
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL
FACULDADE DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

STOCHASTIC MODELING OF GLOBAL
SOFTWARE DEVELOPMENT TEAMS

ALAN RICARDO DOS SANTOS

Dissertação apresentada como requisito à

obtenção do grau de Mestre em Ciência da Com-

putação na Pontifícia Universidade Católica do

Rio Grande do Sul.

Advisor: Dr. Paulo Henrique Lemelle Fernandes

Co-Advisor: Dr. Afonso Henrique Corrêa de Sales

Porto Alegre
2012

S237s Santos, Alan Ricardo dos

Stochastic modeling of global software development teams /
Alan Ricardo dos Santos. – Porto Alegre, 2012.

80 f.

Diss. (Mestrado) – Fac. de Informática, PUCRS.
Orientador: Prof. Dr. Paulo Henrique Lemelle Fernandes.
Co-orientador: Prof. Dr. Afonso Henrique Corrêa de Sales.

1. Informática. 2. Engenharia de Software. 3. Redes de

Autômatos Estocásticos. 4. Simulação e Modelagem em
Computadores. I. Fernandes, Paulo Henrique Lemelle. II. Sales,
Afonso Henrique Corrêa de.
III. Título

CDD 005.1

Ficha Catalográfica elaborada pelo

Setor de Tratamento da Informação da BC-PUCRS

Para Sérgio e Maria Amália.

AGRADECIMENTOS

Agradeço o orientador Dr. Paulo Fernandes pelo incentivo, apoio e suporte durante o mestrado.

Foi um período de aprendizagem constante e gratificante. Sou também grato pela co-orientação dada

pelo Dr. Afonso Sales pela dedicação, compreensão e ajuda durante todas as etapas do meu mestrado

e também em vários momentos difíceis. Meu sincero obrigado por aceitar o convite para compor a

banca de defesa de mestrado aos professores e pesquisadores Dr. Rafael Prikladnicki e Dr. Erwan

Carmel. Agradeço o apoio financeiro obtido durante o período, fornecido por Dell Computadores

para a bolsa taxas através do programa PDTI. Aos funcionários do PPGCC/PUCRS, particularmente

ao Régis Escobal, agradeço o apoio e a paciência durante toda a duração do mestrado. Agradeço

também aos amigos que fiz durante o mestrado, principalmente Thais Webber, Ricardo Czekster e

Silvio Gomez, pelo conhecimento compartilhado e pela amizade. Agradeço aos meus pais, Sérgio e

Maria Amália, obrigado do fundo do coração por sempre acreditar e confiar no meu potencial, eu

dedico este trabalho a vocês, pelo empenho constante e por ter me ensinado os valores que tenho

hoje. Agradeço também a minha irmã Anne pelo apoio durante o curso de mestrado. Agradeço

especialmente a minha esposa Cláudia pela paciência e por tudo que passamos juntos neste período

de crescimento. Sem a sua ajuda e apoio, eu não teria conseguido.

MODELAGEM ESTOCÁSTICA DE TIMES
DE DESENVOLVIMENTO DE SOFTWARE GLOBAL

RESUMO

Avaliação de desempenho de projetos é um aspecto importante em desenvolvimento de software

Distribuído. Empresas e instituições podem obter benefícios através da utilização de análise de

performance em times trabalhando em diferentes locais. Este trabalho tem como objetivo apresentar

uma definição de modelagem estocástica para projetos Follow-The-Sun (FTS) em diferentes aspectos

como tempo, qualidade e custo. Exemplos de uso do modelo são apresentados em conjunto com os

resultados de avaliação dos mesmos.

Palavras-chave: Desenvolvimento de Software Distribuído; Simulação de Projetos; Avaliação de

Performance; Follow-the-Sun; Modelagem Estocástica.

STOCHASTIC MODELING OF GLOBAL
SOFTWARE DEVELOPMENT TEAMS

ABSTRACT

Projects performance evaluation is an important aspect of global software development. Companies

and institutions can obtain benefits by the use of performance evaluation of teams working in

different sites. The objective of this work is to discuss a stochastic model definition to performance

evaluation of Follow-The-Sun (FTS) projects aspects such as time, quality and cost. Example issues

that can be addressed using this FTS model are provided with performance evaluation results.

Keywords: Global Software Development; Projects Simulation; Performance Evaluation; Follow-

the-Sun; Stochastic Modeling.

LIST OF FIGURES

2.1 Project View . 32

2.2 Site View . 33

3.1 Research Design . 35

3.2 The SAN model that represents Project ALPHA 37

3.3 Follow-The-Sun . 44

3.4 SAN model . 45

4.1 Clock Memory Automaton . 47

4.2 Team Site i Task Automata . 49

4.3 Team Site i . 51

4.4 Project Memory Automaton . 52

4.5 Full Model View . 52

5.1 Sample One . 58

5.2 Sample Two . 62

5.3 Sample Three . 66

LIST OF TABLES

3.1 Research Strings . 36

3.2 Estimated event rates for an eight-hour workday 38

3.3 Project Estimated Effort × Actual Hours . 39

3.4 Project’s impediments . 39

3.5 Steady-State probabilities of the proposed model 40

3.6 Project working hours obtained from the proposed model 40

3.7 Project impediment hours obtained from the proposed model 41

4.1 Clock Memory Automaton States . 48

4.2 Description of Clock Memory events . 48

4.3 Site i States . 49

4.4 Description of Site i events . 50

4.5 Team Site States . 51

4.6 Description of Teams Site i events . 51

4.7 Description of Project Memory events . 53

5.1 Sample One Project Estimates . 58

5.2 Sample One Parameters . 59

5.3 Sample One States Probabilities . 61

5.4 Sample Two Project Estimates . 62

5.5 Sample Two Parameters . 63

5.6 Sample Two States Probabilities . 65

5.7 Sample Three Project Estimates . 66

5.8 Sample Three Parameters . 67

5.9 Sample Three States Probabilities . 69

LIST OF ABBREVIATIONS

GSD Global Software Development

FTS Follow-The-Sun

SAN Stochastic Automata Network

SUMMARY

1. Introduction 23

1.1 Research Problem . 24

1.1.1 Research Question . 24

1.2 Research Goal . 24

1.3 Research Justification . 25

2. Related Work 27

2.1 Follow-The-Sun (FTS) . 27

2.2 Stochastic Modeling . 28

2.3 Stochastic Automata Networks . 28

2.4 Simulation . 29

2.5 FTS Performance Evaluation . 31

2.5.1 Project View . 31

2.5.2 Site View . 32

3. Methodology 35

3.1 Research Strategy . 35

3.2 Research Design . 35

3.3 Literature Review . 35

3.4 Practical Case . 36

3.5 Academic experiment . 41

3.6 Modeling . 42

3.7 Final Model . 45

4. SAN Model 47

4.1 Automata Definitions . 47

4.2 Model Options and Constraints . 54

5. Performance Evaluation 57

5.1 Running The Model . 57

5.1.1 Samples Settings . 57

5.1.2 Sample One . 57

5.1.3 Sample Two . 61

5.1.4 Sample Three . 65

6. Conclusions 71

6.1 Contributions . 71

6.2 Research Limitations . 72

6.3 Future Work . 73

Bibliography 75

23

1. Introduction

Nowadays companies have been working to re-structure their IT departments extending their

operations using software development centers geographically distributed in different time zones. In

this context, software engineering has an area named as GSD - Global Software Development. For

Sarker and Sahay [57]: “GSD refers to software development geographically, remotely or globally

distributed, with the goal of rationalize the process of product development”. There are challenges

on this research field such as different time zones, different cultures, different levels of experience

and different technical background [9, 23, 63].

GSD has recently become an active research area [49]. Studies on GSD field started by 1990

when global software development started to become a competitive strategy [50].

There are some domains such as health care and air traffic control working 24h a day [63]. In

this sense, on software development area, the benefits of working from the begin to the end of a

day can be obtained through work handoff between time zones, in order to eliminate the necessity

of work outside regular hours [63].

Follow-The-Sun (FTS) is a type of global software development that aims the use of a 24h

workday and focus on projects that search for velocity by the reduction of project life cycle (time-

to-market) [10, 11] and share many challenges and issues of global software development such as

coordination, cultural factors and communication issues [9, 11, 22].

Theoretically, with the use of 24-h software development, the software development cycle time

can be significantly reduced [16]. This kind of development may become a valid choice for software

companies and can be applied in numerous projects [34, 61, 63].

Nguyen et al. [41] explored the effect of distance on communication and task completion time

and used social network analysis to obtain insights about the collaboration on distributed teams,

“Global software development promises many benefits such as decreased development cost, access

to a larger skill pool, proximity to customer, or twenty-four hour development by following the

sun”. FTS challenges and issues can be mapped through the use of analytical models for analysis of

projects behaviors in order to facilitate companies and institutions decision-making process, providing

a better understanding of possible issues that can occur in geographically distributed projects.

Related works for stochastic modeling and simulations are developed through the dynamic spec-

ification of software projects [13, 44], as the usage analytical modeling for variability performance

analysis of software development teams [2, 15]. SAN - Stochastic Automata Networks [7, 47] is a

formalism based on Markov Chains [62] that provides an abstraction of the model description.

New methodologies are needed to evaluate and simulate projects performance scenarios, con-

sidering cost, time and quality. This research aims to apply SAN on FTS software projects. The

utilization of Follow-The-Sun strategy for the entire project life cycle can be complex and maybe

not feasible [11], however there is research room to simulate a project life cycle in FTS. In this work,

the proposed SAN model focus on the project life cycle performance evaluation for different sites.

24

Under Software Engineering area there are several researches related to GSD [9,11,13,22,23,49,

63], and there is space to research the application of stochastic modeling in Software Engineering.

The usage of stochastic modeling for software engineering has been applied in few studies, such

as [15] which started a modeling effort for GSD teams and continuing this research effort, it was

performed a new study to compare performance evaluation of model results against a real project [26].

In this sense, Czekster et al. executed an initial essay to apply stochastic modeling to measure

Follow-The-Sun teams performance [16].

This research focus on FTS which is one type of Global Software Development identifying project

model requirements and FTS factors available in the literature. It review simulation, quantitative

studies and models characteristics that can be used to understand FTS scenarios. Finally, it proposes

a performance evaluation model to explore Follow-The-Sun aspects. Conclusions point out numerical

results as well as future works thoroughly for new models.

1.1 Research Problem

Management of Follow-The-Sun projects involves a high degree of uncertainty, and this uncer-

tainty generate risks in terms of cost, quality and project time. To help projects risk mitigation it is

possible to use simulation techniques, modeling values distribution within FTS development cycle.

There are different methods to evaluate adherence of a given probability model. However to do this

it is necessary to exists series of similar operations. When there is no history, how to discover model

probabilities ?

1.1.1 Research Question

The issue of this research is to understand how to qualify the decision-making process on follow-

the-sun projects, evaluating factors such as cost, time and quality, because FTS is a research area

with aspects to be explored.

• Question 1: How Stochastic Automata Networks can help FTS projects decision-making ?

This question is related to how the use of SAN performance evaluation can help companies and

institutions on Follow-The-Sun projects decision-making. This study has no hypothesis defined due

its exploratory approach.

1.2 Research Goal

To propose a stochastic model and performance evaluation for Follow-The-Sun projects. In this

sense, were defined the following specific goals:

• To perform a study of Analytical Modeling and Performance Evaluation for a better under-

standing of the functioning and application of those techniques on software development

projects;

25

• To identify Follow-The-Sun aspects that can be used on the analytical model simulation;

• To create a stochastic model to verify through performance evaluation factors that can influ-

ence FTS teams performance results;

1.3 Research Justification

There are several practical implications on the coordination of FTS projects, specially on plan-

ning and execution project phases. This work explore FTS and stochastic modeling performance

evaluation in order to enhance the decision making process before projects start.

According to Ramasubbu et al. [53] temporal dispersion reduces the possibilities of communica-

tions attributes for design activities “Temporal dispersion refers to the time zone differences among

project members”. However temporal dispersion may allow distributed groups to accelerate the

completion of development tasks using approaches such as “Follow-The-Sun”.

The use of Follow-The-Sun as a strategy for software development is not a common practice.

It is difficult to find industry cases of software development teams using FTS approach. However,

according to Nguyen et al. [41] “in contrast to work in industry commercial environments, open

source projects do not seem to have problems with distributed communication, collaboration and

development following the sun”.

Although there are FTS related researches [10,18,28,29,64] to cite a few, there is an opportunity

to research and to simulate Follow-The-Sun software development projects. Simulation and numer-

ical analysis can help to identify project gaps and project opportunities before they are started. This

research aims to explore stochastic modeling and performance evaluation of teams geographically

distributed, focusing on Follow-The-Sun.

26

27

2. Related Work

This section provides a literature review identifying existing and related researches methods and

approaches.

2.1 Follow-The-Sun (FTS)

Innovation has been moving companies and institutions to create new strategies and techniques

for software development. Time zone differences, geographical diversity and others aspects actually

can help companies to improve their business. Those techniques and strategies can move companies

to use an entire day of work using a Follow-The-Sun approach.

