (1) relates the intensity of radiation to temperature, that
equation (3) shows the connection between temperature and radiative flux and finally that
equation (2) associates the flux with the intensity of radiation. These facts allow us to
convert the problem into a form that depends only on the directional intensity In(τ).

in order to apply the decomposition method to problem (1), we split the albedo function
as ω(τ) = ω̄ + ω0(τ), where ω̄ is the average albedo function [18] and we expand the
non-linear source term into a series of Adomian polynomials [2] as,

Θ4(τ) =
∞∑
m=0

Âm(τ). (7)

Upon inserting this ansatz in equation (1) yields a first order matrix differential equation:

d

dτ
I(τ)−A I(τ) = S(τ) + (1− ω(τ))

∞∑
m=0

Âm(τ)M. (8)

Here, I(τ) = col[I1(τ) I2(τ)] is the intensity radiation vector, where the subvectors
I1(τ) and I2(τ) are the intensity radiation for the positive (0 < µ < 1) and negative
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(−1 < µ < 0) directions, respectively, and of order N/2 each. Further, M and S(τ) are
vectors of order N , whose the nth entries are defined as mn = 1

µn
and

sn(τ) =
ω0(τ)

2µn

L∑
l=0

βlPl(µn)
N∑
k=1

Pl(µk)Ik(τ)wk. (9)

Finally, the components of matrix A have the form:

aij = − 1

µi
δij +

$

2µi

L∑
l=0

βlPl(µi)Pl(µj)wk, δi,j =

{
1 if i = j
0 if i 6= j

. (10)

where δij is the Kronecker symbol (δij = 1 for i = j and 0 otherwise). The radiation
intensity can formally be written as

I(τ) =
∞∑
m=0

Im(τ), (11)

with upon decomposition substitution in equation (8) results

∞∑
m=0

(
d

dτ
Im(τ)−A Im(τ)

)
=

∞∑
m=0

(
Sm−1(τ) + (1− ω(τ))Âm−1(τ)M

)
. (12)

The solution of this equation is undetermined because we have one equation with many
unknowns vector functions Im−1(τ). Therefore the solution is not unique. In this work
we solve this problem choosing the following recursive system of equations:

d
dτ

I0(τ)−AI0(τ) = 0,

d
dτ

Im(τ)−AIm = Sm−1(τ) + (1− ω(τ))Âm−1(τ)M, m = 1, 2...M,
(13)

which is then solved by the LTSN method [15, 7, 13] for any arbitrary but finite m ≤M.
Here M is a truncation of the series which is chosen to get a prescribed accuracy. The
motivation for this choice comes from the fact that all equations in the recursive system
have know analytical representation for the solution. Furthermore, we consider that initial
equation (m = 0) satisfies the boundary condition given by equations (1a,1b) meanwhile
the remaining equations the homogeneous boundary conditions.

The LTSN solution of the homogeneous equation of the recursive system (13) is given by

I0(τ) = XED(τ)V0, (14)
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where D and X are respectively the eigenvalues and eigenvectors matrices resulting from
the spectral decomposition of A matrix. The ED(τ) matrix is defined as:

ED(τ) =

{
ediiτ if dii < 0
edii(τ−τ0) if dii > 0

, (15)

where dii are entries of the eigenvalue matrix D. Further, the general solution for the
remaining problems of the recursive system are given as

Im(τ) = XED(τ)Vm + XeDτX−1 ∗ (Sm−1(τ) + (1− ω(τ))Âm−1(τ)M), (16)

where eDτ is the exponential matrix function, the star ∗ denotes the convolution operator
and the vectors Vm are determined from boundary conditions for each problem. We must
note that the boundary conditions of the original problem is absorbed by the recursive
system in the first recursion, whereas the remaining problems satisfy the homogeneous
boundary conditions.

