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Abstract. Gravity-driven riverine outflows are responsible for carrying sediments to the coastal waters, these flows
generates some instabilities in the transport of river fresh water into the salty water like the Kelvin-Helmholtz, Holmboe,
and settling-driven convection. Results from temporal linear stability analysis of a two layer stratified flow are presented,
investigating the behavior of settling particles on the development of streamwise instabilities. The presence of settling
particles have basically two effects in the flow: a variation in the Kelvin-Helmholtz mode, and the presence of a settling-
driven mode. The settling-driven mode is characterized by a wavelength greater than the Kelvin-Helmholtz mode and can
be the most amplified mode for some combination of parameters.

Keywords: Linear stability analysis, modal stability, particle-laden flows

1. INTRODUCTION

Riverine outflows carry more than one-third of land-based precipitation to the oceans. The impact of the terrigenous
material transported by these flows into the coastal waters depends on physical processes and transforms the river fresh
water as it merges with salty water (Horner-Devine et al., 2015). This transformation process involves stratified-shear
mixing caused by instabilities such as Kelvin-Helmholtz (KH), Holmboe (H) and settling-driven convection (Hoyal
et al., 1999). These particle-laden flows are usually classified as hypopycnal plumes, resulting in a current along the top
of the ocean, or hyperpycnal plumes, generating in a current that follows the bottom of the ocean known also as turbidity
currents (Parsons et al., 2001) and are, often, modelled as stratified shear layers (Khavasi et al., 2014).

Most hydrodynamic stability studies in stratified shear layers do not consider the influence of settling particles in
suspension. Betchov and Szewczyk (1963) performed a numerical study in the homogeneous shear-layer configuration
and found that the Reynolds number, above some critical value, has no influence on the development of the KH instability
allowing the inviscid fluid hypothesis in most of the linear stability works. Hazel (1972) conducted studies in stratified
shear flows using the inviscid flow hypothesis and found critical values of Richardson number where the flow is stable
and that the H instability can develop in any shear flow configuration as function of the ratio (R), defined as the relation
between the shear layer thickness δu and the density layer thickness δρ.

When the settling particles in suspension are considered, Khavasi et al. (2014) investigated the effect of bottom slope,
viscosity and particle size in a particle-laden shear layer, where is characterized as a constant value of settling velocity
modeled by the Stokes law (Julien, 1998). Among other results, the authors showed that the settling particles does not
change the stability characteristics for dimensionless values of particle settling velocity smaller than 10−2. For values
greater than 10−2, there is some changes in the instabilities that were not characterized. Based on this, the present study
focuses in perform a linear stability analysis in a particle-laden flow where the main objective is the characterization of
streamwise instabilities caused by settling particles. The possibility of spanwise instabilities is not considered in present
study.

This paper is organized as follows: at section 2 the flow configuration studied is presented; at 3 the governing equations
are derived from the continuity, momentum and scalar transport equations; at 4 the numerical methods used to solve the
governing equations are described; at 5 the developed computational code is validated; at 6 the results are presented; and
lastly, at 7 contains the summary of results and the concluding remarks.

2. FLOW CONFIGURATION

We consider the stability of an unbounded fluid in a vertically stratified velocity and density profiles as sketched in
Fig. 1. In this figure, the profile on the left side represents the streamwise velocity with minimum value umin, maximum
value umax and shear layer thickness δu. The others velocities components are nulls. The profiles on the right side are
the total density (solid line), the density added by sediment concentration (dash-dotted line) and the density added by
salinity concentration (dashed line) where ρ0 is the density of clear fluid (this means a fluid without sediment and salinity
concentrations) and δℓ (with ℓ = 1 and 2) are layers thickness associated to the density added by sediment and salinity
concentrations respectively.
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Figure 1. Flow configuration sketch. On the left side, the velocity distribution in the stream-wise direction. On the right
side, the density distribution.

The total density is assumed to be a linear function of sediment concentration φ1 and salinity concentration φ2:

ρ = ρ0

(
1 +

2∑
ℓ=1

γℓφℓ

)
, (1)

where γℓ are the expansion coefficient. In this formulation, it is possible to observe that the values ρmax
ℓ in Fig. 1 are

defined by ρ0γℓφ
max
ℓ .

