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Abstract—The task of measure semantic redundancy between
sentences demands a thorough interpretation from the reader
because phrase meaning may be ambiguous. Detecting semantic
similarity is a difficult problem because natural language, besides
ambiguity, offers almost infinite possibilities to express the same
idea. This paper adapts a siamese neural network architecture
trained to measure the semantic similarity between two sentences
through metric learning. The resulting solution should help in
writing more efficient and informative text.

Index Terms—Neural networks, word embedding, recurrent
neural network, GRU, metric learning, siamese neural networks,
semantic analysis

I. INTRODUCTION

Semantic similarity is a quantitative measure that shows

closeness of meaning given different pieces of text, regardless

of how they are written. The key challenge in comparing the

semantic content of natural language lies in the very large

number of different ways of expressing the same information,

especially when reasoning about the context surrounding the

text [1]. Computing semantic similarity allows us to objec-

tively assess text passages in the same document for redun-

dancy, helping writers convey the same information using less

repetition.

Text redundancy occurs when the same document contains

multiple passages of information with a high semantic similar-

ity, expound the same idea in different areas of a text. Although

redundancy can be used to emphasize some conclusion, it may

generate unnecessary textual volume which results in a vague

and uninteresting text.

We provide two contributions in this paper. First, we show

that semantic similarity can be measured through learning a

metric using a Siamese GRU (Gated Recurrent Unit) network

architecture (Section III), which is trained using a labeled

dataset (Section IV). Second, given a representation that

encodes semantic and syntactic information about the words,

we show that our approach to measure semantic similarity does

not depend on linguistic information of the sentences.

II. BACKGROUND

Neural network is a computational model used for machine

learning purposes described as a direct acyclic graph [2],

which is organized in multiple layers. Each intermediate layer,

also known as hidden layer, can learn different representations

given a input data. Recently, natural language process systems

are applying neural networks to learn text representations, us-

ing techniques such as Word Embedding to create a word vec-

tor which reflects semantic syntactic properties of words. [3].

Taking into a sentence level, a classical feed forward neural

network is limited to process each word of sentence as a

single feature [2], ignoring their order of occurrence. Recurrent

neural network is a neural network type for sequential data

process, making possible learn information from the context of

words considering their previous information in the sentence.

Although the weights is shared accross the sequence using

the same updating rule, training a recurrent neural network

is difficult because gradients may become small over long

sequences, being susceptible to vanishing/exploding gradient

problem [4].

GRU [5] (Gated Recurrent Units) is a recurrent network

architecture proposed to deal with long sequences, using

a gating mechanism to create a memory control of values

processed over time. A GRU cell consists of two gates that

controls flow data through states. Gate rt controls updates

on internal memory, which is not propagated to next state.

Gate zt controls how much of internal memory should be

considered on next state. Equations 1, 2 and 3 represents

operations realized by gates rt and zt in order to results ,

and equation 3 shows how next hidden state is computed in a

GRU unit [2].

rt = σ(Wrht−1 + Urxt + br) (1)

zt = σ(Wzht−1 + Uzxt + bz) (2)

ht = zt⊗ht−1⊕ (1−z)⊗ tanh(Whxt+Uh(rt⊗ht−1)+bh))
(3)

In order to measure similarities, metric learning is an

alternative to learn a distance function in a supervised manner,

which considers changes in the data [6]. Siamese neural

network is a architecture composed by two neural networks

that is used to do metric learning between the output of each

network. Chopra, Hadsell, and LeCun proposed [7] a Siamese

neural network architecture to learn a distance function for

face verification, which uses two symmetric convolutional net-

works. Mueller and Thyagarajan work [8] shows that learning

a simple Manhattan Distance function over semantic encoding
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of sentences can efficiently measure semantic similarity. We

propose a similar way to measure semantic similarity, using a

Siamese neural network architecture using two GRU (Gating

Recurrent Units), which is a simpler architecture than a Long-

Short Term Memory network used in Mueller and Thyagarajan

work [8].

