
Real-time Procedural Generation of Personalized Façade and Interior Appearances
Based on Semantics

Ivan Silveira, Daniel Camozzato, Fernando Marson

Undergraduate Program in Digital Games
Universidade do Vale do Rio dos Sinos

São Leopoldo, Brazil
ivansi@outlook.com, {dcamozzato,fmarson}@unisinos.br

Leandro Dihl, Soraia Raupp Musse

Graduate Program in Computer Science
Pontifı́cia Universidade Católica do Rio Grande do Sul

Porto Alegre, Brazil
leandro.dihl@gmail.com, soraia.musse@pucrs.br

Abstract—This article presents a computational model for
procedural generation of customized façade and interior styles
of buildings for use in three-dimensional virtual environments
of games and simulations. The model makes use of two types
of input information: geometric and semantic. The geometric
information is related to the two-dimensional floor plan of a
building, with its parts and dimensions, as well as positions
for doors and windows. The semantic information enables
the creation of architectural styles, enabling variations for
materials and textures for the façade and inner parts, as well as
for the shapes and dimensions of doors and windows. Changing
one or more input parameters modifies the final appearance of
the result. The proposed computational model can be used
to generate large virtual environments, as it allows mixing
different floor plans and architectural styles to achieve visual
diversity. The main characteristics of the work are the real-
time procedural generation of 3D buildings, the customization
of façades and building interiors, as well as the use of semantic
to assign meaning to the different elements of the house.

Keywords-Procedural Generation; Façades Generation; Vir-
tual Environments;

I. INTRODUCTION

With the continuous development of computer graphics

hardware and software technologies, games are getting more

complex and rich in visual details. This causes players to

increase demands and expectations, hoping to find some-

thing new and interactive with each release. The virtual

environments in games have become increasingly large and

in open world games are a must. The manual creation of this

kind of environment requires effort, consuming resources

that could be applied in other areas of the game. Due

to this situation, some development companies reduce the

possibilities of interaction with the environment, creating

scenarios with few details or buildings without any interior.
To automate the process of generating large-scale environ-

ments, game development studios have sought to use proce-

dural generation techniques, optimizing content creation and

reducing manual modeling work. Most existing techniques

for creating procedural constructions require from a few

seconds up to minutes to generate models that can be

used in games, which provides increased productivity in

the creation of large-scale environments. However, the focus

is the generation and customization of the exterior of the

buildings in these virtual environments and not the interior,

as can be seen in Section II.

To solve this problem, this paper proposes the defini-

tion and implementation of a computer model capable of

generating, in real time, a great visual variety of façades

and interiors requiring only two sets of inputs. The input

information is provided once and may be combined in

order to produce varied results. The required data concerns

the geometry and architectural style of the building to be

generated. To provide higher visual variety and scalability,

it is possible to modularize the elements that are part of

the construction (e.g. doors, windows and roofs). The result

and performance achieved in the generation of the buildings

allow content to be generated on demand even while running

a game or a computer simulation.

This paper is organized as follows: the next section

discusses the related work, with different techniques for

procedural generation of buildings and other components

involved. Section III describes the proposed model and its

internal processes, such as the set of necessary information

and the processing to generate each part of the construc-

tion. Section IV discusses details of the implementation of

the prototype and the technologies used. The results sec-

tion analyzes four different cases, including a performance

evaluation for mass production of content. Finally, some

considerations are made about the work and about future

work in Section VI.

II. RELATED WORK

With the increasing use of large-scale environments in

open-world games like Sleeping Dogs, GTA IV and V,

Watch Dogs and Assassin’s Creed, it becomes necessary

to allocate resources exclusively for the creation of these

environments. The storage of geometric models and textures

for large-scale environments is also a challenge. Due to these

problems, the demand for procedural content generation has

grown steadily. Techniques to generate elements for use in

three-dimensional virtual environments are constantly being

developed and improved [1]. The possibilities range from

2015 14th Brazilian Symposium on Computer Games and Digital Entertainment

2159-6662/16 $31.00 © 2016 IEEE

DOI 10.1109/SBGames.2015.32

90

2015 14th Brazilian Symposium on Computer Games and Digital Entertainment

2159-6662/16 $31.00 © 2016 IEEE

DOI 10.1109/SBGames.2015.32

89

generation of organic objects such as plants and trees ([2]

[3] [4] [5]), to geometric representations of buildings ([6]

[7] [8]) and even entire cities ([9] [10]). Besides geometry,

it is also possible to generate procedural textures ([11] [12]

[13] [14]).