We define a basic state of dimensionless velocity, sediment and salinity concentrations as follows:

ū1(x2) = a+ tanh (x2) , (2)

φ̄1(x2) = 1 + tanh (R1x2) , (3)

and

φ̄2(x2) = 1− tanh (R2x2) , (4)

where a is the a constant mean advection and Rℓ = δu/δℓ is the ratio velocity shear layer thickness δu to a concentration
thickness δℓ. The profiles are made dimensionless by the use of the scales

U =
∆u

2
, L =

δu
2
, and Φℓ =

φmax
ℓ

2
(5)

with ∆u = umax − umin. The choice of hyperbolic tangent for all basic state quantities is justified by a more direct
comparison with previous studies results.

3. GOVERNING EQUATIONS

The study of small perturbations growing in the previously described flow configuration, via linear stability theory,
requires linearised equations with explicit perturbation fields of flow quantities. These equations are obtained from the
continuity, momentum and scalar transport equations by decomposing the flows quantities qj in a steady part q̄j (usually
called as basic state or base flow) and in an unsteady part q′j

qj(xk, t) = q̄j(xk) + εq′j(xk, t), (6)

subtracting the equations for the steady flow and dropping the terms with ε2 (Juniper et al., 2014). In Eq. (6), ε is a small
valued constant. The resulting system of linearised equations from this proceeding, in its dimensionless form, is

∂u′
j

∂xj
= 0, (7)

∂u′
j

∂t
+ u′

k

∂ūj

∂xk
+ ūk

∂u′
j

∂xk
=

1

Re

∂2u′
j

∂xk∂xk
− ∂p′

∂xj
+Ri2

(
1

Rρ
φ′
1 + φ′

2

)
egj , (8)
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∂φ′
1

∂t
+ u′

j

∂φ̄1

∂xj
+
(
ūj + use

g
j

) ∂φ′
1

∂xj
=

1

ReSc1

∂2φ′
1

∂xj∂xj
(9)

and

∂φ′
2

∂t
+ u′

j

∂φ̄2

∂xj
+ ūj

∂φ′
2

∂xj
=

1

ReSc2

∂2φ′
2

∂xj∂xj
, (10)

where uj is the fluid velocity, p the pressure, φℓ a scalar concentration, xk is the space coordinate, t is the time and egj the
unity vector in gravity direction, which in this case, is the −x2 direction (Fig. 1). The dimensionless parameters are the
Reynolds number (Re), salinity Richardson number (Ri2), density ratio (Rρ), Schmidt number (Scℓ) and settling velocity
of the particles (us). These dimensionless parameters are defined by:

• Re =
∆uδu
4ν

; (11)

• Ri2 =
gγ2δuφ

max
2

∆u2
; (12)

• Rρ =
γ2φ

max
2

γ1φmax
1

; (13)

• Scℓ =
ν

κℓ
; (14)

• us =
2ũs

∆u
. (15)

The base flow is function of coordinate x2 and, based on this, we may search a solution for the system of equation Eq.
(7-10) using a perturbation in form of

q′j(xk, t) = q̂j(x2)e
i(αx1−σt), (16)

where q̂j is a amplitude function of a flow variable, α the streamwise wavenumber and σ is a complex number which its
real part is the angular frequency and its imaginary part is the growth rate. This formulation of perturbation characterizes
a temporal framework because α is a real numbers and σ is a complex number.

Substituting the Eq. (16) in Eqs. (7-10), results in a eigenvalue problem where σ represents eigenvalues and the
amplitude function of all flow variables are eigenvectors. With the objective of eliminate the pressure from the system
of equations and reduce the size of the eigenvalue problem, one may use a formulation based on the vertical velocity
component (u2) described in the work of Schmid and Brandt (2014). This result in a generalized eigenvalue problem
defined by:

i(αū1 − σ)Mû2 = −iα
d2ū1

dx2
2

û2 +
1

Re
M2û2 −Ri2 α

2

(
1

Rρ
φ̂1 + φ̂2

)
, (17)

i(αū1 − σ)φ̂1 +
dφ̄1

dx2
û2 − us

dφ̂1

dx2
=

1

ReSc1
Mφ̂1 (18)

and

i(αū1 − σ)φ̂2 +
dφ̄2

dx2
û2 =

1

ReSc2
Mφ̂2, (19)

where M is the laplacian operator

M =
d2

dx2
2

− α2 (20)