III. MODEL ARCHITECTURE

In this section, we describe in two steps the architecture of

our neural network used to obtain the semantic similarity be-

tween two sentences. First, we describe the data pre-processing

in order to create a numerical representation to the words in

sentences. Second, we detail the architecture of our neural

network specifying the layers and explaining their roles and

motivations of each selected approach.

A. Data Pre-processing

Since the input data of a neural network must be numeric

values, the pre-processing step consists of creating a numerical

representation to a sentence by converting each word into

an integer number. For such conversion, we create a word

dictionary of the corpus vocabulary and associate a unique

numerical index for each word seen in the dataset. Thus,

the dataset is entirely read before creating the numerical

representation to sentences, in order to recognize all the words

contained in the dataset.

The idea behind the word dictionary is to create a vector of

integers for each sentence, being composed of word indexes.

We maintain word order from sentences in the resulting vector,

preserving the original context and meaning of the sentence

semantics. Thus, our model can distinguish sentences which

have same words in different position such sentence pair “a

big dog in a small house” and “a small dog in a big house”.

In order to prevent the same terms being associated with

different indexes, we convert abbreviations contained in the

dataset before inserting into the dictionary. For example,

“what’s” is converted to “what is” resulting on the use of

index of the words “what” and “is”, which may already seen in

different contexts. This conversion allows us to reuse indexes

already seen, reducing the size of the dictionary structure.

B. Siamese GRU Model

We use a Siamese architecture based on Mueller et al [8]

due to its notable results on predicting the semantic similarity

between sentences. Our modified Siamese neural network uses

two symmetric recurrent neural networks with shared weights

to learn semantic differences between sentences.

The input layer of our architecture converts each vector

of indexes received from data pre-processing into a word

distributed representation. Due to its capability on capture

semantic and syntactic properties of the words in the result

representation [3], we use Word2Vec Skip-Gram model pre-

trained on an external corpus. Thus, our approach does not

depend on a manual feature extraction process to represent

input words with efficiently.

Word Embeddings Word Embeddings

GRU UnitsGRU Units

Distance Function

Predicted Similarity

Fig. 1. Diagram ilustrating our siamese neural network defined, combining
two recurrent neural network. The siamese network receives a sequence of
word embeddings of the words contained in the input sentences, encodes into
a sentence vector and learns a distance function to measure similarity.

In order to generate a sentence representation based on

the word embedding, we make use of recurrent network

architecture to process the word embedding sequences. Repre-

sented by a sequence of word vectors, we pass each sentence

to recurrent units that update the hidden unit ht of each

state and learn to encode the entire sentence. To address the

vanishing gradient problem [9], which a recurrent network is

subjected when processing long sequences, we use the GRU

architecture to control the gradient updates in the training

process. Figure 2 shows the process of encoding the sequence

of word embedding receives from previous layer.

The Siamese recurrent network in Mueller et al relies on an

0.20 0.75 ... 2.87

1.30 0.75 ... 0.87

2.20 0.35 ... 1.02

Recurrent 

Network

GRU

unit

GRU

unit

GRU

unit
2.54 0.98 ... 4.56

300-dimensional 50-dimensional

A

young

man

Fig. 2. Diagram ilustrating our defined recurrent neural network to encode
sentences. The word vectors of sentence “a young man” is encoded to a 50-
dimensional vector.
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LSTM architecture [10] to create a sequence encoder mapping

for each sentence. In order to overcome the limited size of the

labeled datasets available to us we use a GRU architecture

since GRU units have fewer parameters than LSTM units. To

the best of our knowledge, GRU is less explored than LSTM

on the context of semantic representation, even it has not been

proved a general superiority of LSTM [11].