There are different definitions about Follow-The-Sun available in literature [10,11,18,28,29,64].

Follow-The-Sun is a type of complex software development approach. In fact, FTS can be defined

as software development activities being handoff from one site to the next on a daily basis [28,64],

where it is possible to work on software development 24 hours a day considering time zone differences

between teams. Each team work on a time zone and in the end of each day tasks are handoff to

the next team that will continue working on tasks started by previous team.

Treinen and Miller-Frost [64] presented time zone difference as an advantage for teams distribu-

tion in order to create a 24h development environment.

Gupta et al. [29] introduced the concept of continuous development, considering the aspect of

knowledge transfer, e.g., between development and testing teams. In this sense, tasks are transi-

tioned between distributed teams in the end of each work day. However Carmel et al. [10] proposed

FTS development as a type of global knowledge workflow that can reduce projects duration, de-

pending on factors such as handoff efficiency, effective communication and coordination.

A FTS experience was published on 1997 [9] where IBM decided to develop a project applying

FTS, to achieve this goal they used 5 different teams in 5 different software development centers.

During this project they had several coordination issues on daily handoffs [10, 16].

Espinosa et al. [20] conducted a FTS study with a research question that guides whether there are

gradual differences across time zones that impact team performance. In this study they conducted

a laboratory experiment with 42 dyadic teams. The teams were randomly assigned into four time

zone overlap conditions: full overlap, 2/3 overlap, 1/3 overlap and no overlap. Using a fictional

map task, they found that a small time separation has no effect on accuracy, but that more time

separation has a significant effect on accuracy. Another point from that study was the fact that a

small amount of time separation had a significant effect on production speed.

The possibility of FTS projects configurations simulations can be an alternative for feasibility

studies of FTS practices. One aspect proposed by Carmel et al. [10] is the usage of mathematical

models for FTS performance evaluation. An approach available to achieve it is the use of stochastic

modeling.

28

2.2 Stochastic Modeling

Structured formalisms have been applied and used along the years increasing the abstraction

level and offering another modeling alternative instead of traditional Markov Chains formalism [14].

There are different analytical methods, the most used are based on Markov Chains [62]. Markov

Chains describes how a system works based on a group of possible states as well as the transitions

between those states, following rates defined by exponential rules [62].

Analytical modeling formalisms are regularly applied to describe different realities. Formalisms

based on Markov Chains are applied to several areas such as economy, physics and engineering [62].

In 80s, Stochastic Automata Networks (SAN) was introduced as a high level formalism that

provides synchronism and parallelism description of systems, and it also provides efficient numerical

solutions [25, 48].

This formalism is used for performance evaluation of systems and it is based on the development

of a model to represent a real system, where the model has a higher level of abstraction. In this

sense, the model is purely mathematical and it works as a real system reduced to mathematical

relations [14]. Those mathematical relations describe the system as a group of possible states and

transitions between those states [6, 25].

Analytical modeling can be easily applied in different scenarios. One advantage of this technique

is that there is no need to be concerned about specific sample groups of the system working in order

to obtain performance indices [14].

Analytical models can be deterministic or stochastic. For a deterministic model, system pa-

rameters are previously determined, but for a stochastic model, the system behavior is probabilistic

evaluated, in other words, in this case the system parameters are described by random variables with

convenient probability distributions [14].

2.3 Stochastic Automata Networks

Stochastic Automata Networks (SAN) are based on Markov chains theory. Through the use

of SAN it is possible to describe a global model of a system composed by subsystems, defined as

stochastic automata, which have three primitives: states, transitions and events [47]. The definition

of stochastic is related to the fact that time is considered as a random variable with exponential

distribution for a continuous-time model as geometric distribution for a discrete-time model [6].

A stochastic automaton is defined through a mathematical model of a system with discrete

inputs and outputs. The system can be at any state among a finite number of states or internal

configurations. The internal state of a system can summarize information about previous inputs and

indicate what is necessary to determine the system behavior for next inputs [32].

The local system state is an individual state of each automaton, and the global model state is

defined by the combination of local states from the SAN model. The change of a global state is

given by changing a local state of any automaton.

29

In a SAN model, an event is responsible for the occurrence of transitions between states, changing

the global model state. Moreover one or more events can be associated to a single transition.

SAN has two different event types, local events and synchronization events. Local events are

responsible for changing a local state of a specific automaton, in order to demonstrate the individual

behavior of each automaton. Synchronization events change the state of two or more automata

in the model at the same time, describing the interaction between those automata. Events can

be associated to functional rates which can be applied to local transitions and synchronization

transitions. In addition those rates can be defined as part of functions to reflect the assessment of

other states available within a SAN model.

The solution of SAN models, e.g., the numerical results extraction, is usually done by specific

algorithms [14] created to deal with a state space derived from the combination of each modeled

entity [26].

There are recent studies to apply Stochastic Automata Networks in software engineering area to

evaluate software development projects [15,16,26], and according to the literature review there are

several challenges to simulate projects with teams geographically distributed, such as time, cost and

teams composition.

2.4 Simulation

The simulation approach can be described as building a model to simulate a system reality to be

evaluated. This model must describe functional system characteristics within an appropriate time

scale [46].

During the modeling phase, certain abstraction level must be considered, because the model does

not contains all system characteristics, it only contains relevant information to be modeled [6,25,52].

In this context, characteristics to be modeled should be careful selected in order to provide simulation

results that represent a execution of the system which has been simulated. According to Raffo

and Setamanit [51]: “Software Process Simulation Models can be used as a platform to combine

and synthesize previously developed theories and models, and incorporate a wide range of relevant

factors”.

Dafoulas et al. [17] presented a research with an approach for setting up pilot studies simulating

key features that make global software development teams particularly manageable. Contribution

to the FTS model: the importance of the spatial-temporal distance among team members and the

configuration of members across different sites. This knowledge provides a foundation of features

that make global software development teams particularly attractive to exploit and challenging to

manage.

According to Patil et al. [45]: “The nature and the scope of collaboration in knowledge work

have changed substantially during the past decade”. A portion of software development projects is

currently being distributed from North America and Europe to countries such as Brazil and India.

Contribution to the FTS model: provided an illustrative case of a typical geographically distributed

30

corporate software project. This knowledge described the methodology of a field study of a globally

distributed software development project in a multinational corporation.

Raffo and Setamanit’s work [51] developed a GSD model incorporating diverse research and the-

ories for GSD projects, including a set of relevant empirical factors, development methods, process,

product parameters and project environment factors. Contribution to the FTS model: evaluation

of different types of simulation paradigms, identifying important GSD factors as well as the review

of quantitative studies and models that could potentially be considered in the FTS model. This

knowledge provided a high-level description of a GSD prototype model.

O’Leary and Cummings [43] proposed a list of spatial-temporal indices that account for factors

such as teams size, distribution, use of technology and organizational structures. Contribution to

the FTS model: They developed a robust view of geographic dispersion in teams focusing on the

spatial-temporal distances among team members and the configuration of team members across

site. This work described the growing necessity of tools and terms to characterize teams geographic

dispersion.

Sooraj and Mohapatra [61] presented a model of 24 hours software development process to help

software project managers assess the profitability of a 24-h development configuration and to select

the optimal partnering sites. Contribution to the FTS model: the multiplicative model for estimating

the length of interaction time. This knowledge provides a foundation in modeling the time and cost

of development.

Treinen and Miller-Frost [64] presented time zone difference as an advantage on teams dis-

tribution generating a 24h development environment. Contribution to the FTS model: examined

whether it is possible to create a development environment in which tasks can Follow-The-Sun. This

knowledge provides a foundation of factors that can influence the success or failure of FTS projects.

Setamanit et al. [59] described a computer simulation model of software development process

which was designed to study alternative ways to configure global software development projects. One

of the finds from that work is that although under ideal assumptions follow-the-sun condition was

able to produce impressive reductions in time-to-market, under more realistic assumptions the reverse

was true. Contribution to the FTS model: the simulation model of the software development process

created to study alternative ways to configure global software development projects, including follow-

the-sun allocation strategies. This knowledge provided a view that when GSD factors are taken into

account, the follow-the-sun strategy is no longer the shortest.

In the context of software engineering simulation and analytical modeling, performance evaluation

in software engineering has been successfully used to provide quantitative performance measures [30,

31]. Stochastic models and simulation schemes have been developed towards to the evaluation of

dynamics of software projects [40], and also different performance predictions about geographically

dispersed teams [9, 27, 60, 70].

Even with the available simulation related work, their focus is not performance evaluation of

FTS projects using stochastic models. In this sense, there is an opportunity to research performance

evaluation of Follow-The-Sun projects using SAN.

31

2.5 FTS Performance Evaluation

Czekster et al. [15] presented in recent research stochastic models for software development

projects, in order to evaluate communication and availability of global software development teams.

Following this context, it was created a basic stochastic model for FTS projects evaluation [16].

In this context, it still exists opportunity to capture other important aspects of global software

development projects using FTS configuration, such as handoff efficiency, projects phase control,

teams capacity and others. This work identifies and catalog performance evaluation aspects that

can influence the decision-making process on Follow-The-Sun projects.

A project is a temporary endeavor to generate a product, a service or a result. Projects are

done around the world by companies and institutions to achieve several goals. In the software

development industry, project management is a common practice and has been widely used for

software development projects. Software development is defined as a knowledge intensive and

complex activity [1], and software development projects can be done distributed on different sites.

According to Prikladnicki et al. [50]: “As with many other industries today, software development

must increasingly adapt to teams whose members work together but are geographically distributed”.

The number of uncertain variables and scenarios to manage global software development projects

is bigger than managing local software development projects. There are several studies in literature

related to the complexity of global software development projects [1,10,28,29,50,51,61,64] to cite

a few.

This work modeling effort is centered on some characteristics of projects such as: time, cost and

quality.

2.5.1 Project View

The performance evaluation of projects under a portfolio can contribute to predict portfolio

results helping company and institutions to better drive their investments.

As mentioned on previous sections, FTS projects have several characteristics and challenges. As

part of performance evaluation process, projects scenarios must be created. Figure 2.1 presents a

project view. In this conceptual mapping we focus our attention to the following factors:

• Cost: Blended dollar rate per hour, to be assigned to each development site;

• Time: Planned project time in number of months;

• Quality: Will be measured as the amount of work spent on development versus the amount

of time on rework (bug fix) activities.

32

Figure 2.1: Project View

In this context, Follow-The-Sun projects are executed in different geographical locations usually

named as sites.

2.5.2 Site View

Site is the location where one or more participants of a distributed project will be performing

projects activities. Each site can have a team of N people executing a variety of projects tasks and

each team member can have a different allocation. As part of a FTS modeling effort the site is an

important entity.

According to Jalote and Jain [34]: “With a better understanding of the benefits and constraints,

adequate communication and coordination environments can be developed to support the tight

coordination that is necessary to reap the benefits of the 24-hour model”. In this context a more

realistic model also consider time slots that are overlapping [34], however this work model will not

consider overlapping of sites as part of this work scope.

Figure 2.2 represents the site view. The performance evaluation model will consider these

characteristics as part of scenarios coverage:

• Country (Country / team location);

• Shift size (number of work hours per day);

• Team size (number of people engaged on the project);

• Average cost (Average dollar rate per hour).

• Number of sites that will be part of the scenario;

• Handoff frequency time spent on handoff between sites;

• Time zone differences between sites;

33

Figure 2.2: Site View

After the description of aspects to be considered at scenarios level, a SAN model should be

created. Traditionally, scientific works on software engineering area present different applications for

mathematical models, e.g., automated software testing processes [4,24], and quantitative evaluation

of software development teams also evaluating project risks [2, 8].

This work demonstrates the usefulness of analytical modeling applied to Follow-The-Sun projects,

presenting the solution of a FTS software development life cycle. It focus on the impact of sites

interactions for time, cost and quality. This work does not have a goal to analyze the impact of

coordination or cultural diversity, even though these aspects are often relevant. This modeling effort

only aims on the impact of different FTS teams configurations in software development projects.

This section presented project aspects that will be used as part of performance evaluation scenar-

ios. Global software development stochastic modeling and FTS stochastic modeling are challenges

already discussed by Czekster et al. [15, 16] and Urdangarin et al. [65].

34

35

3. Methodology

This section presents the methodology and procedures used on this research.

3.1 Research Strategy

This research started by a literature review and a practical case study through performance

evaluation, manipulating different variables for results analysis. This research is exploratory, because

it examines an issue or problem apparently not largely studied or that has not been previously

approached in the same way in literature. Exploratory research is challenging because it does not

use formal logic methods neither exhaustive experiments, however it requires examples in order to

find indicatives results [68]. This type of research aims to explore a research problem in order

to explicitly render it. It also involves literature review and the use of examples to demonstrate

indicatives to enhance the research problem understanding.

3.2 Research Design

This section describes the process applied to answer the research question. The first stage is

composed of a literature review and a practical case, the second stage is composed of an academic

experiment and the first modeling exercise and the final stage is composed of the final model. Figure

3.1 graphically shows this research design.

