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Abstract—State machine replication is a fundamental approach
to high availability. Despite the vast literature on the topic,
relatively few studies have considered the issues involved in
recovering faulty replicas. Recovering a replica requires (a) re-
trieving and installing an up-to-date replica checkpoint, and
(b) restoring and re-executing the log of commands not reflected
in the checkpoint. Parallel techniques to state machine replication
render recovery particularly challenging since throughput under
normal execution (i.e., in the absence of failures) is very high.
Consequently, the log of commands that need to be applied until
the replica is available is typically large, which delays recovery.
In this paper, we present two techniques to optimize recovery
in parallel state machine replication. The first technique allows
new commands to execute concurrently with the execution of
logged commands, before replicas are completely updated. The
second technique introduces on-demand state recovery, which
allows segments of a checkpoint to be recovered concurrently.

I. INTRODUCTION

Many internet services have strict availability and per-

formance requirements. High availability requires tolerating

component failures and can be achieved with replication.

State machine replication (SMR) is a classical approach to

managing replicated servers [1], [2]. In SMR replicas start in

the same initial state and deterministically execute an identical

sequence of client commands. Consequently, replicas traverse

the same states and produce the same responses. To boost

the performance of the service, one can deploy replicas in

high-end servers (scale up). Modern servers, however, increase

processing power by aggregating processors (or cores). Thus,

to benefit from parallel architectures, replicas need to execute

commands concurrently. Despite the fact that concurrent

execution of commands seems at odds with SMR’s requirement

of deterministic execution, some approaches have revisited the

classical SMR model to exploit parallelism (e.g., [3], [4], [5]).

Parallel state machine replication (PSMR) techniques are

based on the observation that independent commands can

execute concurrently while dependent commands must be

serialized and executed in the same order by the replicas. Two

commands are dependent if they access common state and at

least one of the commands changes the state, and independent
otherwise. Executing dependent commands concurrently may

result in inconsistent states across replicas. Although the

performance of PSMR depends on specifics of the technique

and the workload mix of independent and dependent commands,

studies report that parallel approaches to SMR result in large

performance improvements (e.g., [3], [4], [5], [6]).

This paper considers recovery in PSMR, a topic that has

received little attention in the literature. Although one could

use recovery techniques designed for classical state machine

replication (e.g., [7], [8], [9]), these are not appropriate for

PSMR. To understand why, we briefly review the basics of

recovery in SMR. During normal operation (i.e., in the absence

of failures), replicas log the commands they execute and

periodically checkpoint the application state. After replicas

store the new checkpoint in stable storage, they can trim the log

of commands, removing commands that are already reflected in

the checkpoint. A recovering replica retrieves the most recent

checkpoint and the log of “old commands”, that is, commands

that were already executed by the operational replicas but

are not included in the retrieved checkpoint. The recovering

replica can execute “new commands” after it has installed the

checkpoint and executed the retrieved log of old commands.

Checkpoints play an ambivalent role in SMR. During normal

operation, checkpoints hurt performance since they introduce

overheads (e.g., execution stalls). Figure 1 quantifies checkpoint

overhead in PSMR (details about the implementation and setup

in Section VI). Frequent checkpoints result in bigger reductions

in average throughput. This calls for sparse checkpoints, a

strategy adopted by some systems (e.g., [8], [10]). Sparse

checkpoints, however, result in large logs of old commands,

which slows down recovery. Some techniques face this dilemma

by trying to reduce the overhead of checkpoint creation (e.g.,

using copy-on-write). However, the frequency of checkpoints is

also impacted by other practical concerns, such as checkpoint

size and duration. This is because replicas typically perform

checkpoints sequentially, only starting one checkpoint after

the previous one has finished. Thus, checkpoint frequency is

ultimately limited by how quickly a single checkpoint can

be performed. Table I shows the measured log (in thousands

of commands) during checkpoints with different sizes and

durations. For example, it takes about 15 seconds to create and

safely store a 512M-byte checkpoint, including serialization

of the state. During this checkpoint, our PSMR prototype can

execute nearly one million commands. Considering that the

time between two checkpoints is at least the duration of the

first checkpoint, the log sizes of Table I are minimum values.

Instead of attempting to increase the frequency of check-

points to reduce the log of old commands (and thereby lower

the downtime of a recovering replica), in this paper we rethink
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Fig. 1. Throughput versus checkpoint interval in PSMR.

Checkpoint Checkpoint Log size (in thousands
size (MB) duration (s) of commands)

128 3.77 236
256 7.55 473
512 15.09 946
1024 30.19 1893
2048 60.38 3785

TABLE I
MINIMUM LOG SIZE (IN THOUSANDS OF COMMANDS) ACCORDING TO

CHECKPOINT SIZE AND DURATION.

recovery from a more fundamental perspective. We discuss

two techniques for high performance recovery in parallel state

machine replication:

• Speedy recovery of large logs. Inspired by the mechanism

introduced to handle dependencies among commands in

PSMR (i.e., exploiting service semantics), we observe

that a new command does not need to wait for an old

command to be executed if the commands are independent.

Speedy recovery allows concurrency of new and old

commands if they are independent. Giving priority to

independent new commands during recovery, we allow

a recovering replica to answer new requests in reduced

time. We propose techniques to speed up recovery while

respecting dependencies among commands.