The output layer of the siamese network learns a distance

function which results in a similarity metric between two

encoded sentences. Our distance function used for the metric

learning follows the work proposed by Mueller et al that uses

the Manhattan Distance function to calculate the difference

between the encoded sentences. Equation 4 shows the distance

function used to measure the similarity in the output layer,

where ha and hb represent the outputs of each recurrent

network.

exp(−||ha − hb||1) (4)

The Equation 4 is based on measure similarity between

two representation, applying the exponential function on the

negative value of distance measured by Manhattan Distance

function. Due to the use of exponential function on negative

numbers, the siamese network predicted value is a float

number yt ∈ [0, 1]. Thus, the error propagated during training

underlies only the similarity predicted and the label value of

the pair of sentence.

IV. IMPLEMENTATION AND TRAINING THE MODEL

In this section, we detail about the implementation and

execution of the neural network. First, we describe the data

set used and its motivations to train the model. Second,

we describe the parameters used for the training executions,

initialization of weights and number of units for each layer.

A. SICK Dataset

The SICK data set (Sentences Involving Compositional

Knowledge) [1] is provided by SemEval-20141 for predicting

the degree of relatedness between sentences and detecting

the entailment relation between them. The data set contains

10000 English sentence pairs extracted from the ImageFlick

dataset2 and SemEval-2012 semantic textual similarity video

description data set. The use of SICK data set is motivated

by the fact of possibility to train our model in a supervised

manner, besides this dataset is used in related works, being

suitable for comparisons.

The relatedness value annotated for each sentence pair is

a numeric value between 1 and 5, representing the degree of

semantic similarity between the two sentences. In this work,

we do not use the entailment annotation available to this task

since it is not our goal. This dataset is divided into three parts:

5000 sentence pairs as training set, 500 as validation set, and

4500 as test set.

1http://alt.qcri.org/semeval2014/
2http://nlp.cs.illinois.edu/HockenmaierGroup/data.html

Recurrent

Network

B

Recurrent

Network

A

W

Fig. 3. Diagram ilustrating weight structure W shared between two networks,
predicting y through a metric learning given two inputs xa and xb, which is
applied a Gw function.

B. Implementation

We implemented the architecture using Keras3, a Python

library that allows us to develop machine and deep learning

models in an easy and fast way. The input layer contains a

lookup matrix composed by the word dictionary index and its

relative word embedding vector in order to convert the word

indexes received from pre-processing. The word embedding

vectors are extracted from a file with 300 dimensional vectors

of 3 billion words4.

The GRU layers of each network receives the sequence of

word embeddings and encodes the input sentence into a 50-

dimension vector. Recurrent weights are initialized using a

random orthogonal matrix [12] and the internal weights of

the GRU cells are initialized using Xavier algorithm [13] due

to its capacity to define initial weights based on input and

output units. This method of weights initialization follows the

recommended parameters defined on the Keras library.

The weight structure W implemented for the recurrent

neural networks is shared, shown in Figure 3, preserving the

symmetry of the distance function [7]. The linear mapping

Gw [6], shown in Figure 3, is applied over the inputs xa and

xb, which relies on the shared weights W . Thus, both recurrent

neural networks from the siamese architecture receive the same

updates from the backpropagation algorithm.

C. Training Details

We apply Adadelta [14] algorithm for weights optimization

during training since Adadelta can automatically decrease

learning rate. Based on empirical tests, we set 0.5 to the initial

learning rate for Adadelta. Furthermore, we employ gradient

3https://keras.io/
4https://code.google.com/archive/p/word2vec/
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Fig. 4. Learning curves for training and validation sets, comparing perfor-
mance in use of GRU and LSTM. This training execution uses parameter
values defined in Section IV.

clipping strategy [4] with a threshold value of 1.5 in order to

deal with vanishing and exploding gradients.

Since our siamese network have shared weights, both recur-

rent networks receive the same update from backpropagation,

which is measured using the Mean Square Error loss function

using only the predicted number and annotation of sentence

pair. For each execution, network processes a mini-batch of 32

sentence pairs and full training is executed using 300 epochs.

All these parameter values were defined based on empirical

tests.