Figure 3.1: Research Design

3.3 Literature Review

This literature review aims to find existing studies related to this research goal. This research

began with a literature review with focus on: Analytical Modeling, Stochastic Automata Networks,

Global Software Development and Follow-The-Sun.

The literature review used two digital libraries, IEEExplore e Elsevier ScienceDirect. The search

was executed between the second semester of 2010 and the first semester of 2011. Using different

research strings were listed 248 studies and 21 of them were selected and reviewed.

Table 3.1 presents the research strings used:

36

Table 3.1: Research Strings

String IEEExplore Elsevier Reviewed

“follow-the-sun” 13 38 [9, 10, 12,
19, 42, 64,
66, 67, 69]

“follow-the-sun” AND “SAN” 0 9

“follow-the-sun” AND “stochastic automata networks” 0 0
“follow-the-sun” AND “simulation” 1 0 [59]

“follow-the-sun” AND “stochastic modeling” 0 0

“follow-the-sun” AND “stochastic simulation” 0 0

“global software development” AND “SAN” 111 35 [58, 63]
“global software development” AND “stochastic automata
networks”

0 0

“global software development” AND “stochastic modeling” 0 1 [33]
“global software development” AND “stochastic simula-
tion”

0 1 [33]

“global software development” AND “simulation” 6 33 [17, 33,
38, 39, 45,
59, 61]

Reviewing the initial 19 selected studies and based on author names and their references other

studies were found, creating a list of available references available at the bibliography session. Once

the literature review was completed, it was performed an analysis to identify practices that could be

used as part of this study. Based on this information, it was created a SAN model for FTS projects

which will be presented in details at chapter SAN Model.

3.4 Practical Case

In this paper [26], it was presented SAN analytical modeling for a practical case study from

an Information Technology company that has multiple sites and different participants’ roles and

expertise. It has performed the matching of model predictions against actual project observations.

Also it had focus on the central entity varying its availability and the level of provided support in

order to observe the impact on participants’ performance. This work was summarized with further

discussions of numerical results and possible model extensions.

It reported findings about the use of SAN for analytical modeling of software development teams

in order to predict their performance in different scenarios. Results were based on a case instance of

a multi-site project analyzing the effect of availability and levels of support provided by a centralized

management entity. In order to verify the prediction accuracy, the numerical results obtained from

the proposed model were compared with the actual hours spent in a real project’s phases. It had done

analysis of possible scenario variations in the project considering different behaviors and participant’s

37

skills. Specifically, the availability and quality of the central entity support is analyzed in different

scenarios, and the impact on the whole team productivity.

In order to show that analytical modeling is useful to complex state-based performance analysis

of software development teams in multi-site context it presented a model of a practical case study

named as Project ALPHA due to confidentiality.

In that model, the project and delivery managers were abstracted as a central team entity.

Therefore, activities of these managers are encapsulated in automaton Activities, as well as their

availability to interact with other participants are encapsulated in automaton Availability.

(senior)
Developer Developer

(junior)
Developer

(junior)
Developer

(junior)
Tester

(senior)

ActivitiesAvailability
(junior)

System Engineer Database Admin.
(senior)

Data Warehouse
Engineer (senior)

Business Analyst
(senior)

Business Analyst
(senior)

Data Warehouse
Engineer (junior)

User
(senior)

User
(senior)

User
(senior)

Delivery & Project Managers

Malaysia India

Brazil

USA

s14

...
s1 co1...

co14
a u

A

U

M

C

e1

Type Event

loc e12

loc r12

syn co12

syn s12

r1

s1 s2
r2

e2 s3
r3

e3 s4
r4

e4
r5

s5 e5

co1 co2 co3 co4 co5

r12

e12
r13

e13
r14

e14

s6
r6

e6
r7

s7 e7 s8
r8

e8 s9
r9

e9
r10

e10
r11

e11

C

W

S C

W

S S S S

S S

SSSSSS

S

C

WW

C C

W

C

W W W

CC

W

CC

W

CCC

W

C

W W W

co12

co6 co7 co8 co9 co10 co11

Type Event

loc e9

loc r9

syn co9

syn s9

Type Event

loc e10

loc r10

syn co10

syn s10

Type Event

loc e8

loc r8

syn co8

syn s8

Type Event

loc e11

loc r11

syn co11

syn s11

Type Event

loc e7

loc r7

syn co7

syn s7

Type Event

loc e6

loc r6

syn co6

syn s6

Type Event

loc a
loc u

co14co13

Type Event

loc e14

loc r14

syn co14

syn s14

Type Event

loc e13

loc r13

syn co13

syn s13

s13 s14

s11s10

s12

Type Event

loc e1

loc r1

syn co1

syn s1

Type Event

loc e2

loc r2

syn co2

syn s2

Type Event

loc e3

loc r3

syn co3

syn s3

Type Event

loc e4

loc r4

syn co4

syn s4

Type Event

loc e5

loc r5

syn co5

syn s5

Figure 3.2: The SAN model that represents Project ALPHA

Each participant was modeled as an automaton of three states representing its possible activities

in a workday: (W)orking, (S)eekingSolution and (C)ollaboration. The software development

team was composed of N = 14 participants, where five participants were from Brazil, six from USA,

one from Malaysia and two from India. Participants (developers, testers, business analysts, data

warehouse engineers, users, system engineers and database administrators) were located in different

sites and had different expertises, need to report and collaborate with the project and delivery

managers, as well as they collaborate with other participants.

The numerical solution is primarily expressed by the steady-state probability of the SAN model.

Based on these probabilities and participants individual hours allocated to Project ALPHA, it can

38

be determined the average working hours per eight-hour workday. Readers interested in more infor-

mation about the software tool for numerical solution of SAN models refer to PEPS (Performance

Evaluation of Parallel Systems) [5] or SAN lite Solver [54].

The whole model with states, transitions, events and their associated rates can be numerically

solved in order to obtain the steady-state probabilities of the model.

Table 3.2: Estimated event rates for an eight-hour workday

Type Event Description Rate

loc a

Central team is available to collaborate with participants
on average 2 hours per workday, i.e., central team col-
laborates on a rate of 4 times per workday.

8/2

loc u
Central team is unavailable to cooperate with partici-
pants on average 6 hours per workday. 8/6

loc e

Junior participants work on average 1 hour per workday
without any kind of central team support. 8/1

Due to their expertise, senior participants work on av-
erage 7 hours per workday without any kind of central
team support.

8/7

loc r

Junior participants spend on average 7 hours per work-
day seeking solutions. 8/7

Senior participants spend on average only 1 hour per
workday seeking solutions because of their expertise. 8/1

syn co
Once a participant needs to collaborate with the central
team, the collaboration occurs immediately if the central
team is available.

disp

syn s
Due to the central team support quality (from medium
to low), the collaboration takes on average 2 hours per
workday.

8/2

Based on these probabilities, it is possible to calculate the team’s performance for different

scenarios varying, for example, the central team’s availability and the level of expertise of participants.

The project quantitative data was collected focusing mainly on the execution phase working hours

and on the impediments occurrence during the project. Impediments were described by participants

and central team managers as effective interactions among them.

Table 3.3 shows the estimated effort and actual hours related for each phase of Project ALPHA.

It is important to remark that approximately 3,317.22 hours were actually spent by participants

completing their tasks in the execution phase.

Project ALPHA faced issues resulting in a significant amount of impediments in the project

execution phase. Table 3.4 summarizes these impediments grouped in eight categories: (i) Resource

indicates problems related to project resource constraints, allocation, changes and replacements;

(ii) Technology indicates issues concerning tools used within the project; (iii) Process indicates

problems related to the development process exceptions during project execution; (iv) Requirements

39

Table 3.3: Project Estimated Effort × Actual Hours

Project phase Estimated Actual

Initiating 611.70 h 771.65 h
Planning 1,529.25 h 895.60 h
Execution 3,364.35 h 3,317.22 h

Monitoring and Controlling 611.70 h 438.80 h

indicates the requirement information gathering issues; (v) Schedule indicates delays in project

deliverable dates; (vi) Deliverable indicates code or project artifacts, e.g., documents, issues; (vii)

Scope indicates issues to project scope changes; and (viii) Infrastructure indicates problems with

application infrastructure.

In Table 3.4, we present the quantity, category, average, and total duration of project’s imped-

iments. We can notice in this table that Project ALPHA has spent about 332 hours dealing with

impediments.

Table 3.4: Project’s impediments

Quantity Category Average Total duration

9 Resource 8 h 72 h
3 Technology 4 h 12 h
2 Process 8 h 16 h
11 Requirements 4 h 44 h
4 Schedule 8 h 32 h
4 Deliverable 24 h 96 h
1 Scope 30 h 30 h
6 Infrastructure 5 h 30 h

40 Total 8.3 h 332 h

Table 3.5 shows the results of the main entities of the proposed model (Central Team, Senior,

and Junior participants) and their correspondent steady-state probabilities.

Observing the results presented in Table 3.5, it is possible to notice that senior participants have,

as expected, high autonomy to deal with their tasks. However, the probability of working state (W)

for senior participants is slightly smaller than the 87.5% corresponding to the seven hours of working

per eight-hour workday. Observing the working percentage of junior participants, we find a quite low

value of 14.7% which corresponds to a little more than one hour of work per eight-hour workday,

while most of their time (more than six hours per workday) is spent in state S (seeking solution).

Junior participants do not collaborate very often with the central team (half an hour per workday),

which is probably a side effect of the low availability and low quality provided support.

Table 3.6 shows the participants individual working hours taking into account the average per-

centage of working hours each participant was allocated to the project, project ALPHA spent

40

Table 3.5: Steady-State probabilities of the proposed model

Entity State Probability

Central Team

A 25.00%
U 75.00%
M 56.27%
C 43.73%

Seniors
W 87.09%
S 11.96%
C 0.95%

Juniors
W 14.70%
S 78.26%
C 7.04%

3,317.22 hours in the execution phase, instead of the initially estimated 3,364.35 hours. This

difference corresponds to less than 1.5%, which already is a small difference.

Moreover, Table 3.6 shows that the analytical model instantiated to Project ALPHA parameters

pointed out an average of 13.69 working hours, considering all participants individual working hours.

Consequently, using as basis 242 days (11 months with 22 workdays) of project execution, the total

number of working hours calculated from the model probabilities is 3,312.98 hours. Note that the

model provided an approximated value for the total working hours, which is even closer to the actual

number of hours spent in the execution phase. In fact, the predictions obtained from the SAN model

deliver estimations with a relative error of less than 0.2%.

Table 3.6: Project working hours obtained from the proposed model

Quantity Expertise
Allocation State W Working

(%) (%) hours per day

1 Senior 100 87.09 6.97
3 Junior 75 14.70 2.65
1 Senior 20 87.09 1.39
2 Senior 10 87.09 1.39
1 Junior 3 14.70 0.04
3 Senior 3 87.09 0.63
1 Junior 5 14.70 0.06
1 Senior 5 87.09 0.35
1 Senior 3 87.09 0.21

Total 13.69

Analogously to the prediction of working hours, Table 3.7 presents the results from the analytical

41

model regarding project impediments, using state C probabilities as statistical information about

needed interactions to solve issues. The cooperation hours are summed in this table to indicate the

time spent in solving project issues cooperating with the central team, considering an eight-hour

workday. State C abstraction indicates that participants have found issues difficult to overcome by

themselves and need effectively to cooperate with the central team managers to solve them.

Table 3.7: Project impediment hours obtained from the proposed model

Quantity Expertise
Allocation State C Cooperating

(%) (%) hours per day

1 Senior 100 0.95 0.076
3 Junior 75 7.04 1.267
1 Senior 20 0.95 0.015
2 Senior 10 0.95 0.015
1 Junior 3 7.04 0.017
3 Senior 3 0.95 0.007
1 Junior 5 7.04 0.028
1 Senior 5 0.95 0.004
1 Senior 3 0.95 0.002

Total 1.43

The analytical model predictions for the collaboration hours to solve project impediments is on

average 1.43 hours per day. Considering 242 workdays as the project duration, the model results

indicate a total of 346.06 hours of impediments. Comparing this prediction with the 332 impediments

hours observed in Project ALPHA, a relative error of 4% was found taking into account the amount

of information that was abstracted while defining the model states and event rates.

The first contribution of this practical case [26] was to put into a real project scenario a theoretical

modeling effort to describe a complex environment of software development. Despite the numerous

abstractions made in the modeling stage, the obtained numerical results demonstrate an accuracy

when compared to actual project outcome. Such fact by itself justifies the initial assumption that

analytical modeling, in the particular case modeled using SAN formalism, may be a worthy option to

build teams in software development projects. Another contribution of this work was to numerically

demonstrate how much a project success remains on the number of experienced (senior) participants.

Not even with a near ideal situation of central team availability and quality, the problems brought

by a large number of junior participants can be overcome.