Considering a sufficiently large domain to avoid boundary perturbations, results in a Dirichlet boundary conditions for
all amplitude functions in form of

q̂j(x
min
2 ) = q̂j(x

max
2 ) = 0. (21)
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4. NUMERICAL METHODS

To solve the generalized eigenvalue problem described by Eqs. (17-19) is necessary to discretize the spatial deriva-
tives, transform the resulting grid and solve a discrete eigenvalue problem. Is chosen to do the spatial discretization the
Chebyshev approximation (Canuto et al., 1988) based in the Chebyshev-Gauss-Lobato (CGL) collocation

ŷj = cos

(
πj

N

)
, j = 0, 1, . . . , N. (22)

This differentiation method was implemented in a Julia code by adapting a Differentiation Matrix Suite routines
developed by Weideman and Reddy (2000) in Matlab language.

As the CGL collocation corresponds to an orthogonal domain (from −1 to 1), it is necessary to transform the resulting
grid into the physical coordinates. This can be done by the mapping function described by Berrut and Mittelmann (2004),
it has the form

x2 =
m

θ
tan [atan (θ) ŷ] , (23)

where x2 is the coordinate on the real domain, ŷ is the CGL points, θ is the point density in a position, which in this case
is y = 0, and m is the number of characteristics lengths necessary to truncate the domain. The parameter m must be
sufficient large to not interfere in the instability development.

The differentiation matrix has also to be transformed to new coordinates by using the chain rule:

D = D̂ dŷ

dx2
, (24)

D2 = D̂2

(
dŷ

dx2

)2

+ D̂ d2ŷ

dx2
2

(25)

and

D4 = D̂4

(
dŷ

dx2

)4

+ D̂3

(
6
d2ŷ

dx2
2

dŷ

dx2

)
+ D̂2

[
3

(
d2ŷ

dx2
2

)2

+ 4
d3ŷ

dx3
2

dŷ

dx2

]
+ D̂ d4ŷ

dx4
2

, (26)

where D̂n is the differentiation matrix in the orthogonal domain and Dn is the differentiation matrix in the real domain.
The resulting discrete eigenvalue problem is solved using the eig routine from Julia based on Linear Algebra Package

(LAPACK) that applies the QZ algorithm (Anderson et al., 1999).

5. VALIDATION CASES

Two cases were chosen to validate the computational code: a homogeneous shear layer and a stratified shear layer. For
the first case, the validation is based on the work of Betchov and Szewczyk (1963). The second validation case is based
on a comparison with analytical solutions available in Hazel (1972). Both validation cases considers null mean advection
(a = 0), same layer thickness ratio (Rℓ = 1) and do not considers settling of particles (us = 0).

5.1 Homogeneous shear layer

This configuration is achieved, in the present formulation by setting Ri2 = 0 or Rρ = 1, it means that the total density
profile is constant because both Rℓ = 1 and consequentially there is no density stratification. This section is organized
as follows: a convergence test of growth rate with the mesh parameters N and θ, a verification of Reynolds number
dependency and a comparison of maximum growth rate and most amplified wavenumber with results available on the
literature.

The Fig. 2a shows the convergence of growth rate increasing the number of rid points. It is observed that the growth
rate converges for approximatively 60 grid points. Figure 2b shows the convergence of growth rate increasing the point
density parameter and we observe that the growth rate converges at θ = 30. Based on these results, the growth rate is not
affected by the mesh parameters N and θ when their values are greater than 60 and 30, respectively.

Figure 3 shows the behaviour of the growth rate and the most amplified wavenumber as a function of Reynolds number.
It is observed that for a Reynolds number greater than 103, both the growth rate and the most amplified wavenumber are
nearly constant reaching 99% of the value for Re = 106. This means that the viscous effects have no great influence in the
development of this instability as it was verified in Betchov and Szewczyk (1963). The growth rate found for Re = 106 is
0.1897 with corresponding wavenumber of 0.4449. These results present a relative wavenumber error of −6, 74 × 10−4

when compared with theory while the growth rate error is null.
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Figure 2. Convergence of σi increasing N (a), where σN
i is the growth rate for 200 points, and convergence of σi

increasing θ (b), where σθ
i is the growth rate for θ = 300.
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Figure 3. Maximum growth rate (a) and its corresponding wavenumber (b) as function of Reynolds number.