V. EXPERIMENTS AND RESULTS

In this section, we describe the experiments and test sce-

narios executed over the SICK dataset, detailing the results

using SemEval metrics. We use the SemEval metrics (Pear-

son/Spearman correlation and mean square error) to compare

with other proposed methods for the same SemEval Task,

which uses the same dataset.

A. Recurrent Layer Architectures

We compare two recurrent neural network architectures

(LSTM and GRU) that address the vanishing/exploding gra-

dient problem using gated structure on the SICK dataset.

The motivation to make this comparison relies on Chung

et al [11] work, which demonstrates that both architectures

have equivalent performances in sequence modeling task,

although GRU have less parameters than LSTM. Furthermore,

this comparison is motivated by Mueller et al work [8],

which surpassed state of the art using LSTM as a recurrent

architecture to encode sentences in a siamese architecture.

For such test case, we implemented one siamese network

using GRU units and another one using LSTM units. Both

implementations follow definitions described in Section IV.

In our tests, we noted that using the GRU architecture

in the siamese network outperforms LSTM in all SemEval

TABLE I
COMPARISON OF RESULTS USING DIFFERENT RECURRENT

ARCHITECTURE, USING SEMEVAL METRICS TO DETERMINE WHICH

ARCHITECTURE GENERALIZES BETTER ON SICK TEST SET.

Architecture Pearson Spearman Mean Square Error

LSTM 0.7983 0.7492 0.3779
GRU 0.8448 0.7902 0.3032

TABLE II
RESULTS OF METHODS APPLIED IN SEMANTIC TEXTUAL SIMILARITY

TASK OVER SICK TEST SET. TABLE IS DIVIDED IN THREE GROUPS: FIRST

IS TOP SEMEVAL-2014 SUBMISSIONS, SECOND IS LATER WORKS AND

THIRD IS THE WORK THAT REACHES STATE OF THE ART.

Method Pearson Spearman MSE

Illinois-LH
(Lai et alw - 2014) [15]

0.7993 0.7538 0.3692

UNAL-NLP
(Jimenez et al. - 2014) [16]

0.8070 0.7489 0.3550

Meaning Factory
(Bjerva et al. - 2014) [17]

0.8268 0.7721 0.3224

ECNU
(Zhao et al - 2014) [18]

0.8279 0.7689 0.3250

MaLSTM
(Mueller et al - 2016)

0.8222 - -

Siamese GRU Model

(Ichida et al - 2017)
0.8448 0.7902 0.3032

Dependency Tree-LSTM
(Taiet al - 2015) [19]

0.8686 0.8047 0.2606

MaLSTM
+Syn Augmentation
+Transfer Learning
(Mueller et al - 2016)

0.8822 0.8345 0.2286

comparison metrics, as shown in Table I. Moreover, learning

curves shown in Figure 4, evidence that GRU can deal better

with unseen data due to a smaller loss in the execution over

validation set than LSTM. These results motivate the use of

GRU architecture on the final version of our work since it

generalizes well using a small number of training sentence

pairs.

B. Comparative with SemEval Published Methods

We compare our work with the best works submitted to

SemEval-2014 and others notable works. In Table II, we show

that our approach outperforms all the best works submitted

in SemEval-2014. Our work does not achieve state of the

art when compared to the approaches from Mueller and Tai.

Although our work is based on Mueller et al method, we

do not use synonym augmentation techniques and transfer

learning described in their work. However, Table II shows that

our results surpasses MaLSTM method considering only the

use of siamese neural network architecture without any extra

techniques such as synonym augmentation.

We analyze individual results in determined sentence pairs,

comparing a sentence to others contained in the SICK test

set. Table III contains sentences and results of MaLSTM

and Dependency Tree-LSTM extracted from Mueller et al.

work [8], composed by Column S representing predicted

values of our implementation of Siamese-GRU model, Column

M representing predicted value of Mueller work using all of
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TABLE III
COMPARISON AND RESULTS OF OUR SIAMESE GRU METHOD AGAINST

APPROACHES OF MUELLER [8] AND TAI [19] USING SENTENCES

CONTAINED IN SICK TEST SET. WE COMPARE SENTENCE IN BOLD WITH

EACH SENTENCE CONTAINED IN TABLE GROUP.