3.5 Academic experiment

This paper [37] reports an academic experiment which has as a goal to verify if an adaptive

methodology had more benefits than a prescriptive methodology for a FTS strategy. Prescriptive

42

software development uses the traditional cycle through the phases of Initiation, Analysis, Design,

Construction and Testing. However, Adaptive software development replaces the traditional waterfall

cycle with a repeating series of planning, development, testing and learning cycles. This study

presented the design of a controlled experiment to investigate the differences of project quality and

project speed when using and adaptive versus a prescriptive approach for FTS. It used fictitious

maps with teams distributed in two sites in order to exercise different teams working on design and

development activities. Each site had two teams representing software designers and developers

and results demonstrated that the use of the adaptive approach increases the speed, but not the

accuracy and the quality of the work.

This study aims to investigate both the adaptive and prescriptive approaches on using a FTS

strategy, and compares the results. To reach this goal it performed a controlled experiment with

students from a postgraduate Computer Science program at the Pontifical University Catholic of

Rio Grande do Sul (PUCRS) in Brazil.

The experiment was planned to have five shifts of 15 minutes each (representing one workday).

For each approach, the participants were organized in two sites where each site had two teams. It

was used the FTS with no overlap condition between teams. The number of maps that each team

delivered divided by 13 (total number of possible maps) results on the working speed. On five shifts,

adaptive teams had produced six out of thirteen maps and prescriptive teams had produced four out

of thirteen maps and prescriptive teams produced 4 out of thirteen maps. Teams, which had used

adaptive approach, obtained 16% more speed than teams that have used a prescriptive approach.

To check the accuracy obtained, were considered derivable tasks. Each map was composed by

one background image + two icons + five arrows. In addition, it was also considered the right

position of the elements on map (arrows and icons). The total points of correct elements for each

map are 12.

Using adaptive approach, teams produced more maps than teams using prescriptive approach.

However, when we observe total points of correct elements for each map, prescriptive teams had more

accuracy. It also verified the quality criteria between teams: Adaptive: 4.17/6 = 70% Prescriptive:

3.38/4 = 85% Findings presented that teams on adaptive approach had 15% less quality, in contrast,

these teams had 16% more speed.

This experiment [37] promoted some insights on how FTS could be used in the software industry.

It also contributed to the SAN modeling events and transitions design, specially to set the start

handoff (SH) and finish handoff (FH) event rates probabilities.

3.6 Modeling

In this paper [16], it was presented a study about Follow-The-Sun (FTS). This work goal was to

discuss a formal mapping of FTS characteristics to a stochastic model in order to predict performance

indices of teams such as availability and risk assessment. The modeling effort was used to improve

understanding and feasibility evaluation for FTS projects [16].

43

Moreover, it demonstrated benefits of using the Stochastic Automata Networks (SAN) formalism

for the modeling and evaluation of distributed teams, since SAN provides a modular description with

functional primitives. The modeling effort presented aims to enhance understanding and feasibility

evaluation for FTS projects calculating probabilities for availability and project risk factor, such as

handoff efficiency, considering the conceptual framework proposed by Carmel et al. [10]. Conclusions

pointed out future works directed to model extensions to capture advanced characteristics.

This modeling effort was centered on the handoff efficiency concept [11] to evaluate the proba-

bilities of each site being reworking activities or waiting for clarifications in a FTS project. Usually

FTS projects have strict rules imposed on their interactions using handoffs between teams at fixed

intervals of time.

For the composition of model’s states and events, there were assumptions related to FTS char-

acteristics and behavior instantiating a stochastic model having a set of s multiple sites (e.g., each

site or team encapsulating n members) working in different time-zones. It considered multi-variate

conditions, where sites can shift their work in an efficient (or inefficient) manner, depending on the

project configuration.

The computed performance indices are actually a set of quantitative measures from the model,

i.e., transient or steady-state probabilities that allow us to estimate the impact of the handoff

efficiency on the overall project duration. The model could be used to inspire future instantiations

of different models. In this sense, the approach adopted here allows a minimal FTS setting where

modelers can extend it to convey other behaviors or to test novel configurations (perhaps optimal

ones or settings where teams begin to somehow to be underperformed).

Figure 3.3 shows an example of FTS composed of three sites across the world. In the asyn-

chronous handoff point of view, the sites are unable to interact with the site that shifted the work

due to different time zones.

The stochastic automaton representing each site is a five-state model composed of states that

can be assumed by the site at each time in a workday:

• Off-line state, the site is off-line due to time zone, so it is unreachable for collaboration,

communication or interaction;

• Opening handoff state, beginning of the workday;

• Working state, actual work is being performed in the site (active workday);

• Reworking state, misunderstandings occurred mainly in the handoff process lead to re-

work [21];

• Closing handoff state, end of the workday.

Figure 3.4 present the model where event wk has an associated function that allows (or not) the

occurrence of this event. Since we are modeling an asynchronous handoff, a site can open its handoff

44

Figure 3.3: Follow-The-Sun

process without changing the state of earlier or next sites. However, each site has a dependency

of the state from the earlier site to start to work or rework a task. In this asynchronous model, a

function is associated to event wk, which verifies if the earlier site’s handoff has been completed.

For instance, event wk1 can occur if Site #3 is in Off-line state, i.e., if Site #3 has closed its

handoff. Otherwise, event wk1 cannot occur and need to wait the closure of handoff from Site #3.

This model is composed of three sites, but it can be instantiated for 2, 3, or 4 sites (e.g.,

considering 24-hour software development with 6-hour shift per site) for a model with four sites.

The individual behavior of a given Site #i, where i is the index of the site, is represented by the

following events: openi, wki, rw i, nti, cl_wki, cl_rw i, and off i.

With a better understanding of the benefits and constraints, adequate communication and coor-

dination environments can be developed to support the tight coordination that is necessary to reap

the benefits of the 24-hour model [34].

This work [16] presented the mapping of the interaction pattern of development sites under FTS

methodology for a SAN model. The main entities (Site #1, Site #2 and Site #3) were represented

by automata. The abstraction, for instance, represented the handoff within a project: some of the

time is spent on Opening handoff, Closing handoff and the rest in Working or Rework states. It

presented an abstraction of how to model development teams in Follow-The-Sun (FTS) context

and it has proposed a scenario that enables the investigation of overall FTS project performance. It

was an initial approach that showed how the combination of stochastic modeling and FTS could be

mixed to produce important considerations to be used by decision makers, i.e., solving the stochastic

models it is possible to obtain a better view of projects bottlenecks before the projects execution.

45

Off−line

Working

Reworking

Opening
hand−off

Closing
hand−off

Off−line

Working

Reworking

Opening
hand−off

Closing
hand−off

Off−line

Working

Reworking

Opening
hand−off

Closing
hand−off

Site #3

Site #1

Site #2

nt3rw3wk3(1-π3)

nt1rw1wk1(1-π1)

nt2rw2wk2(1-π2)

wk1(π1) cl_wk1

wk3(π3)

wk2(π2) cl_wk2

cl_wk3

cl_rw3

cl_rw1

cl_rw2

off 1

off 2

off 3

open1

open3

open2

Figure 3.4: SAN model

3.7 Final Model

The previous proposed model focused on the handoff efficiency of follow-the-sun projects and

discussed how to parameterize asynchronous models with different measures or observations for

different aspects. In this sense, the final model was created based on the studies presented on this

methodology and the full description of the proposed final model is presented in Chapter 4, Section

4.1. An abstract about this final model is available on Santos et al. [56].

46

47

4. SAN Model

According to Czekster et al. [16]: “stochastic modeling is a feasible and flexible alternative

to abstract GSD teams configuration in environments such as Follow-The-Sun to measure teams’

performance. Moreover, the stochastic modeling can be used during project planning phases in

order to find relevant indicative in terms of performance analysis that could help the planning

improvement”.

This section presents a follow-the-sun analytical model using stochastic automata networks for-

malism. The goal of this model is to instantiate multiple sites (composed by N team members).

The main entities represented in this model are described as automata.

4.1 Automata Definitions

Automaton is an entity of a SAN model. Figure 4.1 graphically shows three dispersed software

development sites interactions in FTS. In this model, it assumes that development work cycle is

divided between different sites. Thus, it considers sites self-contained, i.e., sites only work on tasks

under their shift assignments. Handoff interactions occur between Site 1 and Site 2, Site 2 and

Site 3, Site 3 and Site 1. Team members do not interact with another site that is different from

their previous handoff or their next handoff. There is a handoff to transition activities between shifts

from previous site to the next one. This work focus on three sites, however it can be modified and

extended to use a different number of sites.1

Figure 4.1: Clock Memory Automaton

The clock memory automaton states description is available in Table 4.1.

1The reason of been using three sites is described on the Section 4.2.

48

Table 4.1: Clock Memory Automaton States

State Description

S1 Site One Working
H1 First Handoff
S2 Site Two Working
H2 Second Handoff

S3 Site Three Working
H3 Third Handoff

Beyond the description of SAN model entities and its relationships it is necessary to assign

durations probabilities that every entity rests in a given state named as model parameters and this is

paramount within analytical modeling because of its expressiveness [15]. For each transition between

states there is an event associated and each event has a probability of occurrence. Clock memory

automaton has six events associated to it as described in table 4.2.

Table 4.2: Description of Clock Memory events

Event Description

cl1
This is a synchronizing event and execute the transition from close
handoff to offline on site one.

h1s2

This is a synchronizing event and execute the transition from site one
offline to start handoff on site two.

cl2
This is a synchronizing event and execute the transition from close
handoff to offline on site two.

h2s3

This is a synchronizing event and execute the transition from site two
offline to start handoff on site three.

cl3
This is a synchronizing event and execute the transition from close
handoff to offline on site three.

h3s1

This is a synchronizing event and execute the transition from site three
offline to start handoff on site one.

The Site i automaton abstracts the activities that will be performed by the sites instantiated in

the model. Each site can perform the following activities:

• Handoff: Transition of activities between shifts of different sites.

• Requirements Gathering: Requirements management activities

• Development: Development and unit test activities

• Test: All test related activities

• Bug Fix: Rework related activities

49

In this context, the mapping of development team interaction of Site i (where i is the index of

the site) to a SAN model is straightforward, as presented in Fig 4.2.

Figure 4.2: Team Site i Task Automata

Each site has N members that could be used to evaluate different development velocities per

site, helping the decision making process to be more efficient in terms of resource management.

The abstraction considers software development life cycle represented in each site by seven states

as described in Table 4.3.

Table 4.3: Site i States

State Description

OFFi Site i is off-line and do not perform any project activity.

SHi Start handoff completing the work transition from previous shift to current shift.

RGi Requirements Gathering and business system analysis.
DEVi Software development and unit testing.

TSTi Quality assurance testing.

BFi Rework and bug fix.

FHi Handoff to close activities from current shift to next shift.

There are several other type of activities that could be executed within a site that could be

included on the model abstraction, but for the scope of this research it will consider seven different

activities states per site.

For each state transition there is an event associated, for Site i automata all events are type of

synchronizing because they are responsible to synchronize information with the automata Memory

Control which will know what is the activity that the next site or shift should resume working once

the current site is set to offline state. Each site automaton has thirteen events associated to it as

described in table 4.4.

50

Table 4.4: Description of Site i events

Event Description

hisi+1

Start handoff: this event synchronizes i-th site automaton with Clock Memory
automaton, coordinating start handoff activities between sites.

hi−1si

Finish handoff: this event synchronizes i-th site automaton with Clock Memory
automaton, coordinating finish handoff activities between sites.

cli
Closing activities: when this event occurs the i-th site goes to the state where it
needs to finish handoff.

wri

Resume working on requirements gathering: this event synchronizes i-th site au-
tomaton with Project Memory automaton, enabling the site to work on requirements
gathering activities once the start handoff was completed.

wdi

Resume working on development: this event synchronizes i-th site automaton
with Project Memory automaton, enabling the site to work on development activities
once the start handoff was completed.

wti

Resume working on testing: this event synchronizes i-th site automaton with
Project Memory automaton, enabling the site to work on testing activities once the
start handoff was completed.

wbi

Resume rework: this event synchronizes i-th site automaton with Project Memory
automaton, enabling the site to work on bug fix activities once the start handoff was
completed.

rdi

Move to development: this event synchronizes i-th site automaton with Project
Memory automaton, by the transition of activities from requirements gathering to
software development.

dri

Move from development: this event synchronizes i-th site automaton with Project
Memory automaton, by the transition of activities from software development to
requirements gathering.

dti

Move to testing: this event synchronizes i-th site automaton with Project Memory
automaton, by the transition of activities from software development to testing.

tdi

Move from testing: this event synchronizes i-th site automaton with Project Mem-
ory automaton, by the transition of activities from testing to software development.

tbi

Move to bug fix: this event synchronizes i-th site automaton with Project Memory
automaton, by the transition of activities from testing to bug fix.

bti

Move from bug fix: this event synchronizes i-th site automaton with Project Mem-
ory automaton, by the transition of activities from bug fix to testing.

The use of one automaton to represent each team member within the SAN model increases the

time required to solve the SAN model, however it is the way that a model can better represent

individuals project allocation. In Figure 4.3 describes the automata that represent the number of

members of Site i.

