2018 IEEE Symposium on Computers and Communications (ISCC)

Evaluating container-based virtualization overhead
on the general-purpose IoT platform

Wagner dos Santos Marques§, Paulo Silas Severo de Souza®,Fabio Diniz Rossi*,
Guilherme da Cunha Rodrigues’, Rodrigo N. Calheiros?,
Marcelo da Silva Conterato® and Tiago Coelho Ferreto®
Email: wagner.marques.001 @acad.pucrs.br
*Federal Institute of Education, Science, and Technology Farroupilha (IFFAR)
Alegrete, Brazil
Federal Institute of Education, Science, and Technology Sul-Riograndense (IFSUL)
Charqueadas, Brazil
tSchool of Computing, Engineering and Mathematics
Western Sydney University, Australia

§Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Porto Alegre, Brazil

Abstract—Virtualization has become a key technology that
provides several advantages (e.g., flexibility, migration, isolation)
for a plethora of computing infrastructures. However, traditional
virtualization models are not suitable for embedded IoT platforms
due to the virtualization layer overhead. New virtualization
proposals such as container-based approaches arise as an option
where performance is not impacted. However, when working
on general-purpose embedded platforms, some studies have
demonstrated that applications on container-based virtualization
on embedded devices present considerable performance over-
head. Since most performance evaluations on platforms using
containers were run on servers, this study expands the testbed
scenario by analyzing several metrics that measure the overhead
of container-based virtualization layer on embedded IoT devices.
Results demonstrated improvements up to 23% in terms of
performance and up to 32% in terms of EDP.

Keywords—Embedded devices, performance, power consump-
tion, virtualization.

I. INTRODUCTION

Currently, there is a great appeal for Internet of Things
(IoT) [1]. This growth is due to several factors, such as the
reduction in price and popularization of embedded devices, the
maturation of data communication technologies, and service-
oriented architectures. The core of an IoT ecosystem consists
of edge devices, which is the infrastructure that encompasses
data acquisition, network transmission, and its transformation
into information [2]. Nowadays, many works propose to use
general-purpose embedded devices to perform such functions
due to the low cost and flexibility.

Therefore, there is a paradigm shift in embedded devices
that once performed only one function and now must perform
several operations concurrently on the same hardware. The
technology that allows concurrent execution of applications
on the same hardware is virtualization, implementing features
such as isolation and elasticity. However, most virtualization
models cause performance overhead. Therefore, it indicates
that a large overhead can undermine the good performance of
the edge devices and compromise [oT architecture. Traditional
virtualization models implement an asynchronous I/O ring
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structure between Host OS and Guest OS [3]. Such ring is
a descriptor queue allocated by domain (Host OS and Guests
0OS). However, descriptors do not directly contain I/O data.
Instead, /0O data buffers are allocated out-of-band by the
guest OS and indirectly referenced by I/O descriptors. For
this reason, descriptors are accessed using producer-consumer
pointers [4], and it causes I/O overhead.

In contrast, container-based virtualization (i.e., Linux Con-
tainers) performs this management via operating system kernel,
avoiding virtual to real translation mechanisms by an additional
layer. Thus, Linux Container presents performance as close as
a native operating system [5]. This characteristic becomes vital
as edge devices need to respond to geographically distributed
sensors requests as fast as possible. From the above, this
paper evaluates the performance overhead caused by the use
of container-based virtualization in a general-purpose edge
computing platform (processor, memory, disk, and network).
Besides, we also took into consideration the power consump-
tion during each evaluation performed to calculate the Energy-
Delay Product, which considers both performance and energy
consumption.

Among the specific contributions of this paper, we high-
light the following: (i) we analyze the performance and power
consumption overhead caused by containers during the execu-
tion of several applications with different behaviors running on
an embedded system; and (ii) we verify if the container-based
virtualization can bring benefits to edge devices depending on
the requirements of the scenario they are inserted. This paper
is organized as follows: Section II presents a theoretical frame-
work on Internet of Things, Edge Computing, and Container-
based virtualization; in Section III we discuss some studies
focused on resource allocation in embedded devices; Section
IV shows the evaluation scenario, benchmarks, results, and
discussion; Finally, in Section V we present our conclusions
and future work.

II. BACKGROUND

Internet of Things (IoT) has expanded the possibilities of
acting to a plethora of diverse environments widening the
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application of computer science. In this scenario, the increase
in capacity (e.g., performance, storage) and the low cost of
sensors and prototyping platforms boosted this expansion.
Today, sensors allow the management of various metrics, such
as temperature sensors and even complex components in a
smart environment. Figure 1 illustrates the interaction among
the components of an IoT environment, where we highlight
IoT in three principal components, namely, sensors, analysis,
and the Internet.
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:

Figure 1. Relationship among IoT components.