5.2 Stratified shear layer

This configuration have a nonzero salinity Richardson number (Ri2) and a density ratio (Rρ) different than one. For
hyperpycnal flows this parameter is lower than one and for hypopycnal flows is greater than one. For a better comparison
with works available in the literature, Rρ has to be sufficiently large. This analysis investigates the influence of domain
truncation constant m in the stability boundary and results are compared with the analytical solution for inviscid flow
(Re → ∞) available in Hazel (1972): RiSB = α(1− α).

Figure 4 shows the stability boundary as function of wavenumber, salinity Richardson number and the domain trun-
cation constant m considering a Re = 103. The stability boundary is deformed by the value of m but the most amplified
wavenumber does not change.

In both validation cases, Kelvin-Helmholtz is the most amplified growth mode. In present study it will be called KH
mode. KH mode is more amplified in the streamwise direction and characterized by a wavenumber between 0.4446 and
0.5, depending on the flow stratification, and a angular frequency with valued approximately two times greater than the
dimensionless mean advection of the base flow (a). The angular frequency is not showed because the validation cases
have a null mean advection.

6. RESULTS

Some problem parameters are fixed in order to reduce the complexity of the analysis, like the base flow parameters
(a, R1 and R2), the Schmidt numbers of both scalar quantities and the Reynolds number. According Ortiz et al. (2002),
the mean advection a in temporal framework acts as a Doppler shift in frequency affecting only the real part of σ, for
this reason a is left as zero. The thickness ratio in both concentrations profiles are considered equals to 1 as the Holmboe
instability is not considered (Hazel, 1972). Both Schmidt numbers are equals to 1 and the Reynolds adopted is 103. The
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Figure 5. Stability boundary as a function of the salinity Richardson number and density ratio (a) and stability boundary
as a function of the streamwise wavenumber and density ratio (b). Results for Re = 103

parameters investigated are the streamwise wavenumber, the salinity Richardson number, the density ratio and the settling
velocity.

6.1 Non-settling configuration (us = 0)

In a first moment, it is interesting to characterize the instabilities and critical parameters of the base flow for a non-
settling configuration (us = 0). This first analysis has the objective of obtaining base results that will be compared with
the results for some settling configurations (us ̸= 0).

Figure 5a presents the stability boundary as a function of salinity Richardson number (Ri2) and the density ratio (Rρ).
It is observed that when the density ratio is sufficiently large the critical salinity Richardson number is 0.25 (same result
as the second validation case). When this parameter has a value equals to or smaller than 0.25 (Ri2 ≤ 0.25), the flow
is always unstable. On the opposite case (Ri2 > 0.25), the stability of the flow is conditioned by a critical value of
density ratio (Rcrit

ρ ). Figure 5b shows the stability boundary as a function of streamwise wavenumber and density ratio
for different values of salinity Richardson number. It is observed that these curves are symmetric and centered in α = 0.5.
The same critical values of density ratio observed in Fig. 5a are verified in Fig. 5b.

The behavior of the maximum growth rate and its corresponding wavenumber as a function density ratio and salinity
Richardson number are presented in Fig. 6a and Fig. 6b respectively. The growth rate varies from 0.1893 to zero in the
interval of 1 ≤ Rρ ≤ Rcrit

ρ . The correspondent wavenumber αmax for this unstable mode varies from 0.444 to 0.5 in the
same interval. The phase velocity, defined as cr = σr/α, is not presented in Fig. 6 because it is zero for any combination
of salinity Richardson number and density ratio. These results characterizes the KH instability.
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Richardson number. Results for Re = 103
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Figure 7. Maximum growth rate (a), most amplified wavenumber (b) and corresponding phase velocity (c) as a function
of the density ratio. Results for Ri2 = 0.4 and Re = 103.