Team site automaton abstracts N team members working at a given shift and different members

allocations can be set on the parameterization phase. Each site can have N participants working.

51

Figure 4.3: Team Site i

Table 4.5 presents team site states description.

Table 4.5: Team Site States

State Description

Avail Indicate that a participant is available to work

Unav The participant is unavailable and cannot perform any project task

Team members can have different allocations to different projects, in this sense team members

are abastracted in this model as an automata with two states representing the availability and

unavailability of a given team member. Table 4.6 presents a summary of team site i events, previously

illustrated.

Table 4.6: Description of Teams Site i events

Event Description

ai

This is a local event and execute the transition of a team member from
available to unavailable.

ui

This is a local event and execute the transition of a team member from
unavailable to available.

Moreover, there is an automaton for project flow in order to control the handoff (activities

transitions) between sites. In case a site is working on development, the project flow automaton

controls that it is the current task, when the current shift handoff is complete and the next shift

start handoff, the next site will follow the activity pointed by project flow automaton.

Figure 4.4 presents the automaton that controls the project memory. Project memory shifts

control is used to track what activity has been handled by a given site and when it transition to the

next shift, it will resume work from the point where the previous shift stopped to work.

52

Figure 4.4: Project Memory Automaton

Figure 4.5 presents the full stochastic automata network that represents the model. Project

memory shifts control is used to track what activity has been handled by a given site and when it

transition to the next shift, it will resume work from the point where the previous shift stopped to

work.

Figure 4.5: Full Model View

The full model view provides an abstraction of a model instance using three sites and N team

members, the automata representing team members can have N instances according to the number

of people to be considered as part of the performance evaluation analysis.

Also it is important to remark that for each instance of a team member automata it is possible

to set different events probabilities enabling the evaluation of different people allocation as well as

different development velocities because the according to the number of members instantiated per

site it also enables different development velocities per site.

In the context of project memory states transitions, for each transition between states there is

53

an event associated and each event has a probability of occurrence. Project memory automaton has

ten events associated to it as described in table 4.7.

Table 4.7: Description of Project Memory events

Event Description

wri

Resume working on requirements gathering: this event synchronizes i-th Project
Memory automaton with Site i automaton, enabling the site to work on requirements
gathering activities once the start handoff was completed.

wdi

Resume working on development: this event synchronizes i-th Project Memory
automaton with Site i automaton, enabling the site to work on development activities
once the start handoff was completed.

wti

Resume working on testing: this event synchronizes i-th Project Memory automa-
ton with Site i automaton, enabling the site to work on testing activities once the
start handoff was completed.

wbi

Resume rework: this event synchronizes i-th Project Memory automaton with Site
i automaton, enabling the site to work on bug fix activities once the start handoff
was completed.

rdi

Move to development: this event synchronizes i-th Project Memory automaton
with Site i automaton, by the transition of activities from requirements gathering to
software development.

dri

Move from development: this event synchronizes i-th Project Memory automaton
with Site i automaton, by the transition of activities from software development to
requirements gathering.

dti

Move to testing: this event synchronizes i-th Project Memory automaton with Site
i automaton, by the transition of activities from software development to testing.

tdi

Move from testing: this event synchronizes i-th Project Memory automaton with
Site i automaton, by the transition of activities from testing to software development.

tbi

Move to bug fix: this event synchronizes i-th Project Memory automaton with Site
i automaton, by the transition of activities from testing to bug fix.

bti

Move from bug fix: this event synchronizes i-th Project Memory automaton with
Site i automaton, by the transition of activities from bug fix to testing.

Different number of resources can be allocated on each site in order to enhance the balance

on project costs. Once the parameterization is complete, the model can be executed in specialized

tools for numerical solution, e.g., PEPS software tool [5] or SAN Lite-Solver [54], in order to extract

performance indices and measures [15]. Next section presents model options and constraints.

54

4.2 Model Options and Constraints

This work has the assumption that workload (daily activities) is equally complex for all team sites

and that project resources are assigned from the begin to the end of each project. Also this model

abstraction do not consider how factors such as different cultures, tasks complexity and workload

impact on the performance evaluation.

Based on Czekster et al. [16] research, this work replicates the following assumptions:

• to support team design decisions the model is easily extended to more or less sites, with

different working hours, reworking probabilities, average time spent in handoff activities, given

a specific project;

• cultural issues, lack of communication or coordination support are not explored in this work.

This work used three sites as default model option because it is the closest way to cover 24 hours

of a workday. Van Solingen and Valkema [66] found indications that when the number of sites in

a daily cycle increase, on average the overall working speed of sites increased, however they have

mentioned that: “The maximum number of sites in a daily cycle is finite, due to the 24 hours in

a day. More sites provide more working capacity, however also require more overhead and increase

the likelihood of mistakes”. Based on that study it was decided to use a number of sites between

two and four. Besides, Sangwan et al. [55] recommend to starting a global software development

project with no more than two or three sites. On this context, it was decided to use three sites on

the stochastic modeling.

When instantiating the stochastic model it needs to consider the number of resources working

on each site for performance evaluation numerical results. Sangwan et al. [55] suggested a rule of

thumb where teams should be no larger than 10 people because “jumping into a large distributed

project without having past experience is not recommended”.

The default rates applied in this model abstraction are based on a workday of 8 hours. The

proposed model does not predict shifts overlap. However literature studies [64, 67] point out cases

where is recommended a sticky handoff, i.e., intense interactions are more favorable than a clean

handoff (drop-and-go approach). The average rates time used on each model state are based on

the following literature references Javed et al. [35], Basili et al. [3], Carmel et al. [10].

• Javed et al. [35], a work based on four industry projects.

Average RG time: 23%

Average DEV time (Design + Coding): 42%

Average TST time: 24%

Average time others: 11%

• Basili et al. [3], a work based on a lab experience.

Average RG time: 12%

55

Average DEV time (Design + Coding): 43%

Average TST time: 30%

Average time others: 26%

• Carmel et al. [10], a foundation for understanding FTS.

Average RG time: 10%

Average DEV time (Design + Coding): 55%

Average TST time: 25%

Average time others: 10%

Regarding quality it will account for each site probabilities of state Bug Fix (BF) divided per

the probability of state Development (DEV). Regarding time it will account for each site the sum

of probabilities of all states. It is clear that there are more aspects to be discussed about time, cost

and quality, but those are not considered for this scope of work. Regarding cost it will apply an

average dollar rate hour value per site times the number of project hours.

Based on the sense that this research has some exploratory aspects, examples were created to

calibrate and to evaluate the model due the lack of practical FTS cases available in literature, more

details are available on research limitations session. In this sense average U$ value per hour was ad

hoc set to exercise the model due the lack of literature with detailed information about real costs,

more details available on research limitations session. The cost calculation is given by the sum of

the average time spend on each model state in each site, times the average dollar cost per hour for

a given site. The average dollar cost per country was ad hoc set due to the lack of available data

in the literature.

This research uses heuristics to split different amount of hours on the scenarios creation, those

heuristics basically divide a given number of hours for the activities performed by each site such

as: requirements gathering, development, testing, bug fix and handoff. The performance evaluation

chapter will provide the details about the heuristics use and the scenarios creation.

Besides previous mentioned references the model was also calibrated with the following infor-

mation from literature [9, 16, 17, 34, 43, 45, 51, 61, 64]. It is important to remark that the model

abstraction level can be easily changed in order to allow the model to handle four or more sites.Three

sites is a suggested parameterization for a FTS performance evaluation covering 24 hours of work.

Next chapter demonstrates the model instantiation, performance evaluation and numerical results.

56

57

5. Performance Evaluation

There are different practices to measure software development projects and it is difficult to have

an agreement about what should be measured and how to analyze measures results. In this sense,

the SAN model and performance evaluation can be used as a tool to enhance Follow-The-Sun

projects performance control.

Software metrics can help project management planning, in this phase it is possible to identify

the amount of required effort and an estimated cost to complete a certain project. In software

development projects, there are costs of materials, servers and others, but human resources are

usually the main cost factor. Another aspect is how to manage project time, in order to ensure

that a project will achieve project goals. Besides quality is a project aspect to be considered. As

mentioned in previous sections, this model will focus on scenarios to measure time, cost and quality

for Follow-The-Sun software development projects.

5.1 Running The Model

To illustrate and to exercise the functionality and the usefulness of the Follow-The-Sun model,

it was created a set of three example projects. Due to the fact of been using stochastic automata

networks for performance evaluation, the values generated by the model execution are by nature

stochastically precise.

5.1.1 Samples Settings

These examples follow the model defined phases: Requirements Gathering (RG), Design and

Coding (DEV), Testing (TST) and Bug fix / Rework (BF). Besides this model consider Start

Handoff from previous shift (SH), Finish handoff to the next shift (FH) and When the site is off line

(OFF). Examples are based on UTC+12-12 and the average time used on each model event rate is

based on the following literature references Javed et al. [35], Basili et al. [3], Carmel et al. [10].

5.1.2 Sample One

This project has three development sites: New Zealand (UTC+12), Russia (UTC+4) and Bolivia

(UTC-4) with the following respective average hour dollar rate 22.5, 30.00 and 20.00. The average

dollar rate is ad hoc set due to the lack of cost information per country from the literature. Figure

5.1 present this sample.

It considers a day of 24 hours of work divided by three sites. Assumptions and basis for calcula-

tions:

58

Figure 5.1: Sample One

• Work days per week: 5;

• Work hours per day: 8;

• Non project work: 8 hours per month. These are regular activities, time away, staff meetings;

• Project activities considers all tasks related to software development including coordination

time and project meetings;

Each sample scenario was created to ilustraste the use of model instances. This example instance

used the estimates described in Table 5.1.

Table 5.1: Sample One Project Estimates

State Hours Avg. cost

Requirements Gathering 1,000.00 24,134.80

Development (Design + Coding) 2,500.00 60,791.63

Testing 1,200.00 28,969.40

Bug Fix and Rework 600.00 14,482.24

Operational Handoffs 150.00 3,330.27

Total 5,450 hours U$ 131,708.33

For each model instance, heuristics were build to create the estimation scenario, in this sense

this model instance estimates are based on the following heuristics:

• Requirements gathering = 18.3% of a work day.

• Development = 45.84% of a work day

59

• Testing = 22.11% of a work day

• Bug fix = 11% of a work day

• Handoff = 2.75% of a work day.

Sample One Performance evaluation estimates

• Expected duration in months: 4

• Average number of hours per month: 1,362.50 (5,450 hours ÷ 4 months)

• Average number of hours per day: 61.93 (1,362.50 hours ÷ 22 workdays)

• Average number of hours per site per day: 20.64 (61.93 hours ÷ 3 sites)

• Average number of resources need per site: 2.58 (20.64 hours ÷ 8 hours)

• Average monthly cost: 32,927.08 (131,708.33 ÷ 4 months)

• Quality: 23.99% ((6.82 BF hours daily (11.01%) ÷ 28.41 DEV hours daily (45.87%) × 100

)

According to the sample project estimates, the main idea is to assign durations to every state in

the model, i.e., frequencies at every connection among states.

The parametrization completes the model, which can now be subjected to specialized tools for nu-

merical solution (in this case, SAN lite Solver [54]) in order to extract performance indices and

measures.

Table 5.2 demonstrates this sample parameterization (Average time probability in minutes are

based on a day of 24 hours (i.e., 1,440 minutes). Considering each site working 8 hours per day.).

Table 5.2: Sample One Parameters

State New Zealand Russia Bolivia

OFF 960.00 min 960.00 min 960.00 min

SH 8.00 min 3.82 min 8.00 min

RG 85.00 min 88.00 min 91.22 min

DEV 220.55 min 230.00 min 210.00 min

TST 105.00 min 105.06 min 107.00 min

BF 53.88 min 52.12 min 52.53 min

FH 7.57 min 1.00 min 11.25 min

Total 1,440 min 1,440 min 1,440 min

60

After the model execution the resultant probabilities rates are multiplied back by the base pa-

rameters value for a day of work, in this sense each probability output is multiplied by 1440 minutes

representing a day of 24 hours of work. The model was solved using an specialized tool SAN lite

Solver [54]. A model solved means that it was found a steady-state solution.

Sample One Performance evaluation results

• Duration in months: 2.70 (5,450 hours ÷ 2,015.99 hours per month)

• Average number of hours per month: 2,015.99 (91.64 hours per day × 22 days per month)

• Average number of hours per day: 91.64 (30.55 hours per site per day × 3 sites)

• Average number of hours per site per day: 30.55 (139.64 hours of work per day ÷ 3 sites)

• Average number of resources need per site: 3.82 (4 resources working on average 95% of the

time on project activities)

• Average monthly cost: 48,719.67 (([New Zealand daily cost 687.27 (30.55 hours × U$ 22.5)

] + [Russia daily cost 916.36 (30.55 hours × U$ 30.00)] + [Bolivia daily cost 610.90 (30.55

× U$ 20.00)]) × 22 days per month)

• Quality: 24% ((6.83 BF hours daily (7.45%) ÷ 28.41 DEV hours daily (31.01%)) × 100)

The rate for the OFF model state means that the site will be 960 minutes (16 hours) on off

line state. After the model execution the probability of a site stay on this state was 66.67% (16

hours from 24 hours). The probabilities of other states also resulted on some variation based on the

average estimated time due to the model events synchronization and due to the model dynamics.