The data obtained from sensors are used to monitor and
control the environments in various situations. In other words,
such data generates autonomic run-time responses to modify
the environment according to the application’s metrics and
goals. Edge Computing focuses on optimizing the performance
and reducing the required bandwidth on the network by
bringing the processing to near the source of data (such layer
is called the edge of the network). In this context, embedded
systems are responsible for the analysis and decision-making
tasks, such as anomaly and intrusion detection. Such approach
decreases the amount of data that need to be forwarded to
external services, increasing the security (since the raw data
is treated inside of the network), reducing the transmission
costs and latency, and thereby improving the quality of service

(QoS).

Performance constitutes a very relevant factor on Edge
Computing since edge devices must be able to quickly handle
the data coming from the sensors to make decisions. In this
context, power saving also emerges as one of the biggest
concerns since such devices usually are supplied by batteries
[6]. Hence, there is an effort to find balance points between
performance and power consumption to allow edge devices
to operate with the required performance without changing
its batteries constantly. The adoption of virtualization technol-
ogy generates numerous benefits across multiple computing
segments, such as lower acquisition costs, better utilization of
computing resources, and higher performance measures. These
features are commonly used in servers, computer networks and
even on desktops [7].

Moreover, virtualized applications have lower performance
than in native systems. The overhead caused by the virtual-
ization layer is a primary concern during the adoption of this
technology. Therefore, identifying and reducing the overhead
posed by the virtualization layer have been the critical issue
to a plethora of studies [8]. Along with the several kinds of
virtualization, currently, hypervisor-based virtualization is the
most popular. Such virtualization actuates on the hardware
components level allowing the virtualization of several devices
with different architectures in a single host in an isolated
way. However, hypervisor-based virtualization imposes some
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overhead by emulating both hardware and operating system of
each of its virtual machines, requiring more resources from
the host device [5].

Some embedded devices have no support for hardware
virtualization due to its particular purposes [9]. In this context,
container-based virtualization emerges as a viable solution
to these devices, since it actuates at the operating system
level and requires fewer resources than virtual machines by
using features from the host device operating system instead
of emulating different systems to each container. Instead of
manipulating hardware components directly, container-based
virtualization uses kernel-level features of the host device to
create the containers, which are isolated environments which
have their own processes and libraries. Hence, this kind of
virtualization brings several benefits such as smaller images
(which do not need to have elements like devices drivers) and
the fact that containers can be turned on or off faster than
traditional virtual machines [10].

Based on the above, Linux Containers (LXC) is a virtual-
ization technology that has focused on performance. The dif-
ference between traditional and container-based virtualization
is shown in Figure 2. Container-based advantages regarding
performance occur because Linux Containers do not maintain
a hypervisor for the management of virtual machines. Instead,
the operating system kernel itself performs this control, and
for this reason, Linux Container presents performance close to
a native operating system.

VM 1 VM 2
‘ Aep ‘ ‘ AP ‘
Guest OS ‘ Guest OS App ‘ ‘ Agp

Hypervisor ‘

Host Host

‘ Host OS ‘ ’ Host OS ‘

(a) Traditional Virtualization (b) Container Virtualization

Figure 2. Comparison between different types of virtualization.

Linux Containers is one of the most utilized containers
systems used nowadays since it is included in the Linux
operating systems and allows the creation and management
of groups of processes (e.i., containers). Linux Containers
utilizes many Linux kernel features for an operating system
level virtualization, such as kernel namespaces and cgroups
(control groups) [11].

On the top of Linux Containers infrastructure, LXD has
emerged as a lightweight full OS system container solution
on top of Linux Containers. Similar to a virtual machine, it
provides hosting for multiple OS containers on a single host.
Consequently, this architecture provides the highest density
of guest OS containers per host among the others container
solution as a direct result [11]. Also, LXD provides several
benefits, such as verification and restore points [11], and
facilitate the use of Software-as-a-Service (SaaS) and Platform-
as-a-Service (PaaS), since REST API have a suitable support
for it.
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III. RELATED WORK

There is a range of works that use virtualization on devices
in fog and edge computing for a variety of purposes, such as
security, resource isolation, flexibility, high availability, and
centralized management. In this section, we highlight some of
them.