The role of the Adomian polynomials is the approximation of the non-linear term in eq.
(1), i.e. the dimensionless non-linear temperature term Θ4. Using a finite functional
expansion in Tm(τ) for the dimensionless temperature, Θ =

∑M
m=0 Tm(τ). For simplicity,

we must emphasize that the polynomials Âm(τ) are determined by a simple recursive
formula developed by Segatto et al [14] as follow

Âm = TmSmRm, (17)

where Sm and Rm are determined by the formulas

Sm = Sm−1 + Tm + Tm−1,
Rm = Rm−1 + Sm−1Tm−1 + SmTm,

(18)

with S0 = T0 and R0 = T 2
0 and

T0( τ ) = θ1 + (θ2 − θ1)
τ

τ0
− 1

2Nc

τ

τ0

N∑
k=1

µkwk

∫ τ0

0
I0k(τ ′)dτ ′ +

1

2Nc

N∑
k=1

µkwk

∫ τ

0
I0k(τ ′)dτ ′ (19a)

Tm+1(τ) = − 1

2Nc

τ

τ0

N∑
k=1

µkwk

∫ τ0

0
Imk (τ ′)dτ ′ +

1

2Nc

N∑
k=1

µkwk

∫ τ

0
Imk (τ ′)dτ ′. (19b)

Here m = 0, 1, ...,M. Note that equations (19) establish the Adomian polynomial in
terms of the temperature at the boundaries and the expansion terms of the intensity,
with in principle could be determined until infinity.
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3. NUMERICAL RESULTS

Aiming to show the aptness of the proposed method to solve the coupled conductive-
radiative heat transfer problems in a slab with space-dependent albedo coefficient, in the
sequel we report numerical results for the following problems:

Table 1: Parameters used in the tables and figures.

ε1 ε2 ρs1 ρs2 ρd1 ρd2 θ1 θ2 τ0 L

1 1 0 0 0 0 1 0 1 0

Where, εi = 1, i = 1, 2 are emissivities, ρsi = ρdi = 0, i = 1, 2 are the coefficients for
specular and diffuse reflections respectively, θi, i = 1, 2 the dimensionless temperature
and τ0 maximum optical depth.

Initially, we solve the radiative-conductive transfer problem in planar geometry with the
parameters depicted in Table 1.

Due the lack of results in literature for this sort of problem, we focus our attention in
analysis of validation of the results for a linear polynomial albedo. To reach this goal this
problem is solved for a set of values for the coefficient of the linear polynomial term going
to zero, namely a = 0.1, 0.01, 0.001, 0.0001. The results for the albedo ω = aτ + 0.8 is
shown in Table 2. We compare the results attained against the ones for constant albedo.
Given a closer look to Table 2, we promptly realize a good coincidence of five significant
digits between the linear polynomial and constant for a specific value of a = 0.0001.
By this procedure we are confident to affirm that we have shown that the solution for
polynomial albedo considered goes to the value of the constant albedo when the coefficient,
a, goes from 0.1 to 0.0001.

Table 2: Solution of the recursive system for the radiation intensity in τ = 0.5
and Nc = 0.5 and albedo functions.

µ ω = 0.8 ω(τ) = 0.0001τ + 0.8 ω(τ) = 0.001τ + 0.8 ω(τ) = 0.01τ + 0.8 ω(τ) = 0.1τ + 0.8

-1 0.098129 0.098143 0.098271 0.099560 0.113403

-0,5 0.162339 0.162362 0.162567 0.164637 0.186860

-0.001 0.340748 0.340780 0.341069 0.343976 0.375037

0.001 0.341749 0.341781 0.342069 0.344967 0.375927

0,5 0.676022 0.676034 0.676142 0.677227 0.688865

1 0.804963 0.804970 0.805033 0.805665 0.812446

Next we solve the coupled conductive-radiative heat transfer problem in planner geometry
with the purpose to determine the size of the recursive system, we mean the number of
equations solved (M), in order to get a prescribed accuracy, ε = 10−6. For such, we solve
the same conductive-radiative heat transfer problem but now for second order polynomial
albedo coefficient, as well, Nc = 0.5. In Table 3, we present the results achieved.
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Table 3: Recursive system solution for the radiation intensity at τ = 0.5
considering ω(τ) = 1− 1.4τ − 0.6τ 2 and NC = 0.1 from M varying from 1 to 14.