However, these are small variations, confirming that the model parameterization is correct. E.g.:

The site New Zealand had an estimation of 8 daily minutes to start handoff (SH) and the model

execution found 7.87 daily minutes on this state.

Table 5.3 demonstrates this scenario sample average results for a day of work1.

This first sample performance evaluation generated the following conclusions:

• With four team members this project could be executed using 67% of estimated project time.

• The monthly budget would increase 15,792.59 dollars.

• The estimated quality result and the performance quality result match based on the model

parameters set (24% of rework).

61

Table 5.3: Sample One States Probabilities

Site State Time (min) Probability

New Zealand

OFF 960.00 66.67%

SH 7.87 0.55%

RG 85.26 5.92%

DEV 220.41 15.31%

TST 105.03 7.29%

BF 53.86 3.74%

FH 7.57 0.53%

Russia

OFF 960.00 66.67%

SH 3.79 0.26%

RG 87.89 6.10%

DEV 229.78 15.96%

TST 105.25 7.31%

BF 52.29 3.63%

FH 1.00 0.07%

Bolivia

OFF 960.00 66.67%

SH 7.87 0.55%

RG 91.18 6.33%

DEV 210.60 14.63%

TST 106.92 7.42%

BF 52.44 3.64%

FH 11.00 0.76%

5.1.3 Sample Two

This sample has explored the increase of sites working per day. Even with focus on three sites, it

was decided to create one sample exploring four sites working six hours each on a total of 24 hours

work day. The average dollar rate is ad hoc set due to the lack of cost information per country from

the literature. Figure 5.2 present this sample.

It considers a day of 24 hours of work divided by three sites. Assumptions and basis for calcula-

tions:

This project has four development sites: New Zealand (UTC+12), Russia (UTC+6) , UK (UTC

0) and USA (UTC-6) with the following respective average hour dollar rate 22.5, 30.00, 60.00 and

55.00. We are considering a day of 24 hours of work divided between the four sites. This sample

assume that four team members are working on each shift. Assumptions and basis for calculations:

• Work days per week: 5;

62

Figure 5.2: Sample Two

• Work hours per day: 6;

• Non project work: 6 hours per month. These are regular activities, time away, staff meetings;

• Project activities considers all tasks related to software development including coordination

time and project meetings;

The following scenario estimates described in Table 5.4 will be applied for this sample.

Table 5.4: Sample Two Project Estimates

State Hours Avg. cost

Requirements Gathering 690.00 47,148.15

Development (Design + Coding) 3,430.00 188,592.59

Testing 690.00 47,148.15

Bug Fix and Rework 600.00 38,478.52

Operational Handoffs 670.00 18,859.26

Total 6,080 hours U$ 340,226.67

For each model instance, heuristics were build to create the estimation scenario, in this sense

this model instance estimates are based on the following heuristics:

• Requirements gathering = 11.35% work day

• Development = 56.42% of a work day

• Testing = 11.35% of a work day

63

• Bug fix = 9.57% of a work day

• Handoff = 11.31% of a work day.

Sample Two Performance evaluation estimates

• Expected duration in months: 4

• Average number of hours per month: 1,520 (6,080 hours ÷ 4)

• Average number of hours per day: 69.09 (1,520 ÷ 22 work days)

• Average number of hours per site per day: 17.27 (69.09 ÷ 4 sites)

• Average number of resources need per site: 2.87 (17.27 hours ÷ 8 hours)

• Average monthly cost: 85,056.66 (U$ 340,226.67 ÷ 4 months)

• Quality: 20% ((7.68 BF hours daily (9.87%) ÷ 38.38 DEV hours daily (56.41%)) × 100)

According to the sample project estimates, the main idea is to assign durations to every state in

the model, i.e., frequencies at every connection among states.

The parametrization completes the model, which can now be subjected to specialized tools for nu-

merical solution (in this case, SAN lite Solver [54]) in order to extract performance indices and

measures.

Table 5.5 demonstrates this scenario parameterization(Average time probability in minutes, based

on a day of 24 hours (i.e., 1,440 minutes). Considering each site working 8 hours per day.).

Table 5.5: Sample Two Parameters

State New Zealand Russia UK USA

OFF 1,080.00 min 1,080.00 min 1,080.00 min 1,080.00 min

SH 10.00 min 10.00 min 10.00 min 10.00 min

RG 50.00 min 50.00 min 50.00 min 50.00 min

DEV 200.00 min 200.00 min 200.00 min 200.00 min

TST 50.00 min 50.00 min 50.00 min 50.00 min

BF 40.00 min 40.00 min 40.00 min 40.00 min

FH 10.00 min 10.00 min 10.00 min 10.00 min

Total 1,440 min 1,440 min 1,440 min 1,440 min

After the model execution the resultant probabilities rates are multiplied back by the base pa-

rameters value for a day of work, in this sense each probability output is multiplied by 1440 minutes

representing a day of 24 hours of work. The model was solved using an specialized tool SAN lite

64

Solver [54]. A model solved means that it was found a steady-state solution. It is important to

remark that this second sample is based on four sites working six hours each, covering 24 hours

however with a short work day of six hours instead of eight.
Sample Two Performance evaluation results

• Duration in months: 3.01 (6,080 hours ÷ 2,016.02)

• Average number of hours per month: 2,016.02 (91.65 daily hours × 22 days per month)

• Average number of hours per day: 91.65 (22.91 hours per site per day × 4 sites)

• Average number of hours per site per day: 22.91 (91.65 hours of work per day ÷ 4 sites)

• Average number of resources need per site: 3.82 (4 resources working on average 95% of the

time on project activities)

• Average monthly cost: 84,420.86 (([New Zealand daily cost 515.46 (22.91 hours × U$ 22.50)]

+ [Russia daily cost 687.28 (22.91 hours × U$ 30.00)] + [UK daily cost 1,374.56 (22.91 hours

× U$ 60)] + [USA daily cost 1,260.01 (22.91 hours × U$ 55.00)]) × 22 days per month)

• Quality: 20% ((10.17 BF hours daily (11.09%) ÷ 50.87 DEV hours daily (55.50%)) × 100)

Table 5.6 demonstrates this scenario execution average results for a day of work1.
The rate for the OFF model state means that the site will be 1080 minutes (18 hours) on off

line state. After the model execution the probability of a site stay on this state was 75.00% (18

hours from 24 hours). The probabilities of other states also resulted on some variation based on the

average estimated time due to the model events synchronization and due to the model dynamics.

However, these are small variations, confirming that the model parameterization is correct. E.g.:

The site UK had an estimation of 40 daily minutes on bug fix (BF) and the model execution found

39.97 daily minutes on this state.

This sample model demonstrated that the (OFF) state was 75% for each site which is tied to six

hours of work on a day of 24 hours. Another aspect found is the project execution reduction and the

cost reduction, presenting an indicative that more sites can reduce project cycle and project cost.

An interesting fact is that using the same average number of resources on a three sites configuration

model and on a four sites configuration model, it will result almost in the same average number

of working hours per day, because even with four resources working in four different sites each site

working capacity will be six hours a day instead of eight.

It provided an interesting conclusion that as more sites are working, the more costs compositions

are available. It is possible to exercise different costs compositions. Off course there are studies that

point a major effort on coordination [10, 66], however it is possible to discuss that the use of more

sites and different costs composition possibilities may compensates an increasing cost on project

coordination.

65

Table 5.6: Sample Two States Probabilities

Site State Time (min) Probability

New Zealand

OFF 1,080.00 75.00%

SH 9.99 0.69%

RG 49.96 3.47%

DEV 199.84 13.88%

TST 49.96 3.47%

BF 39.97 2.78%

FH 10.29 0.71%

Russia

OFF 1,080.00 75.00%

SH 9.99 0.69%

RG 49.96 3.47%

DEV 199.84 13.88%

TST 49.96 3.47%

BF 39.97 2.78%

FH 10.29 0.71%

UK

OFF 1,080.00 75.00%

SH 9.99 0.69%

RG 49.96 3.47%

DEV 199.84 13.88%

TST 49.96 3.47%

BF 39.97 2.78%

FH 10.29 0.71%

USA

OFF 1,080.00 75.00%

SH 9.99 0.69%

RG 49.96 3.47%

DEV 199.84 13.88%

TST 49.96 3.47%

BF 39.97 2.78%

FH 10.29 0.71%

5.1.4 Sample Three

This last sample focus more on analysis of handoff and rework using different rates. This project

has three development sites: New Zealand (UTC+12), Russia (UTC+4) and Bolivia (UTC-4) with

the following respective average hour dollar rate 22.5, 30.00 and 20.00. The average dollar rate is

ad hoc set due to the lack of cost information per country from the literature. Figure 5.3 present

66

this sample.

Figure 5.3: Sample Three

This last example considers a day of 24 hours of work divided between the three sites. This

sample assumes that two team members will be working on each shift. Assumptions and basis for

calculations:

• Work days per week: 5;

• Work ours per day: 8;

• Non project work: 8 hours per month. These are regular activities, time away, staff meetings;

• Project activities considers all tasks related to software development including coordination

time and project meetings;

The following scenario estimates are described in Table 5.7 will be applied for this sample.

Table 5.7: Sample Three Project Estimates

State Hours Avg. cost

Requirements Gathering 800.00 15,028.82

Development (Design + Coding) 1,800.00 35,089.84

Testing 1,200.00 22,446.40

Bug Fix and Rework 900.00 24,972.16

Operational Handoffs 1,200.00 45,026.12

Total 5,900 hours U$ 142,583.33

For each model instance, heuristics were build to create the estimation scenario, in this sense

this model instance estimates are based on the following heuristics:

67

• Requirements gathering = 13.56% of a work day.

• Development = 30.51% of a work day

• Testing = 20.34% of a work day

• Bug fix = 15.25% of a work day

• Handoff = 20.34% of a work day.

Sample Three Performance evaluation estimates

• Expected duration in months: 2

• Average number of hours per month: 2,950 (5,900 hours /2)

• Average number of hours per day: 134.09 (2,950 ÷ 22 workdays)

• Average number of hours per site per day: 44.70 (134.09 hours ÷ 3 sites)

• Average number of resources need per site: 5.59 (44.70 hours ÷ 8 hours)

• Average monthly cost: 71,291.66 (U$ 142,583.33 ÷ 2 months)

• Quality: 71.42% ((23.52 BF hours daily (17.54%) ÷ 32.93 DEV hours daily (24.55%)) ×

100)

Table 5.8 demonstrates this scenario parameterization (Average time probability in minutes,

based on a day of 24 hours (i.e., 1,440 minutes). Considering each site working 8 hours per day.).

Table 5.8: Sample Three Parameters

State New Zealand Russia Bolivia

OFF 960.00 min 960.00 min 960.00 min

SH 97.00 min 55.37 min 75.00 min

RG 50.58 min 51.00 min 50.00 min

DEV 116.68 min 119.90 min 117.10 min

TST 74.37 min 75.00 min 78.00 min

BF 86.00 min 82.73 min 83.90 min

FH 55.37 min 96.00 min 76.00 min

Total 1,440 min 1,440 min 1,440 min

According to the sample project estimates, the main idea is to assign durations to every state in

the model, i.e., frequencies at every connection among states.

68

The parametrization completes the model, which can now be subjected to specialized tools for nu-

merical solution (in this case, SAN lite Solver [54]) in order to extract performance indices and

measures.

After the model execution the resultant probabilities rates are multiplied back by the base pa-

rameters value for a day of work, in this sense each probability output is multiplied by 1440 minutes

representing a day of 24 hours of work. The model was solved using an specialized tool SAN lite

Solver [54]. A model solved means that it was found a steady-state solution.

Sample Three performance evaluation results

• Duration in months: 5.85 (5,900 hours ÷ 1,008.00)

• Average number of hours per month: 1,008.00 (45.82 daily hours × 22 days per month)

• Average number of hours per day: 45.82 (15.27 hours per site per day × 3 sites)

• Average number of hours per site per day: 15.27 (45.82 hours per day ÷ 3 sites)

• Average number of resources need per site: 1.90 (2 resources working on average 95% of the

time on project activities)

• Average monthly cost: 24,359.89 (([New Zealand daily cost 343.63 (15.27 hours × U$ 22.50)]

+ [Russia daily cost 458.18 (15.27 hours × U$ 30.00)] + [Bolivia daily cost 305.45 (15.27

hours × U$ 20.00)]) × 22 days per month)

• Quality: 71.45% ((8.32 BF hours daily (18.15%) ÷ 11.65 DEV hours daily (25.42%)) × 100

)

The rate for the OFF model state means that the site will be 960 minutes (16 hours) on off

line state. After the model execution the probability of a site stay on this state was 66.67% (16

hours from 24 hours). The probabilities of other states also resulted on some variation based on the

average estimated time due to the model events synchronization and due to the model dynamics.