Chiu et al. [12] have presented EdgePlex, an approach for
Provider Edge Router (PE). The proposal uses a distributed
architecture comprised of commodity switches and servers and
aims to leverage the advances in virtualization and high-speed
packet processing in servers and virtual machines to replicate
functionality in edge routers. Authors emphasize the use of
one virtual machine per client since it provides significant
operational flexibility for providers and isolation for customers.
To validate the proposal, a prototype was developed and used
in a test bed. Results indicate that the proposed tool is feasible
and capable of meeting the performance needs of service
providers.

Bellavista and Zanni [13] address how to build a fog
middleware support for IoT gateways to perform the decen-
tralization of MQTT broker from the cloud involving edge
and exploring industry-mature containerization to facilitate the
interoperability and portability via node configuration stan-
dardization. For a proposal validation, the authors created and
deployed a simple use case application in the domain of Smart
Connected Vehicles (SCVs). Results were positive, achieving
scalability of multiple container executions over very resource-
constrained nodes such as Raspberry Pls.

Pahl et al. [14] performed a review of containers suitability
for edge clouds. The authors presented the relevance of the
use of such virtualization technology for Platform-as-a-Service
concerning application packaging and orchestration. The au-
thors indicated that container technology has the potential
to substantially advance PaaS technology towards distributed
heterogeneous clouds through a lightweight and interoperable
solution.

Ferrer et al. [15] argue that the small amount of data gener-
ated by wearables and personal devices can be processed and
stored on the edge of the network, i.e., close to the IoT devices.
The authors claim that processing and storing a small quantity
of data close to the sources has enabled faster control of the
data ownership, response time, and semi-autonomy, which are
requirements of critical applications. They also have discussed
that Fog extends Cloud resources to the edge of the network,
such as virtualization, enabling the customers to control their
data. The customers can determine the engagement policies
of their PHA (Personal Health Assistant) with the purpose to
maintain a healthy life.

Jemaa et al. [16] introduce NFV (Network Function Virtu-
alization) placement and provisioning optimization strategies
over an edge-central cloud infrastructure. Accordingly, NFV
represents a promising solution for wireless network providers
to improve business the agility and cope with the continuing
growth in data traffic. Also, virtualizing core network func-
tions, as well as radio-access network services, can reduce
the cost to deploy and operate large wireless networks. So,
the authors proposed QoS models based on QoS-aware VNF
placement and provisioning methods for the edge-central cloud
system.
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Burger et al. [17] describe that the performance of the
player and the gaming service highly depend on the distance
and latency to the game server. Thus, to reduce latency, servers
can be migrated to the edge of the network where they are
in closer to the players. To evaluate the impact of migration
policies on the latency and load of game servers, the authors
used a multiplayer online battle arena. The results show that
deploying one additional edge server can already reduce the
mean distance to the server by one-half and profoundly reduce
the load on the dedicated server.

Based on the above, we can claim that previous work
presented in this section did not evaluate the overhead caused
by the adoption of container-based virtualization in edge
computing, since such technology work with limited resources
and aims at rapid responses to the customer. In this sense,
we propose to perform the overhead evaluation caused by the
container-based virtualization in edge devices.

IV. EVALUATION AND DISCUSSION

Edge device must be able to run analysis and processing
algorithms which may consume several hardware resources in
a balanced way or even focus only some components, such
as memory, disk, or CPU. In this context, we have decided
to compare the performance of several types of applications
running natively and on containers.

On embedded systems, the power consumption constitutes
a very relevant factor since most of these devices are de-
pendent on battery power [6]. Therefore, we also analyzed
the elapsed time and the power consumption of all executed
benchmarks to calculate its Energy-Delay Product (EDP).
Using EDP, we show the point of balance among energy
saving and performance. As a general-purpose IoT embedded
platform, we used a Raspberry Pi 2 Model (which hardware
specifications are shown on the Table I), running the operating
system Raspbian', Linux kernel 4.4.50+. The applications were
compiled with the GCC 4.9.2 and with the Fortran 4.9.2-
10, and OpenMP 4.0. To validate the results, in all test we
used the mean of 5 executions. Aiming to meet the aspects
exposed above, we used the following benchmarks: 10Zone
(disk performance), NPB (processor performance), STREAM
(memory performance), and AB (network performance).