• On-demand state recovery. The second technique is based

on the fact that a considerable amount of recovery time

is due to state transfer and installation. We propose to

divide a checkpoint into segments, and retrieve and install

each segment only when it is needed for the execution of

a command. We also allow segments to be concurrently

retrieved and installed. Therefore, checkpoint segments are

handled on demand and possibly concurrently. On-demand

recovery is orthogonal to and could be combined with

existing optimizations described in the literature, such as

collaborative state transfer [7].

Speedy recovery and on-demand state recovery aim to

minimize replica downtime. One may wonder why it is

important to reduce the recovery time of a replica since non-

faulty replicas can continue to serve client requests. It turns

out, however, that the mean time to recover of a replica has

an important impact on the reliability of a replicated system.

For example, the mean time to fail of a two-replica system

is computed as MTTF 2/(2×MTTR), where MTTF and

MTTR are the mean time to fail and the mean time to recover
of a single replica, respectively [11]. By reducing the mean

time to recover of a replica, one proportionally increases the

mean time to fail of the compound without adding new replicas.
This paper makes the following contributions: (i) it discusses

efficient techniques to reduce the recovery time of replicas in

parallel state machine replication; (ii) it describes a full-fledged

PSMR prototype that integrates speedy and on-demand state

recovery; (iii) it experimentally assesses the performance of

the proposed recovery techniques compares them to traditional

recovery mechanisms under different scenarios.
The rest of the paper is organized as follows. Section II

presents the system model. Section III recalls SMR, PSMR

and recovery. Section IV introduces a protocol for efficiently

handling command dependencies in PSMR. Section V discusses

high performance recovery in PSMR. Section VI experimentally

assesses the performance of the proposed protocols. Section VII

surveys related work and Section VIII concludes the paper.

II. SYSTEM MODEL

We assume a distributed system composed of interconnected

processes. There is an unbounded set C = {c1, c2, ...} of

client processes and a bounded set S = {s1, s2, ..., sn} of

server processes. The system is asynchronous: there is no

bound on message delays and on relative process speeds. We

assume the crash failure model and exclude malicious and

arbitrary behavior (e.g., no Byzantine failures). Process may

crash and recover. A process is correct if it eventually remains

up forever, or faulty otherwise. We assume f faulty servers,

out of n = 2f + 1 servers.
Processes communicate by message passing, using either

one-to-one or one-to-many communication. One-to-one commu-

nication is through primitives send(m) and receive(m), where

m is a message. If a sender sends a message enough times, a

correct receiver will eventually receive the message. One-to-

many communication is based on atomic broadcast, whose main

primitives are broadcast(m) and deliver(i,m), where i refers to

the consensus instance in which m was decided. This definition

implicitly assumes that atomic broadcast is implemented with a

sequence of consensus instances identified by natural numbers

(e.g., [12], [13]). By introducing the consensus instance in the

delivery event, a server can easily determine the messages it

needs to retrieve upon recovering from a failure.
Atomic broadcast ensures that (i) if a process broadcasts

message m and does not fail, then there is some i such that

eventually every correct process delivers (i,m); and if a process

delivers (i,m), then (ii) all correct processes deliver (i,m),
(iii) no process delivers (i,m′) for m �= m′, and (iv) some

process broadcast m. We implement atomic broadcast using

Paxos [13]. Paxos requires additional synchronous assumptions

but our protocols do not explicitly need these assumptions.

III. BACKGROUND

In this section, we review classical SMR, a parallel approach

to SMR, and recovery in classical SMR.
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A. Classical state machine replication

SMR renders a service fault-tolerant by replicating the server

and coordinating the execution of client commands among the

replicas [1], [2]. The service is defined by a state machine and

consists of state variables that encode the state machine’s state

and a set of commands that change the state (i.e., the input).

The execution of a command may (i) read state variables,

(ii) modify state variables, and (iii) produce a response for

the command (i.e., the output). Commands are deterministic:

the changes to the state and the response of a command are

a function of the state variables the command reads and the

command itself.

SMR provides clients with the abstraction of a highly

available service while hiding the existence of multiple replicas.

This last aspect is captured by linearizability, a consistency

criterion [14]: a system is linearizable if there is a way to

reorder the client commands in a sequence that (i) respects the

semantics of the commands, as defined in their sequential spec-

ifications, and (ii) respects the real-time ordering of commands

across all clients [15]. In classical SMR, linearizability can

be achieved by having clients atomically broadcast commands

and replicas execute commands sequentially in the same order.

Since commands are deterministic, replicas will produce the

same state changes and response after the execution of the

same command.

A clarification now is in order about the role of SMR clients

and servers in the broader context of a distributed application.

Large distributed systems are typically structured in tiers, a

three-tier system being a prototypical case (see Figure 2). In

these environments, users are at the top tier and submit requests

to application servers, at the middle tier. Application servers

execute the application logic and submit requests to the bottom

tier. The bottom tier is responsible for handling the application

state. In this context, SMR clients are the application servers

in the middle tier and SMR replicas are the servers in the

bottom tier. In this paper, we refer to clients and servers from

the perspective of state machine replication.