Sentence S M T

a woman is slicing potatoes

- a woman is cutting potatoes 4.79 4.87 4.82
- potatoes are being slices by a woman 4.41 4.38 4.70
- tofu is being sliced by a woman 2.71 3.51 4.39

two men are playing guitar

- the man is singing and playing the guitar 3.15 3.53 4.08
- the man is opening the guitar for donations
and plays with the case

2.91 2.30 4.01

- two men are dancing and singing in front
of a crowd

2.56 2.33 4.00

techniques described in his work and column T representing

results from Tree-LSTM.

In this comparison, we noted that our model predicts values

close to the results of state of the art [8], even though pearson

correlation between our results and ground truth values is

lower than Dependency Tree-LSTM method. Additionally,

we noted that our approach can deal better at detecting the

subject of sentences than Tree-LSTM approach, shown in

the predicted similarity of the sentences “a woman is slicing

potatoes” and “tofu is being sliced by a woman”.

This comparison shows that our approach results in distance

function that measures similarity values close to the best

approaches in SICK test set. Although our results do not

outperforms the state of the art method, comparing some

individual predicted values to their work shows that our

siamese neural network approach can efficiently results the

semantic similarity, surpassing submitted methods of SemEval

2014 edition.

C. Verbal Voice Forms

In this test scenario, we explore the variation of verbal

voice in a sentence, analyzing predicted similarity given a

sentence in active voice with his respective passive voice form.

Changing verbal voice does not imply in a change in sentence

context, thus is expected that our approach results in high

values in this scenario. We use sentence pairs that are not

in SICK dataset due to verify how our method generalizes

in unseen sentences during training execution. Moreover, we

select different verb tenses and types in order to verify the

results and how our approach react with these modifications.

Table IV shows the predicted semantic similarity of our

siamese network implementation over sentences with different

verb tenses and types. We note that our network are not

sensitive in cases where main verb is altered due to voice

form variation, resulting in a similarity below expected. For

example, in sentence “Someone is painting the building wall.”

when we alter to his passive voice form, the verb “painting”

changes to “painted”. A simple way to resolve these limitations

is generate enough training sentence pairs that varies the verbal

voices of a individual sentence based on verbal tenses that

resulted low values.

D. Paraphrase Sentences

Due to fact that a paraphrase is characterized by rewrit-

ing of a sentence using different words but maintaining the

meaning, we empirically evaluate our siamese neural network

using sentences with paraphrase relationship using Microsoft

Research Paraphrase Corpus dataset [20]. This analysis shows

that some sentences pairs classified as paraphrase resulted in a

low similarity semantic value due to some sentences have extra

pieces of information that the paired sentences does not. For

example, in Table V, sentence “The DVD CCA then appealed

to the state Supreme Court.” does not inform if supreme court

is US Supreme court, resulting a low predicted similarity.

This test scenario shows that our model have a limitation

regarding context due to execute the training using individual

sentences without information about preceding and follow-

ing information. To deal with this limitation, we need to

combine other reasonable alternatives such as Skip-Thought

Vectors [21], which is a recurrent neural network that encodes

a sentence into a vector trained reconstructing the immediately

preceding and following sentences.

VI. RELATED WORK

Mueller and Thyagarajan [8] proposes predict the semantic

similarity through learning a metric, which relies on a siamese

neural network architecture. First, using word embeddings

to represent words contained in input sentences, their work

use a recurrent neural network to learn a sentence encoding

through a distance function between two inputs. Second, their

work uses a synonym augmentation technique to expand the

SICK dataset, generating 10,022 additional training examples

replacing random words of original sentence with one of their

synonyms extracted from Wordnet [22]. Although is similar to

Mueller and Thyagarajan’s approach, our works is differs by

the fact of use of GRU as gating recurrent architecture, which

we show that can generalize better in SICK dataset than LSTM

in Section V.