µ D1LTS100 D2LTS100 D3LTS100 D4LTS100 D5LTS100 D6LTS100 D7LTS100

-1 0,048076 0,036649 0,040911 0,039506 0,039943 0,039809 0,039850

-0,5 0,083462 0,063950 0,071163 0,068798 0,069533 0,069307 0,069376

-0.001 0,275484 0,217999 0,236537 0,230849 0,232579 0,232053 0,232213

0.001 0,277566 0,219739 0,238334 0,232634 0,234367 0,233840 0,234000

0,5 0,663267 0,639634 0,647841 0,645664 0,646334 0,646134 0,646195

1 0,796315 0,783779 0,788512 0,787295 0,787673 0,787560 0,787594

µ D8LTS100 D9LTS100 D10LTS100 D11LTS100 D12LTS100 D13LTS100 D14LTS100

-1 0,039837 0,039841 0,039840 0,039840 0,039840 0,039840 0,039840

-0,5 0,069355 0,069361 0,069359 0,069360 0,069360 0,069360 0,069360

-0.001 0,232164 0,232179 0,232175 0,232176 0,232176 0,232176 0,232176

0.001 0,233951 0,233966 0,233962 0,233963 0,233963 0,233963 0,233963

0,5 0,646176 0,646182 0,646180 0,646181 0,646180 0,646180 0,646180

1 0,787584 0,787587 0,787586 0,787587 0,787586 0,787586 0,787586

We readily realize from the table above that the results encountered by the method
D13LTS100 possess an accuracy of 10−6. This affirmative is supported by the coincidence
of six significant digits between D13LTS100 and D14LTS100 results. Furthermore, after the
previous analysis we also show numerical simulations in Tables 4 and 5 for the normalized
conductive, radiative and total heat flux using Equations (20).

Qr(τ) = 1
4πNc

q∗r Qc(τ) = − d
dτ
θ(τ) Q(τ) = Qr(τ) +Qc(τ). (20)

Table 4: Numerical results D13LTS100 with ω(τ) = 0.95− 0.9τ and Nc = 0.1
using data of the table 1.

τ θ Qc Qr Q

0 1.000000 0.762977 1.705941 2.468918

0.25 0.813569 0.744530 1.724388 2.468918

0.5 0.612543 0.898406 1.570512 2.468918

0.75 0.349824 1.221526 1.247392 2.468918

1 0.000000 1.568781 0.900137 2.468918
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(a) Temperatura (b) Fluxos condutivo, radiativo e total

Figure 1: Graph of the Conductive flows, radiative and total for D13LTS100

with ω(τ) = 0.95− 0.9τ and Nc = 0.1 using data of the table 1.

Table 5: Numerical results for D13LTS100 with ω(τ) = 0.4− 0.2τ + 0.6τ 2 and
Nc = 0.5 using data of the table 1.

τ θ Qc Qr Q

0 1.000000 0.944760 0.340896 1.285656

0.25 0.767899 0.933951 0.351705 1.285656

0.5 0.526992 0.997648 0.288008 1.285656

0.75 0.269399 1.059131 0.226525 1.285656

1 0.000000 1.090690 0.194966 1.285656

(a) Temperatura (b) Fluxos condutivo, radiativo e total

Figure 2: Graph of the Conductive flows, radiative and total for D13LTS100

com ω(τ) = 0.4− 0.2τ + 0.6τ 2 e Nc = 0.5 using data of the table 1.
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4. CONCLUSIONS

In this work we present a genuine hierarchical analytical representation for the solution of
the radiative-conductive transfer equation with arbitrary albedo continuous function once
the albedo function satisfies the required conditions for existence. By hierarchical we mean
that the solution of the nonlinear radiative-conductive transfer problem is determined from
the knowledge of the solution of the linear radiative transfer problem. Furthermore, by
analytical we mean that no approximation is done along the solution derivation except
for the choice of the length of the recursive system. We must underline that the accuracy
of the results obtained is determined by a suitable choice of the length of the recursive
system, that means, the number of equations of recursive system solved. To complete the
mathematical analysis of the proposed solution two open questions must be answered. To
reach this goal, following the idea of the Lyapunov theory for the analysis of convergence
we shall show an heuristic analysis of convergence for the solution of the recursive system
of the considered problem. On the other hand, following the idea of the decomposition
procedure discussed in the work of Ladeia et al [9, 10], we also will construct a stable
solution of the radiative-conductive SN problem solved for all values for the Nc parameters.
We focus our future attention in this direction.
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