B. Parallel state machine replication

Classical SMR makes poor use of multi-processor archi-

tectures since deterministic execution normally translates into

(single-processor) sequential execution of commands. Although

(multi-processor) concurrent command execution may result

in non-determinism, it has been observed that “independent

commands” can be executed concurrently without violating

consistency [2]. A few approaches have been suggested in

the literature to execute independent commands concurrently

with the goal of improving performance (e.g., [3], [4], [5]). In

this section, we describe CBASE, the approach proposed in

[4], which we use as the motivation for the efficient recovery

techniques proposed in this paper. We recall other approaches

to parallel SMR in Section VII.

To parallelize the execution of independent commands,

CBASE adds a deterministic scheduler, also known as paral-
lelizer, to each replica (see Figure 2(b)). Clients atomically

broadcast commands and the parallelizer at each replica delivers
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Fig. 2. Classical and parallel state machine replication in a 3-tier application.

commands in total order, examines command dependencies,

and distributes them among a pool of worker threads for

execution. The parallelizer uses a dependency graph to maintain

a partial order across all pending commands, where vertices

represent commands and directed edges represent dependencies.

A command is pending at a replica if it has been delivered at

the replica but not yet executed. While dependent commands

are ordered according to their delivery order, independent

commands are not directly connected in the graph. Worker

threads receive independent commands from the parallelizer

(i.e., vertices with no incoming edges) to be concurrently

executed. When a worker thread completes the execution of

a command, it removes the command from the graph and

responds to the client that submitted the command.

Figure 3(a) depicts an illustrative dependency graph with six

commands, delivered in the order a, b, ..., f . Commands a, c
and e are the next ones to be scheduled for execution and can

execute concurrently. Commands a and b are dependent but

a was delivered first; so, a must execute before b. Intuitively,

fewer interdependencies between commands in the dependency

graph favor concurrency. However, the cost of adding a new

command in the dependency graph is proportional to the

number of commands in the graph that are independent of

the new command. For example, a new command g will be

first compared to commands d and f ; if g is independent of d,

it will be compared to c and b, and so on. If g is independent

of every command in the graph, it will be compared against

all vertices. In Section IV we describe a more efficient way to

handle command dependencies.

C. Recovery in state machine replication

The SMR approach has shown to be efficient and practical

to develop applications that tolerate both crash [16], [17], [18],

[19], [20], [21] and byzantine [8], [10], [22], [23], [24] failures.

Despite the failure model adopted by existing solutions, most

SMR implementations in the literature follow a similar recovery
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approach: (i) Commands are logged in the order in which they

are executed (as part of atomic broadcast) and a reply is only

sent to the client after the corresponding command is logged

and executed. (ii) Each replica periodically checkpoints its state

to stable storage. Logged commands preceding the moment in

which the checkpoint was taken are discarded from the log.

Old checkpoints common to all replicas are also discarded. (iii)

To recover from a failure, the recovering replica retrieves the

latest checkpoint (i.e., state transfer) and the log with executed

commands that are not reflected in the checkpoint from another

replica or from remote storage. The recovering replica rebuilds

its state by installing the checkpoint and replaying the log of

retrieved commands not included in the last checkpoint. Client

commands delivered during recovery are only processed after

the recovery procedure is complete.

Regardless the specific recovery protocol in use, general

optimizations on logging, checkpointing and state transferring

can minimize recovery overhead, improving overall system

performance. For instance, instead of logging single operations,

some works log batches of operations [7], [8], [25], [22],

[26] or perform logging of batches in parallel [7]. Creating a

checkpoint after processing a certain number of commands,

as proposed in most works in SMR (e.g., [8], [22], [27], [21],

[26]) can degrade the performance of the service. This happens

because commands are not processed while replicas save their

state. If all replicas create checkpoints at approximately the

same time, the necessary agreement quorum might not be

available. Consequently, clients observe stalls in the execution

during checkpoints. To overcome these problems, in [7] the

authors force replicas to take checkpoints at different times.

The idea is that there is always a quorum of replicas that can

order and execute commands. In [9] the use of a helper process

for taking checkpoints asynchronously is proposed. While the

primary continuously processes requests and sends replies to

the clients, the helper periodically takes checkpoints.

During a state transfer, at least one replica has to spend

resources to send its own state to another replica. One way

to avoid performance degradation is to ignore state transfer

requests until the workload is low enough to process both

the state transfer and regular messages [20]. Another way

to minimize this overhead is through the reduction of the

amount of information transferred. State can be efficiently

represented by data structures based on hierarchical state

partitions, as proposed in [8], incremental checkpoints [9],

[28], or compression techniques. In [7], the authors present a

collaborative state transfer protocol, so the burden imposed on

replicas is evenly distributed among them.

IV. DEPENDENCY HANDLING IN PSMR

As already mentioned, PSMR techniques exploit service

semantics to determine when commands are independent and

can be executed concurrently [3], [4], [5]. Due to the high

throughput of PSMR, the costs of identifying dependencies

among incoming and pending commands, and then scheduling

commands accordingly are non negligible. In this section, we

introduce techniques to efficiently handle dependencies and

schedule independent commands to execute concurrently. We

combine three strategies:

• Batching: Instead of ordering one command at a time,

batches of commands are handled during normal operation

and recovery.

• Fast conflict detection: Each batch of commands contains

a bitmap with a digest of the variables read and written

by the commands in the batch. The bitmap is used for

fast detection of conflicts among batches.

• Reduced dependency handling overhead: While tracking

dependencies among batches of commands, the compu-

tation performed by the parallelizer is bounded by the

number of worker threads at a replica and not the number

of pending commands, as in [4].