Tai, Socher and Manning [19] propose a generalization of

recurrent neural network, processing sequences of words in

a tree-structured LSTM. Their work focuses on generating an

encoder to represent information of a sentence more efficiently

than a sequentially network default. Their work relies on

a dependency parser [23] to represent the input sentences

hierarchically. Our approach is simpler, using a sequentially

recurrent network that uses word vectors as input representa-

tion, which is extracted from a pre-trained word embedding

model.

Aires and Meneguzzi [24] propose an algorithm to measure

the semantic similarity between sentences using the Wu-

Palmer Distance of words. They use such measure to detect

semantic similar norm actions within contract texts, mensuring

similarity using a word-level distance measure. Although their

work obtains satisfactory results, our method explores a more

complex approach to measure semantic similarity in diverse

contexts, considering more items contained in a sentence-level

than a word-level.
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TABLE IV
RESULTS WITH SEMANTIC SIMILARITY PREDICTED IN SENTENCE PAIRS ASSOCIATED WITH THE RESPECTIVE VERBAL TYPE/TENSE. TABLE IS ORDERED

BY PREDICTED SIMILARITY.

Active Voice Form Passive Voice Form Verb Tense/Type Similarity Predicted

Michael Jordan bought the Bobcats team. The Bobcats team was bought by Michael Jordan. Simple Past 0.96

Alex writes a small book. A small book is written by Alex. Simple Present 0.94

John Doe had bought a Ford Fiesta. A Ford Fiesta had been bought by John Doe. Past Perfect 0.94

John could have bought this house. This house could have been bought by John. Modal 0.94

Bill would have won the fight. The fight would have being won by Bill. Modal 0.89

She can create a python program. A python program can be created by her. Modal 0.79

A woman is writing a letter. A letter is being writen by a woman. Present Continuous 0.77

Someone is painting the building wall. The building wall is being painted by someone. Present Continuous 0.76

Rita was writing a letter. A letter was being written by Rita. Past Continuous 0.73

TABLE V
TABLE WITH PAIR OF SENTENCES CONTAINED IN MICROSOFT RESEARCH PARAPHRASE CORPUS CLASSIFIED AS PARAPHRASE RELATIONSHIP.

Sentence A Sentence B Similarity Predicted

Revenue inthe first quarter of the year dropped 15 percent
from the sameperiod a year earlier.

With the scandal hanging over Stewarts company, revenue
the first quarter of the year dropped 15 percent from the
same period a year earlier.

0.83

The DVD CCA then appealed to the state Supreme Court. The DVD CCA appealed that decision to the U.S. Supreme Court. 0.69

But he added group performance would improve in the
second half of theyear and beyond.

De Sole said in the results statement that group performance would
increase in the second half of the year and beyond.

0.77

VII. CONCLUSION AND FUTURE WORK

We have implemented a Siamese neural network architec-

ture to measure semantic similarity between two sentences

and evaluated it through different test scenarios, comparing

with results of related works. Our work achieves results

close to the state of the art leveraging a simplified neural

network architecture, which generalizes beyond few sentence

pairs. Word embedding help us to obtain an efficient input

representation, retrieving semantic and syntactic information

in a word level. Thus, our work does not require an extensive

manual feature generation due to use a existing pre-trained

model, dispensing the linguistic information of the sentences.

In this work, we realize test scenarios that reveals limitations

of our approach, which motivates following future works.

First, we intend to explore the semantic representation gener-

ated by the recurrent neural network of siamese architecture,

which can be applied a dimension reduction to create a infor-

mative visualization of learned encoding. Second, we aim to

enhance our work for considering the preceding and following

sentences following the Kiros et al work [21], capturing more

information about context of the information.

Finally, we intend to apply dataset augmentation techniques,

which deals with size-limitations of labeled datasets in Mueller

work [8]. This task contains a difficulty that lies in deciding

which words can be replaced and what synonym options are

a valid replacement, in order to maintain context of original

sentence.
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