6.2 Settling configuration (us ̸= 0)

6.2.1 Overview of the instabilities

The presence of settling particles, in this flow configuration, can cause some changes in the KH mode and amplifies
another unstable mode. Figure 7 presents the growth rate (σmax

i ), the corresponding wavenumber (αmax) and the phase
velocity (cmax

r ) as a function of density ratio for three settling velocities. It is observed that the increment of the settling
velocity value dislocates the critical density ratio (Fig. 7a). The discontinuities in Fig. 7b and Fig. 7c are characterized by
a competition between two unstable modes (see Fig. 8): the KH mode (0.44 < αmax < 0.5) and a settling-driven mode
(0.1 < αmax < 0.2).

The settling-driven mode was not found in the literature and will be denoted in the present study by SD. It is observed
that this mode needs a sufficiently large settling velocity value to grow, for example in Fig. 7, the results for us = 10−3

behaves like non-settling configuration in growth rate and most amplified wavenumber but it has a different phase velocity.
A more detailed discussion about the influence of settling particles in the KH mode and the characteristics of the settling-
driven mode are given in the next topics.

6.2.2 How the settling particles affect the Kelvin-Helmholtz instability?

As noted in Fig. 7c, the presence of settling particles (on the KH mode context) cause some variation in the phase
velocity, but, it also cause deformations on the perturbation fields (q̂j). It is important to observe that the maximum growth
rate and its correspondent wavenumber does not change.

This variation of the phase velocity is presented in Fig. 9 as a function of the settling velocity. It is observed that this
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Figure 9. Relation between the phase velocity and the particles settling velocity of the KH mode. Results for Ri2 = 0.4,
Re = 103 and Rρ = 1.

variation has a linear behavior due to the slope in the graphic, which is equal to −1.
The deformations in the sediment concentration perturbation field are presented in Fig. 10. In this figure, the solid

black lines are positive isolines normalized between 0 and 1, the dashed gray lines are negative isolines normalized
between −1 and 0, and the x1 is normalized by it wavelength, defined as λ = 2π/α.

6.2.3 The settling-driven instability

As previously noted, this settling-driven unstable mode needs a sufficiently large settling velocity to grow. This
critical value of settling velocity denoted as ucrit

s , is a function of the salinity Richardson number. The relation between
the critical settling velocity and the salinity Richardson number is presented in Fig. 11, where it is observed, through a
fitted function, that these quantities are inversely proportional (slope = −1.4689). The correspondent density ratios found
for these settling velocity values are the critical density ratio values for a non-settling configuration (see Fig. 5).

Figure 12 shows a comparison of streamwise vorticity (ω3), defined as

ω3 =
∂u2

∂x1
− ∂u1

∂x2
, (27)

between the KH mode (Fig. 12a) and the settling-driven mode (Fig. 12b). Like the previous figures, the solid black lines
are positive isolines normalized between 0 and 1, the dashed gray lines are negative isolines normalized between −1 and
0, and the x1 is normalized by its wavelength.

In the KH mode, it is observed that the perturbation has the tendency of form vortex in the clockwise sense centered
at the point of maximum vorticity (x2 = 0). While in the settling-driven mode, it is observed the tendency of formation
of a counter-rotating vortex in approximately x2 = −1.
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Figure 10. Sediment concentration perturbation field of KH mode as a function of the particles settling velocity. Results
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Figure 12. Comparison of perturbation and total fields of streamwise vorticity between the KH mode and the SD mode.
Results for Re = 103, Ri2 = 0.4, us = 2.5× 10−2 and ϵ = 0.5 (see Eq. 6).

7. SUMMARY AND CONCLUSIONS

A temporal linear stability analysis of a stratified shear flow under action of two scalar volume fractions have been
performed in order to investigate the effect of settling particles on the streamwise instabilities developed. This analysis
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was based on linearised equations of continuity, Navier-Stokes and scalar transport, Boussinesq approximation and modal
perturbation model with invariant basic state over the time. A computational code based on Chebyshev approximation,
for the spatial derivatives, and QZ algorithm, to solve the eigenvalue problems, has been developed in Julia language.
The validation of this code is achieved with results available in the literature.

The settling particles presence have basically two effects on the flow: a variation in the phase velocity and a defor-
mation on the sediment concentration perturbation field of the KH mode, and amplifying more the new growth mode
than the KH mode for some combinations of parameters (settling velocity, salinity Richardson number and density ratio).
These variations in the KH mode can propitiate the growth of a different mechanism of secondary instabilities. While the
settling-driven mode needs a minimal settling velocity to grow and it has a different vortex dynamic.
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