Batched commands. Clients submit commands through a mid-

dle tier or proxy (see Figure 2), which groups commands from

different clients and broadcasts the commands for execution as

batches. When the proxy receives responses for all commands

in a batch, it can submit a new batch of commands. There

can be any number of client proxies, each one handling a

group of clients. Batching increases throughput by reducing

the overhead needed to handle commands (e.g., fewer system

calls to deliver commands, fewer edges to store the graph,

fewer comparisons to determine dependencies)[29].

Abridged conflict information. The way batche’s bitmaps are

encoded to satisfy the conflict detection property is application

specific and can be achieved in different ways. In our prototype,

we consider read and write commands in a database, where
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each operation includes the key of the entry read or written in

the database. Therefore, we create bitmaps by hashing the key

provided in the command; the hashed value corresponds to a

bit set in the bitmap. Checking whether two batches contain

dependent commands boils down to a bit-wise comparison of

their bitmaps. While this approach is subject to false positives

(i.e., it may detect a conflict when none exists), it is not prone

to false negatives (i.e., it does not miss real conflicts).

The dependency graph. The paralellizer delivers batches in

total order. Given the bitmaps of two batches, b(Bi) and

b(Bj), the parallelizer determines whether there is (at least)

a command in batch Bi that depends on some command in

batch Bj by comparing their bitmaps. In such case they conflict

and if Bi is delivered before Bj the conflict is represented by

adding an edge from batch Bi to Bj in the dependency graph

(see Figure 3(b) and (c)). This process inductively builds a

directed acyclic graph since a new incoming batch may depend

(insert edges) on elements of the set of already pending batches,

and not the other way.

The stored dependency graph. Although the dependencies

among batches assume the topology of a DAG, as discussed

above, this structure is not actually stored. We introduce an

optimization that allows new command batches to be added to

the structure in O(tb), where t is the number of worker threads

and b the size of the bitmaps, instead of O(g), where g is the

size of the dependency graph. The goal of this optimization is

to spare computation at the parallelizer, at the cost of limiting

concurrency among commands. Hereafter, we refer to a batch

of commands with at least one pending command as a pending

batch of commands. Instead of comparing each incoming

batch to all pending ones and storing the complete dependency

information, the parallelizer considers the number of worker

threads. The parallelizer and the worker threads share two data

structures, each one with one entry per worker thread (see

Figure 3 (d)). For each worker thread ti, c seq[i] contains the

sequence of command batches the parallelizer assigned to ti
and c map[i] contains a bitmap that encodes all commands

in c seq[i]. When the parallelizer delivers a new batch B, it

checks B’s bitmap, b(B), against each c map[i] to determine

which worker threads need to coordinate in order for commands

in B to be executed. If no interdependencies are detected,

the parallelizer chooses one worker thread ti (e.g., the least

loaded one), assigns B to ti, by appending B to c seq[i], and

updates ti’s bitmap b map[i]. If there are interdependencies,

the parallelizer determines all worker threads that have been

scheduled commands on which B depends, adds B to the end

of c seq of such threads and updates their bitmaps.

The execution of commands. Each worker thread ti executes

commands following their order in c seq[i], where commands

in the same batch are handled in the order they appear in the

batch. When a worker reaches a command batch B that requires

coordination among workers, all involved workers coordinate

so that a single worker executes the commands in B. After

the thread executes all commands in B, it signals the other

worker threads involved to proceed. When thread ti is finished

with B, ti removes B from c seq[i] and recomputes c map[i]

based on the batches currently in c seq[i]. As a consequence

of this procedure, the parallelizer and the worker threads must

access structures c seq and c map in mutual exclusion.

V. HIGH PERFORMANCE RECOVERY

In this section, we introduce two techniques to reduce recov-

ery time: speedy recovery and on-demand state transfer. We

conclude the section with a discussion about the implications

of these techniques on system recovery.

A. Speedy recovery of large logs

Recovery typically faces the following tradeoff. In order to

minimize the number of old commands a recovering replica

needs to retrieve and execute, checkpoints must be frequent.

Checkpoints, however, may degrade performance during nor-

mal execution; thus, for performance checkpoints should be

infrequent. Even though some techniques strive to reduce the

impact of checkpointing on normal execution (e.g., by using

copy-on-write), checkpoint frequency is ultimately limited by

how quickly a single checkpoint can be performed. Since

concurrent checkpoints may overload the system and further

complicate the design, checkpoints are typically configured to

happen sequentially, that is, one checkpoint only starts after

the previous one has finished.

In systems designed for high throughput, such as parallel

state machine replication, a practical consequence of the

recovery tradeoff mentioned above is that a recovering replica

needs to handle a large sequence of old commands before it can

execute new commands. This situation renders the replicated

system more vulnerable to failures since a recovering replica

is only available once it can process new client commands.

Instead of trying to reduce the sequence of old commands

(e.g., by increasing checkpoint frequency), we approach the

recovery tradeoff from a different perspective: we allow

new commands to execute before old commands have been

processed. In brief, our strategy is based on the observation that

a new command does not need to wait for an old command to be

recovered and executed if the two commands are independent.

In the rest of this section, we explain how we integrate

this strategy in the parallel state machine replication scheme

described in Section IV.