However, these are small variations, confirming that the model parameterization is correct. E.g.:

The site Russia had an estimation of 75.00 daily minutes on bug fix (TST) and the model execution

found 75.52 daily minutes on this state.

Table 5.9 demonstrates this scenario execution average results for a day of work1.

This sample with three team members this project could be executed using an increasing of

33% of expected project time. Presented samples demonstrated that is possible to exercise different

case scenarios in order to create a parameter for project execution on a real worst case. It provides

insights for cost, quality and time evaluation.

Based on the literature review and on these three different model instances presented, it is

possible to observe that the number of sites makes the difference on project execution time as well

69

Table 5.9: Sample Three States Probabilities

Site State Time (min) Probability

New Zealand

OFF 960.00 66.67%

SH 79.66 5.53%

RG 53.26 3.70%

DEV 122.96 8.54%

TST 78.39 5.44%

BF 90.36 6.27%

FH 55.37 3.85%

Russia

OFF 960.00 66.67%

SH 49.07 3.41%

RG 51.83 3.60%

DEV 121.88 8.46%

TST 76.52 5.31%

BF 84.70 5.88%

FH 96.00 6.67%

Bolivia

OFF 960.00 66.67%

SH 63.95 4.44%

RG 51.82 3.60%

DEV 121.25 8.42%

TST 80.46 5.59%

BF 86.52 6.01%

FH 76.00 5.28%

as project costs composition. The proposed model allows to exercise different projects compositions

depending on the number of team members allocated on each site and on the average resource cost

on a given site.

Through provided samples it was observed indicatives that the use of stochastic automata net-

works can help the decision making process of follow-the-sun projects. It is important to remember

that models can be changed to capture other dimensions of FTS projects that were not part of this

work scope, these suggestions are available on conclusions and future work sections.

This chapter demonstrated performance evaluation on Follow-The-Sun projects with performance

indices from a set of sample scenarios, varying probabilities rates of RG - Requirements Gathering,

DEV - Design and Coding, TST - Testing and BF - Bug fix / Rework and Handoff (SH - Start

Handoff / FH - Finish Handoff).

The examples previously provided are hypothetical samples to illustrate how the FTS model can

be used to enhance projects planning. They were calibrated with literature information, previously

70

presented as well as with assumptions from model options and constraints section. Since it cannot

be created hypotheses based on available data, these results cannot be classified as findings but they

are indicatives of how SAN can be used to improve Follow-The-Sun decision making process.

71

6. Conclusions

Through provided samples as part of numerical results analysis, it was observed indicatives that

the use of stochastic automata networks can help the decision making process of follow-the-sun

projects. Evidently, the stochastic modeling presented in this work is far from being conclusive, but

provides insights and indicatives about how stochastic automata networks can be used for Follow-

The-Sun projects.

On the modeling, within the reality abstraction to create a stochastic model, there was no

previous data categorization prepared, what created difficulty to define model parameters values,

however once the model was instantiated generating the output it was possible to categorize the

information to be evaluated.

SAN is a powerful and comprehensive formalism that works for software engineering through the

use of the PEPS software tool. PEPS is an efficient tool for resolution of linear equations systems

derived from SAN models. For any project decision maker, the most important than the tool itself is

the degree of confidence generated by the output results. This work has not focus on measuring the

quality level of PEPS tool, instead it focus on the degree of credibility from the results generated

by models executions. Besides, PEPS software tool user interface can be improved in order to be

used by decision makers, currently this tool is not user friendly for decision makers professionals.

Another difficult found during this research is the lack of a methodology to simulate software

engineering projects using SAN models. There is an opportunity as future work to create a method-

ology for such demand.

Finally future works can create a robust method to apply SAN on software engineering problems,

and to enhance PEPS software tool to be more user friendly, specially for modeling activities.

6.1 Contributions

This work outlines how stochastic modeling can contribute to the decision making process on

follow-the-sun projects, generating four contributions:

1. A practical case study from an IT company using multiple sites and different participant’s

expertise reporting finds about the use of SAN for performance evaluation of GSD teams in

order to enhance the understanding of their performance on different scenarios, validating a

theoretical SAN modeling effort against a real project scenario [26]. The first contribution

of this practical case was the comparison of a theoretical modeling effort with a real project

scenario to describe a complex environment of software development. Despite the numerous

abstractions made in the modeling stage, the obtained numerical results demonstrated an

accuracy when compared to actual project outcome. Such fact by itself justifies the initial

assumption that analytical modeling, in the particular case modeled using SAN formalism, may

be a worthy option to build teams in software development projects. Another contribution

72

of it was to numerically demonstrate how much a project success remains on the number

of experienced (senior) participants. Not even with a near ideal situation of central team

availability and quality, the problems brought by a large number of junior participants can be

overcome.

2. A controlled experiment verifying if an adaptive methodology had more benefits than a pre-

scriptive methodology for a FTS strategy [37]. Where the speed obtained by teams using

an adaptive approach was higher than the speed obtained by teams using a prescriptive ap-

proach. The percentage obtained by adaptive teams was 30% higher than the speed obtained

by prescriptive teams. However, when comparing the average accuracy of delivered tasks,

prescriptive teams were better than adaptive teams. We observed this factor verifying the

total accuracy points and the total number of maps delivered by each team. Results obtained

showed that adaptive teams had 15% less quality than prescriptive teams. Based on the re-

sults found, this experiment suggested that adaptive approaches could perform better than

prescriptive approaches in the context of FTS. This is also claimed by Carmel, Espinosa, and

Dubinsky [10], and should be deeply investigated in the future, with experiments also executed

in real software development settings.

3. A SAN model for FTS that could be extended and reused which was centered on the handoff-

efficiency to evaluate the probabilities of each site being working, reworking or waiting for

clarifications in a FTS project [16]. It provided insights about how to measure the impact of

handoff efficiency based on time spent on work and rework activities by each site or team.

It presented an abstraction of how to model development teams in Follow-The-Sun (FTS)

context and we proposed a scenario that enables the investigation of overall FTS project

performance [56]. This initial approach demonstrated how the combination of stochastic

modeling and FTS could be mixed in order to produce important considerations to be used

by decision makers, i.e., solving the stochastic models it is possible to obtain evidence of

bottlenecks in a given project before the project execution.

4. The future work opportunity to create a methodology for software engineering simulation using

SAN, because currently there is no methodology available to simulate software engineering

projects using stochastic automata networks. This is a future work methodology to map an

end to end process for stochastic modeling and performance evaluation of generic software

engineering projects using SAN formalism, to improve coordination and control activities of

distributed software development projects.

6.2 Research Limitations

Follow-The-Sun (FTS) is not a common industry practice yet. FTS is this research focus, and

this model can be used in any case where time zone difference is considered as an important aspect.

This work has a goal of modeling contribution instead of practice industry contribution.

73

Jorgensen and Shepperd [36] conducted a study that reviewed software cost estimation papers

published in journals and tried to support other software cost estimation researchers through a library

of estimation classified papers however it has not provided an average cost value per hour and per

country. It has been difficult to find public material about software development cost distributions

in different countries. This work has been using ad-hoc cost rates to work on cost simulation and

analysis.

Besides, this work has the following limitations:

1. It is difficult to find a set of three countries with eight hours time zone difference between

them. In case found, it does not mean that those countries will have off shore culture and

qualified staff to execute IT projects geographically distributed. In this context, this work

presented three exercise examples.

2. Based on the stochastic model setup and parameters, the cost variation curve is similar to the

time variation because it is a function of time in this model.

3. This model does not abstract shifts overlap. The time required to report progress at the end

of a day, and to catch up at the beginning of the day (reporting time and catching-up time,

respectively) depend on many factors, including for example, the complexity of the task and

the opportunity for synchronous communication (i.e., the length of the time overlap). It could

have an option for synchronous handoff model, declaring teams overlap at the beginning/end

of a shift to allow synchronous coordination.

4. Besides, it does not consider how factors such as different cultures, tasks complexity and work-

load impact on the performance evaluation. It assumes in the abstraction that the workload

(tasks) are equally distributed among the members. Also, it is not considering different levels

of complexity for each task, assuming that all the resources needed by a project are assigned

at the start and readily available throughout its conclusion.

5. The creation of SAN models is not a trivial activity, it requires knowledge about SAN formalism

to create text files to run on PEPS tool (Unix environment), and it is not something simple

for a management level user. Also, the PEPS tool has a limitation regarding the number of

automata in a SAN model, due the size of states space it can run beyond PEPS tool memory

management capacity.

6.3 Future Work

The opportunity to create a methodology for software engineering simulation using SAN is an

important research to be done as future work. This methodology can be divided as an end to

end process with four stages. The first stage will be the project success key factor identification.

The second stage will be the mapping of the project artifacts and documents obtained in the

previous stage, converting these artifacts into SAN elements, creating: automata, states, events,

74

and parameters required for a model. Stages three and four will serve respectively to describe model

execution steps for all different performance evaluation scenarios and to the results analysis.

Possible model extensions and future works can be done from the motivation of creating a new

modeling exercise for a performance modeling and evaluation toolkit to present a mathematical

framework for FTS projects. This conceptual modeling workflow could instantiate different models

depending on the configuration for handoff and the desired analysis (or evaluation) to be done,

creating three models as follows:

• Model 1- Stochastic model with asynchronous handoff: used if the previous site is unable to

interact with the next site;

• Model 2- Stochastic model with synchronous handoff: a synchronization task during handoff

is required between sites, so the next site can resume working after issues clarification;

• Model 3- Stochastic model with synchronous handoff extension: an extension from the

previous model with synchronization where clarification is required and it could be represented

in the model as a new state.

This work focus on one instance of timezone gradation, the FTS one. However, Espinosa et

al. [20] conducted an study about different timezone gradations. It is possible to create a stochastic

model to evaluate different timezone gradations where FTS would be one instance of this model

as an extreme timezone difference case. As future work users can extend the existing model to

numerically analyze other FTS projects dimensions as well as the impact of time zone gradations on

Global Software Development projects.

The motivation of a future stochastic modeling exercise is to explore performance modeling

and evaluation process by creating an extensible model and to perform an experiment to compare

the current model version against a new model version. The concern for modelers will be directed

towards the parameterization of the model with their own measures and their extension of new event

compositions.

This work presented how SAN can be used to enhance decision making on FTS projects. This

work does not capture all important aspects of Follow-The-Sun projects such as different cultures,

different languages, communication barriers and teams coordination challenges that also can be

scope of future work.

Finally, it is important to remark that the model herein presented could be extended/modified

and applied on analysis of FTS projects using different levels of abstraction.

Bibliography

[1] G. Avram. Knowledge Work Practices in Global Software Development. Electronic Journal of
Knowledge Management, 5(4):347–356, 2007.

[2] A. Avritzer and A. Lima. An Empirical Approach for the Assessment of Scheduling Risk in A
Large Globally Distributed Industrial Software Project. In Proceedings of the 4th International
Conference on Global Software Engineering (ICGSE’09), pages 341–346, Limerick, Ireland,
2009.

[3] V. Basili, M. Zelkowitz, F. McGarry, J. Page, S. Waligora, and R. Pajerski. Sel’s software
process improvement program. Software, IEEE, 12(6):83 –87, nov 1995.

[4] C. Bertolini, A. G. Farina, P. Fernandes, and F. M. Oliveira. Test Case Generation Using
Stochastic Automata Networks: Quantitative Analysis. In Proceedings of the 2nd International
Conference on Software Engineering and Formal Methods (SEFM’04), pages 251–260, Beijing,
China, 2004.

[5] L. Brenner, P. Fernandes, B. Plateau, and I. Sbeity. PEPS 2007 - Stochastic Automata Networks
Software Tool. In Proceedings of the 4th International Conference on Quantitative Evaluation
of Systems (QEST 2007), pages 163–164. IEEE Press, September 2007.

[6] L. Brenner, P. Fernandes, and A. Sales. MQNA - Markovian Queueing Networks Analyser. In
11th IEEE/ACM International Symposium on Modelling, Analysis and Simulation on Computer
and Telecommunication Systems (MASCOTS’03), pages 194–199, Orlando, FL, USA, October
2003. IEEE Computer Society.

[7] L. Brenner, P. Fernandes, and A. Sales. The Need for and the Advantages of Generalized
Tensor Algebra for Kronecker Structured Representations. International Journal of Simulation:
Systems, Science & Technology, 6(3-4):52–60, February 2005.

[8] K. A. Buragga. An analytical model for requirements activities and software product quality.
Journal of Computational Methods in Science and Engineering, 6:205–215, 2006.

[9] E. Carmel. Global software teams: collaborating across borders and time zones. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 1999.

[10] E. Carmel, Y. Dubinsky, and J.A. Espinosa. Follow the sun software development: New per-
spectives, conceptual foundation, and exploratory field study. In System Sciences, 2009. HICSS
’09. 42nd Hawaii International Conference on, pages 1–9, January 2009.