Table 1. RASPBERRY P12 MODEL B HARDWARE SPECIFICATIONS.
Component Specification
CPU Broadcom BCM2837Arm7 Quad-core Cortex-7 900MHz

1GB LPDDR2 SDRAM
10/100 Ethernet Port
+5V Micro USB

Memory (RAM)
Network
Power Supply

A. Disk Performance

Disk performance was evaluated by using IOZone, a bench-
mark which analyzes the filesystem’s throughput during the
execution of several I/O operations. Once the tests finish,
I0Zone presents accurate information about every task exe-
cuted, allowing a precise analysis of the disk performance.
The benchmark was configured to create and manipulate a
100MB file, with 32k of record length. We ran four operations
in the throughput mode with four threads: Writing: This
operation measures the throughput when writing a new file

! Available at <https://www.raspberrypi.org/downloads/raspbian>.
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on the disk. The writing process does not involve only the file
being stored but also some metadata (e.g., information about
the storage device); Re-Writing: This test measures the disk
performance during the writing an already existent file. Such
operation usually has a bigger throughput than writing a new
file since it doesn’t need to add elements like metadata (which
already exists on the disk); Reading: The reading operation
measures the disk performance when reading an existent file.
This benchmark usually takes some time since it needs to
add the file data into the device’s Cache memory; Re-reading:
Measures the disk performance when reading a file that was
recently read. Usually, the Re-Read operation is faster than the
Read one, since the operating system usually keeps the data
of files recently read into the cache memory.

Results, presented in Figure 3, indicate that the use of
container-based approach generated a throughput overhead of
approximately 1.53% on all the executed operations. Moreover,
such overhead was 54% bigger on the reading and re-reading
tests. Nonetheless, the container-based approach showed a
better EDP (0.322% smaller than the native’s EDP). Results
can be attributed to a good use of Cache memory, which serves
the data for re-reading and re-writing. It may be a point to be
researched in the future, which consists of the overhead of the
virtualization layer over misses and hits on Cache, which can
influence quite dramatically, even more in multicore embedded
architectures.
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Figure 3. Disk performance comparison using I0Zone.

B. HPC Applications Performance

The NAS Parallel Benchmarks? (NPB) was the test suite
chosen to evaluate the performance and the EDP of native
and container-based approaches. The NPB was developed by
the Advanced Supercomputing Division of NASA (National
Aeronautics and Space Administration), containing algorithms
based on Computational Fluid Dynamics applications. The
NPB benchmarks are divided into 3 groups: Kernels: Integer
Sort (IS), Embarrassingly Parallel (EP), Conjugate Gradient
(CG), Multi-Grid (MG), and Discrete 3D Fast Fourier Trans-
form (FT); Pseudo applications: Block Tri-diagonal (BT),

2 Available at: <https://www.nas.nasa.gov/publications/npb.html>.
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Scalar Penta-diagonal (SP), and Lower-Upper Gauss-Seidel
(LU); Parallel I/O (Input-Output) algorithms: Unstructured
Adaptive (UA), and Data Cube (DC).

Moreover, NPB have several classes, which specify the
problems proportions to be solved by the algorithms. In this
investigation, we used the S, W, and A classes, which are
the smallest classes of the suite. The use of the container-
based approach generated a performance overhead on 9 of the
10 executed algorithms. The only case in which the use of
container slightly decreased the execution time was on the EP
test. Regarding EDP, the evaluation showed balanced results.
The container-based approach had better EDP results on kernel
algorithms, presenting a gain of approximately 2.1%. On the
other hand, the use of containers increased about 4.6% of
EDP on the parallel 1/O tests and approximately 0.85% during
the execution of the pseudo-applications. The bigger overhead
caused by the use of container occurred on the execution of
the DC algorithm (rise of 8.53%). Graphical representation of
both performance and EDP evaluations are presented in Figure
4.

The only case when the use of the container-based ap-
proach presented a better performance result than the native
one was during the execution of the EP benchmark, which
represents applications that can be divided into smaller in-
dependent tasks, i.e., can be processed in parallel without
any need for communication between them. Such algorithms
are very useful on parallel architectures such as the Internet
of Things (e.g., depending on the scenario, several edge
devices can work together on a single task like clustering-
based anomaly detection).
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9 EP Loss of 0.56%

10 sP Gain of 0.35%

Figure 4.  Performance and EDP comparisons on HPC applications using

NAS Parallel Benchmarks.

As we can see, applications that perform I/O are more
penalized. It is a typical behavior in virtualized data center
servers because of ring architecture, and it can also be observed
in an embedded environment. Nonetheless, the positive results
achieved during the execution of the embarrassingly parallel
algorithm showed that there are some real-life embedded
scenarios when the use of a container-based approach can bring
some benefits (e.g., multiple edge devices can be used on the
facial recognition of distributed embedded smart cameras for
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surveillance).