During normal operation, replicas create a dependency log,

a data structure that contains bitmaps of command batches

the replica executed since its last checkpoint. When a replica

creates a new checkpoint, it trims its dependency log. To recover

from a failure, a replica retrieves a recent checkpoint from

stable storage, and the dependency log from an operational

replica. Old commands not included in the restored checkpoint

will be recovered by the replica using the delivery primitive of

atomic broadcast. Since the dependency log contains a digest

of the old commands (not the entire commands), it can be

retrieved much more efficiently than the actual commands,

which require executions of atomic broadcast to be recovered.

With the dependency log, the recovering replica can execute

new commands before processing all old commands. The

replica splits the delivery of commands into two flows: one
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flow with new commands and one flow with old commands.

Old commands are scheduled for execution as during normal

execution. A new command is scheduled for execution if it is

independent of every old command that has not been scheduled

yet. The replica uses the dependency log to check whether a

new command is independent of pending old commands.

Algorithm 1 introduces the recovery of parallel state machine

replication. When a replica starts, it first retrieves a checkpoint

and the checkpoint identifier (line 12). The checkpoint identifier

is the largest delivery instance of a command in the checkpoint.

The replica then installs the checkpoint (line 13).

After the checkpoint is installed, the replica queries the

atomic broadcast module to determine the latest instance

of a delivery event (line 14), retrieves the dependency log

with bitmaps of batches containing old commands, that is,

commands in batches delivered before the latest instance

(line 15), initializes variables i and k, which will keep track

of delivery events for old and new commands, respectively

(lines 16 and 17), and variables n seq and n map, which

contain the sequence of new batches that cannot yet be executed

and their bitmap representation (lines 18 and 19).

When the parallelizer delivers a batch B of old commands

(line 22), it schedules B for execution and gets ready for the

next batch (lines 23 and 24). If there are no more batches

of old commands, the parallelizer schedules all batches of

new commands that have been delivered but could not yet be

scheduled because they contain commands that depended on

old commands, either directly or indirectly (lines 25–27).

When the parallelizer delivers a batch B of new commands

(line 28), it checks whether B’s bitmap intersects with the

bitmaps of batches with old commands that have not been

scheduled yet (i.e., d map structure) and with new commands

that precede b (i.e., n map structure). If there is no intersection,

B is scheduled for execution (lines 29–30); otherwise, B is

appended to n seq to be executed later (line 32) and its related

bitmap n map is updated (line 33). Finally, the parallelizer is

ready to deliver the next batch of new commands (line 34).

B. On-demand state recovery

Although processing new commands concurrently with

old commands improves the availability of the system by

bringing a recovering replica back up more quickly, old and

new commands can only execute after the recovering replica

has transferred and installed a checkpoint. On-demand state

recovery addresses this shortcoming. The overall idea is to

partition the service state into segments, and retrieve and install

segments only when they are needed for the execution of a

command (either a new or an old command). A checkpoint

now is a collection of segments.

In order to implement on-demand state recovery, we have

moved the logic involved in the retrieval and installation of

a checkpoint to the worker threads, instead of performing

it as the first action of a recovering replica. As soon as a

recovering replica has retrieved the dependency log, it can

schedule commands, as described in the previous section.

Before a worker thread executes a command, it checks whether

Algorithm 1
1: procedure schedule(b : Batch)

{batch scheduling as discussed in Section 4}
2: function (chkp, int)← lastCheckpoint()

{returns checkpoint and the last instance number included}
3: function int← currentDeliveryInstance()

{returns current message instance number}
4: function bitmapSequence← dependencyLog(i, j : int)

{returns sequence of bitmaps of delivered batches i to j}
5: Global strucutres:
6: i, j, k {i..j range of missing instances; k is first new instance}
7: n seq {sequence of batches with new commands}
8: n map {bitmap associated with sequence above}
9: d map {bitmap sequence of missing batches}

10: Upon Restarting:
11: procedure ReInitialization()
12: (checkpoint , i)← lastCheckpoint()
13: install checkpoint
14: j ← currentDeliveryInstance()
15: d map[i..j]← dependencyLog(i, j)
16: i← i+ 1
17: k ← j + 1
18: n seq ← ∅

19: n map← 0

20: The parallelizer executes as follows:
21: when (deliver(i, B) and i ≤ j) or deliver(k,B)
22: if delivered (i, B) then {a batch of old commands}
23: schedule(B) {schedule batch for execution}
24: i← i+ 1 {set next old batch to be retrieved}
25: if i > j then {if done with batches of old commands}
26: for each B ∈ n seq, in order do {pending batches...}
27: schedule(B) {...of new commands are scheduled}
28: else {delivered a batch B of new commands}
29: if b(B)∩ (d map[i]∨ ...∨ d map[j]∨n map) = ∅ then

{B does not depend on batches that precede B}
30: schedule(B) {schedule B for execution}
31: else {B depends}
32: n seq ← n seq ⊕ 〈B〉 {add B to pending sequence}
33: n map← n map ∨ b(B) {update related bitmap}
34: k ← k + 1 {set next new batch}

the needed segments are already installed or not. If a needed

segment is not installed, the worker thread retrieves the segment

from an operational replica (or remote storage), installs the

segment, and then executes the command.

This scheme improves performance in two aspects. First, it

defers the transferring and installation of segments to when they

are needed. Second, it allows to parallelize these operations

on different worker threads.