[11] E. Carmel, Y. Dubinsky, and J.A. Espinosa. Follow The Sun Workflow In Global Software
Development. Journal of Management Information Systems, 27(1):17–38, 2010.

[12] T. Clear and S. G. MacDonell. Understanding technology use in global virtual teams: Research
methodologies and methods. Information and Software Technology, 53(9):994 – 1011, 2011.

[13] J.N. Cummings, J.A. Espinosa, and C.K. Pickering. Crossing spatial and temporal boundaries
in globally distributed projects: A relational model of coordination delay. Information Systems
Research, 20:420–439, September 2009.

[14] R. M. Czekster. Solução Numérica de Descritores Markovianos a partir de re-estruturações de
termos tensoriais. PhD thesis, Pontíficia Universidade Católica do Rio Grande do Sul, Porto
Alegre, Brazil, 2010.

[15] R. M. Czekster, P. Fernandes, A. Sales, and T. Webber. Analytical Modeling of Software
Development Teams in Globally Distributed Projects. In International Conference on Global
Software Engineering (ICGSE’10), pages 287–296, Princeton, NJ, USA, 2010. IEEE Computer
Society.

[16] R.M. Czekster, P. Fernandes, R. Prikladnicki, A. Sales, A.R. Santos, and T. Webber.
Follow-The-Sun Methodology in a Stochastic Modeling Perspective. In 6th IEEE In-
ternational Conference on Global Software Engineering (ICGSE): Methods and Tools for
Project/Architecture/Risk Management in Globally Distributed Software Development Projects
(PARIS), pages 54–59, Helsinki, Finland, August 2011.

[17] G. A. Dafoulas, K. Swigger, R. Brazile, F. N. Alpaslan, V. L. Cabrera, and F. C. Serce.
Global teams: Futuristic models of collaborative work for today’s software development industry.
Hawaii International Conference on System Sciences, 0:1–10, 2009.

[18] N. Denny, I. Crk, and R. Sheshu. Agile Software Processes for the 24-Hour Knowledge Factory
Environment. Journal of Information Technology Research (JITR), 1(1):57–71, 2008.

[19] G.R. Djavanshir. Surveying the risks and benefits of it outsourcing. IT Professional, 7(6):32 –
37, nov.-dec. 2005.

[20] J. A. Espinosa, N. Nan, and E. Carmel. Do gradations of time zone separation make a difference
in performance? a first laboratory study. In Proceedings of the International Conference on
Global Software Engineering, ICGSE ’07, pages 12–22, Washington, DC, USA, 2007. IEEE
Computer Society.

[21] J.A. Espinosa and E. Carmel. The impact of time separation on coordination in global software
teams: a conceptual foundation. Software Process: Improvement and Practice, 8(4):249–266,
2003.

[22] J.A. Espinosa, J.N. Cummings, J.M. Wilson, and B.M. Pearce. Team boundary issues across
multiple global firms. Journal of Management Information Systems, 19:157–190, April 2003.

[23] S. Faraj and L. Sproull. Coordinating expertise in software development teams. Management
Science, 46(12):1554–1568, 2000.

[24] A. G. Farina, P. Fernandes, and F. M. Oliveira. Representing software usage models with
Stochastic Automata Networks. In Proceedings of the 14th International Conference on Soft-
ware Engineering and Knowledge Engineering (SEKE’02), pages 401–407, Ischia, Italy, 2002.

[25] P. Fernandes, B. Plateau, and W. J. Stewart. Efficient descriptor-vector multiplications in
stochastic automata networks. Journal of the ACM (JACM), 45:381–414, May 1998.

[26] P. Fernandes, A. Sales, A.R. Santos, and T. Webber. Performance Evaluation of Software
Development Teams: a Practical Case Study. Electronic Notes in Theoretical Computer Science
(ENTCS), 275:73–92, 2011.

[27] S. Ferreira, J. Collofello, D. Shunk, and G. Mackulak. Understanding the effects of requirements
volatility in software engineering by using analytical modeling and software process simulation.
Journal of Systems and Software, 82:1568–1577, October 2009.

[28] I. Gorton and S. Motwani. Issues in co-operative software engineering using globally distributed
teams. Information and Software Technology, 38(10):647–655, 1996.

[29] A. Gupta, E. Mattarelli, S. Seshasai, and J. Broschak. Use of collaborative technologies and
knowledge sharing in co-located and distributed teams: Towards the 24-h knowledge factory.
The Journal of Strategic Information Systems, 18:147–161, September 2009.

[30] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter. Distance, dependencies, and delay
in a global collaboration. In Proceedings of the 2000 ACM conference on Computer Supported
Cooperative Work (CSCW’00), pages 319–328, Philadelphia, PA, USA, 2000. ACM.

[31] J. D. Herbsleb and D. Moitra. Global software development. IEEE Software, pages 16–20,
2001.

[32] J.E. Hopcroft and J.D. Ullman. Introduction To Automata Theory, Languages, And Compu-
tation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1990.

[33] D. X. Houston, G. T. Mackulak, and J. S. Collofello. Stochastic simulation of risk factor
potential effects for software development risk management. Journal of Systems and Software,
59(3):247 – 257, 2001.

[34] P. Jalote and G. Jain. Assigning tasks in a 24-hour software development model. In Asia-Pacific
Software Engineering Conference, pages 309–315, 2004.

[35] T. Javed, M. Maqsood, and Q.S. Durrani. A study to investigate the impact of requirements
instability on software defects. ACM SIGSOFT Software Engineering Notes, 29:1–7, May 2004.

[36] M. Jorgensen and M. Shepperd. A systematic review of software development cost estimation
studies. Software Engineering, IEEE Transactions on, 33(1):33 –53, jan. 2007.

[37] J. Kroll, A. R. Santos, R. Prikladnicki, E.R. Hess, R.A. Glanzner, A. Sales, J. L. N. Audy, and
P. Fernandes. Follow-the-Sun Software Development: A Controlled Experiment to Evaluate
the Benefits of Adaptive and Prescriptive Approaches. In Proceedings of the 24th International
Conference on Software Engineering and Knowledge Engineering (SEKE 2012), pages 551–556,
San Francisco Bay, USA, 2012.

[38] P. Laurent, P. Mader, J. Cleland-Huang, and A. Steele. A taxonomy and visual notation for
modeling globally distributed requirements engineering projects. In Proceedings of the 2010
5th IEEE International Conference on Global Software Engineering, ICGSE ’10, pages 35–44,
Washington, DC, USA, 2010. IEEE Computer Society.

[39] M.M. Lehman, Mm Lehman, and J.F. Ramil. The impact of feedback in the global software
process. Journal of Systems and Software, 46:123–134, 1998.

[40] A. Mockus and J. D. Herbsleb. Expertise browser: a quantitative approach to identifying
expertise. In Proceedings of the 24th International Conference on Software Engineering, pages
503–512, 2002.

[41] T. Nguyen, T. Wolf, and D. Damian. Global software development and delay: Does distance
still matter? In Global Software Engineering, 2008. ICGSE 2008. IEEE International Conference
on, pages 45 –54, aug. 2008.

[42] B. Nicholson and S. Sahay. Embedded knowledge and offshore software development. Infor-
mation and Organization, 14(4):329 – 365, 2004.

[43] M. B. O’Leary and J. N. Cummings. The spatial, temporal, and configurational characteristics
of geographic dispersion in teams. MIS Quarterly, 2002.

[44] F. Padberg. A discrete simulation model for assessing software project scheduling policies.
Journal Software Process: Improvement and Practice (SPIP), 7:127–139, 2002.

[45] S. Patil, A. Kobsa, J. Ajita, and D. Seligmann. Methodological reflections on a field study
of a globally distributed software project. Information and Software Technology, 53:969–980,
September 2011.

[46] M. Pidd. Computer Simulation in Management Science. John Wiley & Sons, Inc., New York,
NY, USA, 3rd edition, 1992.

[47] B. Plateau. On the stochastic structure of parallelism and synchronization models for distributed
algorithms. ACM SIGMETRICS Performance Evaluation Review, 13(2):147–154, August 1985.

[48] B. Plateau and K. Atif. Stochastic automata network of modeling parallel systems. IEEE
Transactions on Software Engineering, 17(10):1093 –1108, October 1991.

[49] R. Prikladnicki and J.L.N. Audy. Process models in the practice of distributed software develop-
ment: A systematic review of the literature. Information and Software Technology, 52:779–791,
August 2010.

[50] R. Prikladnicki, J.L.N. Audy, and F. Shull. Patterns in effective distributed software develop-
ment. IEEE Software, 27(2):12–15, March-April 2010.

[51] D. Raffo and S. Setamanit. A simulation model for global software development project.
Development, pages 1–7, 2005.

[52] J. Raj. The Art of Computer Systems Performance Analysis - Techniques for Experimental
Design, Measurement, Simulation, and Modeling. John Wiley & Sons Inc, 1991.

[53] N. Ramasubbu, M. Cataldo, R.K. Balan, and J.D. Herbsleb. Configuring global software teams:
a multi-company analysis of project productivity, quality, and profits. In Software Engineering
(ICSE), 2011 33rd International Conference on, pages 261 –270, may 2011.

[54] A. Sales. San lite-solver: a user-friendly software tool to solve san models. In Proceedings of the
2012 Symposium on Theory of Modeling and Simulation - DEVS Integrative M&S Symposium,
TMS/DEVS ’12, pages 44:1–44:8, San Diego, CA, USA, 2012. Society for Computer Simulation
International.

[55] R. Sangwan, M. Bass, N. Mullick, D.J. Paulish, and J. Kazmeier. Global Software Development
Handbook (Auerbach Series on Applied Software Engineering Series). Auerbach Publications,
Boston, MA, USA, 2006.

[56] A.R. Santos, A. Sales, and P. Fernandes. Setting up a stochastic model for teams working in
a follow-the-sun environment. In Proceedings of the 2012 7th IEEE International Conference
on Global Software Engineering, ICGSE ’12, pages 179–179. IEEE Computer Society, 2012.

[57] S. Sarker and S. Sahay. Understanding Virtual Team Development: An Interpretive Study.
Journal of the Association for Information Systems, 3:247–285, 2002.

[58] F. C. Serçe, K. Swigger, F. N. Alpaslan, R. Brazile, G. Dafoulas, and V. Lopez. Online
collaboration: Collaborative behavior patterns and factors affecting globally distributed team
performance. Computers in Human Behavior, 27(1):490 – 503, 2011.

[59] S. Setamanit, W. Wakeland, and D. Raffo. Using simulation to evaluate global software de-
velopment task allocation strategies: Research sections. Software Process: Improvement and
Practice, 12:491–503, September 2007.

[60] N. S. Shami, N. Bos, Z. Wright, S. Hoch, K. Y. Kuan, J. Olson, and G. Olson. An experimental
simulation of multi-site software development. In Proceedings of the 2004 conference of the
Centre for Advanced Studies on Collaborative research, pages 255–266. IBM Press, 2004.

[61] P. Sooraj and P. K. J. Mohapatra. Modeling the 24-hour software development process. Strate-
gic Outsourcing: An International Journal, 1(2):122–141, 2008.

[62] W. J. Stewart. Introduction to the numerical solution of Markov chains. Princeton University
Press, 1994.

[63] A. Taweel and P. Brereton. Modelling software development across time zones. Information
and Software Technology, 48(1):1 – 11, 2006.

[64] J. J. Treinen and S. L. Miller-Frost. Following the sun: case studies in global software devel-
opment. IBM Systems Journal, 45:773–783, October 2006.

[65] R. Urdangarin, P. Fernandes, A. Avritzer, and D. Paulish. Experiences with Agile Practices
in the Global Studio Project. In Proceedings of the IEEE International Conference on Global
Software Engineering (ICGSE 2008), pages 77–86. IEEE Computer Society, August 2008.

[66] R. van Solingen and M. Valkema. The impact of number of sites in a follow the sun setting
on the actual and perceived working speed and accuracy: A controlled experiment. In Global
Software Engineering (ICGSE), 2010 5th IEEE International Conference on, pages 165 –174,
aug. 2010.

[67] C. Visser and R. Van Solingen. Selecting Locations for Follow-the-Sun Software Development:
Towards a Routing Model. 2009 Fourth IEEE International Conference on Global Software
Engineering, pages 185–194, July 2009.

[68] R.S. Wazlawick. Metodologia de Pesquisa para Ciência da Computação). Elsevier Editora Ltda,
São Paulo, SP, BR, 2009.

[69] M. Yap. Follow the Sun: Distributed Extreme Programming Development. In Proceedings of
the Agile Development Conference (ADC ’05), pages 218–224, Denver, CO, USA, 2005. IEEE
Computer Society.

[70] H. Zhang and B. Kitchenham. Semi-quantitative Simulation Modeling of Software Engineer-
ing Process. In Proceedings of the International Software Process Workshop and International
Workshop on Software Process Simulation and Modeling, volume 3966, pages 242–253, Shang-
hai, China, 2006. Springer-Verlag Berlin Heidelberg.