C. Memory Performance

STREAM?: it is a benchmark that analyzes the memory
bandwidth during the execution of vector kernels. We ex-
ecuted STREAM in a parallelized way (4 threads) through
the OpenMP* API (Application Programming Interface). Al-
though performing more than one operation by time, STREAM
provides statistical information about every of its operations,
which are: Copy: it is responsible for analyzing the transfer

3 Available at: <https://www.cs.virginia.edu/stream>.
4Available at: <http://www.openmp.org>.
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rate in the absence of arithmetic; Scale: it adds a simple
arithmetic operation; Add: it aggregates multiple loading and
storage ports on vector machines to be tested; Triad: it allows
chained, overlapped, fused multiply, and add operations.

In order to get more accurate results, we modified
the STREAM_ARRAY_SIZE constant, which specifies the
amount of data which will be manipulated. In this sense, we
ran STREAM using arrays which occupy 25.4MiB, 76.3MiB,
and 228.9MiB. Moreover, we set the NTIMES constant (which
corresponds to the number of iterations of each benchmark
execution) to 50.

Results show that the container-based approach achieved
higher memory throughput on the Add and Triad operations
(rise of 0.17% and 0.29%, respectively), during the execution
of the three chosen array sizes. The gain on the Add operation
indicates that the container-based approach is effective during
operations involving the filling and the manipulation of a
fulfilled processor pipeline (e.g., large arrays manipulation
tasks). The positive result regarding on the Triad benchmark
shows that the use of containers can be a viable solution for
the execution of some HPC jobs such as fused multiple-add
(e.g., polynomial evaluations, matrix multiplication, etc.).

On the other hand, such approach presented a performance
overhead during the execution of Copy and Scale tests (loss of
0.12% and 0.01%, respectively) using 25.4MiB and 76.3MiB
arrays. Moreover, of 12 executed operations (4 with each array
size), the use of containers increased the EDP on 7, and did
not make a difference in 3 operations.

When we used a small dataset, which does not completely
stress available memory, the trade-off between performance
and energy savings is great. However, the results showed that
the greater the amount of data managed and maintained by
memory, the better the trade-off, and it occurs because of
the proximity of the memory and processor in an embedded
device.
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D. Network Performance

Considering that edge devices perform their functions
by collecting data from sensors and sending and receiving
information from a remote server, an assessment of their
performance while using the internet becomes very important.
During this evaluation we use ApacheBench (AB) °, which can
be used to analyze Hypertext Transfer Protocol (HTTP) traffic
in web applications. It is a command line program that is part
of the Apache web server and is used for the performance of
web servers through HTTP requests a URL specified by the
user. In this sense, we created an example application using the
Ruby on Rails® web framework. Results show that the use of
the container-based approach showed a performance overhead
of 23.9%. Nonetheless, the use of containers decreased the
EDP by 32.5%. Such results are graphically presented on
Figure 6.

The results indicate that virtual switch maintained by the
OS host manages requests coming from containers in order
to balance the load, although it has lost performance, it can
balance performance and energy savings in a fairer way.
Moreover, the network is virtualized in the container, and such
network virtualization acts as a second layer. In order to use the
network virtualization, several parameters must be specified
to define the network interfaces of the container. Several
virtual interfaces can be assigned and used in a container even
if the system has only one physical network interface. For
this reason, we believe that the container’s virtual network
generated an overhead compared to the native approach.

V. CONCLUSION AND FUTURE WORKS

This study evaluated the overhead of the container-based
virtualization layer using applications in a general-purpose IoT
embedded environment by individually testing each hardware
component that can influence performance. Results showed
that the overhead imposed by such virtualization model could
maintain performance close to the native, being an appropriate
option to the edge devices.

Despite generating a performance overhead in the majority
of the executed applications, in some cases, the use of con-
tainers also decreased the power consumption. In this sense,
when analyzing both performance and power consumption of
each of the executed benchmarks, we realized that using the
container-based approach decreased the Energy-Delay Product
in some algorithms such as the MultiGrid, whose behavior is
similar to tasks involving linear problems like sparse linear
systems. In the edge computing context, MultiGrid methods
can be implemented in parallel image analysis algorithms
which use multiple edge devices to give a fast feedback to
the environment. The use of containers during the execution
of the MultiGrid algorithm generated an EDP gain of 4.71%
when compared to the native approach.

As future work, we intend to evaluate the application
performance on container-based virtualization in a cluster
of edge devices. Such a computational aggregate will allow
evaluating issues of migration of containers among devices,
aiming for elasticity.

3 Available at: <https://httpd.apache.org/docs/2.4/programs/ab.html>.
6 Available at: <http://rubyonrails.org>.
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