C. Implication of techniques on recovery

Differently from traditional recovery, we differentiate the

instant in which the replica becomes available to process new

commands (recovery time) from the instant in which the replica

has finished processing all missing commands and is completely

updated (update time).

Figure 4(a) depicts the steps involved in traditional recovery:

a recovering replica retrieves and installs a checkpoint image

from stable storage (e.g., local disk, NAS), and processes the

log of missing commands obtained from the atomic broadcast
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module (e.g., Paxos). At this point the replica is recovered and

updated, so it can start processing new commands.

With speedy recovery (Figure 4(b)), as soon as the depen-

dency log is obtained from another replica, the recovering

replica can start serving new commands while it recovers its

state. When on-demand transfer is enabled (Figure 4(c)), the

recovering replica can process new commands right after it

retrieves a single checkpoint segment.
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Recovery time
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restore checkpoint 
image

retrieve and process log 
of missed commands

retrieve dependency 
log

(a) Traditional recovery
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(c) Speedy recovery with on-demand state transfer

Fig. 4. Time to recover for each recovery technique.

VI. EVALUATION

In this section, we describe our prototype, explain our

assessment goals and methodology, describe the experiment

environment and present the results of our performance study.

A. Implementation

In order to evaluate our recovery technique, we developed a

key-value store service using the approach discussed in Section

IV. In our prototype, we use 8-byte keys and 1024-byte values.

The service implements commands to create, read, update

and remove keys from an in-memory database. The service

periodically checkpoints its state and stores it in a remote file

system. Atomic broadcast is implemented by Ring Paxos [30],

a high-throughput atomic broadcast protocol.

Client commands are forwarded to a client proxy, which is

responsible for batching and compressing those commands in

a single request. To alleviate the burden on the parallelizer, the

bitmaps for a batch are computed by the client proxy. Client

proxies broadcast a request to the replicas and wait for the first

reply from a replica for every command in the batch before

broadcasting another batch. In the experiments we use update

commands only since these are the most challenging ones from

the perspective of state handling.

Upon receipt of a batch, a replica proceeds as discussed

in Section IV. To execute commands, each worker thread

decompresses and extracts commands from received batches

before executing them. The dependency log discussed in

Algorithm 1 is implemented as a list of consolidated bitmaps

for groups of delivered batches. Thus, instead of keeping one

bitmap for every single batch, several batches are grouped and

associated to a bitmap that is computed as the union of the

bitmaps of the batches in the group.

B. Goals and methodology

The high performance recovery techniques introduced in this

paper aim to speed up recovery of large logs and reduce state

transfer. Ultimately, both techniques are designed to increase a

replica’s availability. We wish to quantify the effects of these

optimizations with emphasis on the following goals.

• Recovery time. A replica is recovered as soon as it can

process new commands. We assess the time it takes for a

replica to recover using the techniques introduced in the

paper and compare them to classical recovery.

• Throughput during recovery. Speedy recovery allows

new commands to be processed before recovery is fin-

ished, differently from classical recovery techniques. We

determine the throughput of new commands during the

restart of a replica.

• Recovery breakdown. We investigate the interplay of

the steps involved in speedy recovery and on-demand

state transfer and how each step contributes to recovery

duration.

• Impact on MTTF. Since a recovering replica becomes

available faster, the window of vulnerability for service

outage is reduced. We quantify the gains by computing

the mean time to fail (MTTF) of our proposed approach.

C. Environment and configuration

All experiments were executed on a cluster with two types

of nodes: HP SE1102 nodes equipped with two quad-core Intel

Xeon L5420 processors running at 2.5 GHz and 8 GB of main

memory; and Dell PowerEdge R815 nodes equipped with four

16-core AMD Opteron 6366HE processors running at 1,8 GHz

and 128 GB of main memory. The HP nodes were connected to

an HP ProCurve switch 2920–48G gigabit network switch, and
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the Dell nodes were connected to another, identical network

switch. The switches were interconnected by a 20 Gbps link.

All nodes ran CentOS Linux 6.5 and had the Oracle Java

SE Runtime Environment 8. Paxos’ proposer, acceptors, and

clients were deployed on HP nodes, while PSMR replicas were

deployed on Dell nodes. Our prototype was set up to tolerate

one failure, requiring three acceptors and two replicas.

Although we focus on recovery performance in this paper, we

performed a series of experiments covering a range of scenarios

helpful to identify the parameter space. Once we surveyed the

performance of our prototype for several important parameters,

we fix the system with 8 threads, operational load at 70%

of peak throughput, batch size of 50 commands, checkpoint

interval at 20K batches and investigate the behavior of recovery

for 0% and 5% dependency probabilities.

The reason for choosing dependency probability of 0% is

to understand the potential of the technique (i.e., it results

in the best performance), while 5% is more than one should

expect in a typical application, according to the literature.

Moraru et al. [31] state that from the available evidence,

dependency probabilities between 0% and 2% are the most

realistic. For instance, in Chubby, for traces with 10 minutes

of observation, fewer than 1% of all commands could possibly

generate conflicts [16]. In Google’s advertising back-end, F1,

fewer than 0.3% of all operations may generate conflicts [19].

D. On efficient recovery in PSMR

Figure 5 shows the execution of a recovering replica

combining speedy recovery with on-demand state transfer. We

set up the space of generated keys in a way that checkpoint

size is around 512M bytes and the dependency probability is

0%. The recovering replica takes about 7 seconds to recover, a

period that corresponds to the time to download and install at

least one checkpoint segment. Right after that, the replica can

process new commands in that segment while downloading

and installing other checkpoint segments on-demand.
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Fig. 5. Throughput using speedy recovery and on-demand state transfer with
0% of dependency probability.

Figure 6 shows a similar execution, but with dependency

probability of 5%. The recovering replica also takes about 7

seconds to recover, but the throughput of new commands

processed during recovery is lower. As expected, as the

dependency probability increases, fewer new commands can be

scheduled for execution in parallel with old commands. In the

worst case, when all new commands conflict with commands

in the dependency log, only old commands would be processed

during recovery. This behavior resembles the classic recovery.
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Fig. 6. Throughput using speedy recovery and on-demand state transfer with
5% of dependency probability.

In the previous experiments, once the first checkpoint

segment is installed, the replica starts processing new and

old commands assigned to that segment. The total throughput

is given by the sum of the black and gray areas, representing

the throughput of old and new commands, respectively.

Table II quantifies the recovery behavior for workloads with

dependency probability of 0% and 5%. The time to download

and install a checkpoint in both classical and speedy recovery

techniques is similar. However, when using the on-demand state

transfer technique, these times can be considerably reduced.

For instance, checkpoint segment P3 takes less than half of

the time taken by other techniques.

An important metric is the time to execute the first new

command, since the replica is able to process new commands

from that moment on. Obviously, in the classical approach, the

replica processes the first new command after processing the

whole log. Thus, the time to execute the last old command and

the first new command are practically the same (approximately

33s in Table II). Speedy recovery can substantially reduce

the time to execute the first new command. Our experiments

demonstrated that speedy recovery is three times faster than

the classical recovery in contention-free workloads. When on-

demand state transfer is combined, recovery becomes more

than 7 times faster.

Since our techniques aim at minimizing the unavailability

of a replica, we investigate the time needed to transfer a

checkpoint, to install the checkpoint, to process the log, and

the moment when the first new command is serviced, denoting

that the service is available for new requests. Figure 7 provides

a graphical representation for the recovery cost breakdown.

Besides the dependency probability, the incoming rate of old

commands also impacts the throughput of new commands

during recovery. Higher rates increase the number of old

commands competing with new ones to be processed. In the

extreme case, the number of old commands delivered is so
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high that no new command is delivered while old commands

are processed. This behavior is similar to the behavior of

classic recovery, where old commands are processed first.

By reducing the incoming rate of old commands, the system

naturally increases the number of new commands delivered

during recovery, increasing the chances of new commands being

processed in parallel to old commands. In our experiments we

set up the relearning of old commands to 200 batches every

0.2 seconds.

Finally, we compute the reduction in the mean time to

fail (MTTF ) of a service that uses our proposed approach.

From [11], the MTTF of a two-replica system is given by

MTTF 2
single/(2 × MTTRsingle), where MTTFsingle and

MTTRsingle are the mean time to fail and the mean time to

recover of a single replica, respectively. Therefore, the reduction

γ in MTTF caused by speedy recovery, when compared to

classic recovery, can be calculated as:

γ =
MTTFclassic

MTTFspeedy
=

MTTF 2
single/(2×MTTRclassic)

MTTF 2
single/(2×MTTRspeedy)

which can be simplified as:

γ =
MTTRspeedy

MTTRclassic

By comparing the “time of first new command” of classic

recovery and speedy recovery (see Table II), we observe that

γ = 4.40/33.41 = 0.13 and γ = 2.89/32.37 = 0.09, for 0%

and 5% dependency probability, respectively.

VII. RELATED WORK

In this section, we review existing approaches to recovery in

classical and parallel state machine replication. We conclude

with a brief account of recovery in replicated database systems

based on group communication.

A. Recovery in classical state machine replication

In Section III-C, we presented the basics of recovery in state

machine replication. More advanced techniques have been

proposed to improve the efficiency of logging, checkpointing

and recovery in SMR. In [7] three techniques are proposed:

parallel logging, sequential checkpointing and collaborative

state transfer. The key ideas of parallel logging are to log

groups operations instead of individual operations, and process

operations in parallel with their storage. Grouping operations

is conceptually similar to our batched commands. Taking

advantage of replication in SMR, sequential checkpointing

coordinates replicas such that they do not checkpoint their states

at the same time to avoid hiccups during normal execution.

While one replica is taking a checkpoint, other replicas continue

to process requests. Instead of the traditional state transfer from

one single replica, collaborative state transfer proposes that

several replicas may send part of their checkpointed state to a

recovering replica. These ideas are orthogonal to the ones we

propose and could be used in parallel state machine replication.

Some works have also discussed how replica recovery can

be integrated with group communication primitives [30] and

how to minimize the effects of a recovering replica on normal

execution [32].

B. Recovery in parallel state machine replication

Although the recovery techniques described in the previous

section could be used in parallel approaches to state machine

replication, some proposals leverage specifics of the protocol

to perform checkpoints and recovery efficiently. None of these

proposals allow concurrent execution of old and new commands,

neither implement on-demand checkpoint transferring.

We have already described CBASE’s normal operation in

Section III-C. Checkpointing is briefly discussed in [4] and

recovery is not mentioned. To ensure that all replicas build

the same sequence of checkpoints, a synchronization primitive

executed at the replicas, but invoked by the agreement layer,

is used to select a sequence number for checkpoints. Each

replica blocks the execution of all the requests delivered after

this sequence number until the checkpoint is completed.

In Eve [3] replicas first execute commands and then verify the

equality of their states through a verification stage. Before exe-

cution, a primary replica groups client commands into batches

and transmits the batched commands to all replicas. Then,

replicas speculatively execute batched commands in parallel.

After the execution of a batch, the verification stage checks

the validity of replica’s state, as defined by the common state

reached by a majority of replicas. If too many replicas diverge,

replicas roll back to the last verified state and re-execute the

commands sequentially and deterministically. Checkpointing

in Eve seems straightforward, but is not discussed in [3].

In [5], the authors propose a variation of parallel state

machine replication, where the execution and the delivery of

commands occur in parallel. Instead of using a single sequence

of consensus executions to order commands, the approach

uses multiple consensus sequences. Independent commands

proposed in different sequences of consensus are executed

concurrently. Dependent commands are proposed either in the

same sequence or in a sequence shared among all threads; in

both cases, dependent commands are executed in the same order

across replicas. Checkpointing solutions for the protocol in [5]

are proposed in [33]. One solution forces replicas to converge

to a common state before checkpointing, similarly to [4]. In

the other solution, replicas take checkpoints independently,

reducing the overhead involved in synchronizing threads during

a checkpoint. This solution is not applicable to the protocol

proposed in this paper.

In Rex [34], a single server receives requests and processes

them in parallel. While executing, the server logs on a trace

dependencies among requests based on the shared variables

accessed (locked) by each request. The server periodically pro-

poses the trace for agreement to the pool of replicas. Together

it also periodically proposes cuts in the computation. The other

replicas receive the traces and replay the execution respecting

the partial order of commands. If a cut is provided, a secondary

replica, when achieving that cut, creates a snapshot of the state

and propagates it to all other replicas. Recovery is performed

with the installation of a recent snapshot followed by the
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Dependency probability = 0% Dependency probability = 5%

Classic
recovery

Speedy
recovery

Speedy + on-demand Classic
recovery

Speedy
recovery

Speedy + on-demand
P1 P2 P3 P4 P1 P2 P3 P4

Checkpoint download (s) 5.17 5.24 5.44 4.16 2.91 5.23 4.99 5.63 4.27 1.72 2.24 3.98
Checkpoint installation (s) 4.57 4.60 1.08 1.10 1.49 1.07 4.74 4.68 1.07 1.05 1.56 1.11
Log processing (s) 22.25 35.53 35.36 22.65 40.19 33.21

Time of last old command 33.41 45.37 39.85 32.37 50.50 38.30
Time of first new command 33.41 10.43 4.40 32.37 11.38 2.89
Recovery speedup 1 3.2 7.6 1 2.8 11.2
Throughput (normal execution) 34742 34705 36000 34446 34138 36100
New command throughput (recovery) 0 26242 19702 0 11930 9546

TABLE II
RECOVERY TECHNIQUES COMPARISON.
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Fig. 7. Time taken during recovery for workloads with dependency probability 0% (left) and 5% (right).

replay of the logged commands according to their dependencies.

During recovery of a replica, the throughput experienced is

around 20% of normal operation and takes around 25 seconds

to complete. Strictly, Rex does not implement state machine

replication since only one replica executes commands, while

the others follow its execution.

C. Recovery in transactional systems

The problem of efficiently recovering a failed replica has

been largely considered in the context of database systems.

Replication protocols based on group communication are the

closest to our approach in that transactions are ordered before

they can be committed. Some of these protocols explicitly

address recovery. In [35] the authors discuss how to recover a

crashed replica (or start a new one) without stopping transaction

processing. The recovered replica only accepts new transactions

once recovery has finished. In [36] crashed replicas can recover

in parallel and at the same time several active replicas can

serve them the needed data. The protocol in [37] proposes an

adaptive approach which allows a recovering replica to catch

up with operational replicas by transferring either the recent

values of data items or the sequence of missed updates. In these

works, transactions can only be processed once old transactions

have been recovered. One exception is the approach of [38] in

which new transactions can be executed before recovery has

completed. The solution proposed in [38] builds a data structure

that resembles the dependency graph, which is inappropriate

in environments subject to very large performance.

VIII. CONCLUSION

Current advances in parallel state machine replication allow

independent commands to be executed concurrently in a replica.

To keep replicas consistent, each replica has to carefully

handle and respect dependencies among commands. This

is a non-trivial task since it requires dependency detection

on a possibly high volume of commands. In this paper,

we have proposed high performance recovery in PSMR, a

set of coordinated techniques to reduce a crashed replica’s

unavailability period. Speedy recovery is a technique that

naturally benefits from command dependencies, allowing new

commands to be processed concurrently with old commands,

if they are independent. On-demand state recovery enables to

recover segment of the state when they are needed instead

of recovering the whole state at once. Both techniques have

proved to considerably reduce recovery time, when compared

to traditional recovery in SMR. Integrated to our recovery

strategy, we have proposed mechanisms to efficiently represent

and calculate dependency among commands, complemented

by an efficient scheduling mechanism that considers both

dependencies and resource availability (number of working

threads) and thus computes dependencies only when useful to

parallelize commands execution.
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