[15] presents a method for automated generation of

façades via a model which uses a division grammar, which is

a parametric approach based on the concept of forms. It also

uses a system for comparing forms and a control grammar,

creating flexibility when generating different architectural

styles and designs.

[16] proposes a grammar called CGA Shapes, focused

on the generation of buildings with high visual quality and

geometric details. Using rules, it is possible to describe,

group and specify relationships for simple geometric shapes,

in order to create a geometrically complex object. One

of the main contributions of the work [16] is to create

a massive system that maintains consistency between the

volumetric shapes created. In addition, the user is allowed

to dynamically interact at all stages of the process.

In 2007, [17] expands the original model proposed by

[15] using the ideas presented in [16], in order to generate

synthetic façades from photos of real-world building façades.

The generation principle remains the same, but now a

photogrammetry search is made in the image for patterns

stored in a database. Once recognized, hierarchical patterns

are used as input in the division grammar to start the façade

reconstruction process. The façade photograph is used as

a texture in the generated geometry, further increasing the

realism of the result. In addition to the realism and ease

of generation, another contribution of the model proposed

by [17] is the linking of semantics with geometry, making

it possible to specify the functions and uses of a particular

geometry feature.

Another image-based approach to generate façades is pre-

sented by [18]. This semi-automatic technique uses images

captured along streets and relies on structure from motion

to recover camera positions and point clouds automatically

as the initial stage for modeling. Firstly, a building façade

is considered as a flat rectangular plane or a developable

surface with an associated texture image composited from

the multiple visible images. A façade is then decomposed

and structured into a Directed Acyclic Graph of rectilinear

elementary patches. The decomposition is carried out top-

down by a recursive subdivision, and followed by a bottom-

up merging with the detection of the architectural bilateral

symmetry and repetitive patterns. Each subdivided patch of

the flat façade is augmented with a depth optimized using

the 3D points cloud.

[19] introduces a method to generate very detailed

façades, presenting his work as an improvement over pre-

vious models in which the details are simpler. However,

the method presented by [19], despite getting results rich

in detail, requires user interaction. In similar way to earlier

techniques, the method does not consider the generation or

customization of the interior of buildings.

[20] proposes a procedural approach to generate consis-

tent buildings using Bayesian networks, which are generated

by machine learning of real architectural data from an

extensive catalog coded manually. The focus of the work

is to maintain the coherence of the interior room layout.

The model allows different architectural styles to be applied

through style models, but the parameterization and styles

were not detailed and unknown efficiency of both. The

model has limited use in real-time applications because the

cost to generate each floor plan is too high.

A framework developed by [21] is able to generate many

variations of a façade design that look similar to a given

façade layout. Starting from an input image, the façade

is hierarchically segmented and labeled with a collection

of manual and automatic tools. The user can then model

constraints that should be maintained in any variation of

the input façade design. Subsequently, façade variations

are generated for different façade sizes, where multiple

variations can be produced for a certain size.

A procedural method for interactively modeling building

façades is introduced by [22]. The result is a façade by

composing multiple overlapping layers, where each layer

contains a single rectilinear grid of façade elements de-

scribed by two simple generator patterns. This way, the

design process becomes more intuitive and the editing effort

for complex layouts is significantly reduced. To achieve

this, it is presented a method for the automated merging

of different layers in the form of a mixed discrete and

continuous optimization problem.

It should be noted that none of the presented techniques

deals with the real-time procedural customization of both the

interior and exterior appearance of buildings. In contrast, this

work customizes both the interior and exterior by applying

different styles according to semantic rules.

III. COMPUTATIONAL MODEL

This paper presents a computational model for cus-

tomized procedural generation of façades and interiors of

three-dimensional virtual buildings, using as input a two-

dimensional floor plan and semantically defined architectural

styles. The main purpose of the model is to facilitate the

creation of three-dimensional structures for use in games

and computer simulations.

The model can generate a 3D building from a real-world

2D floor plan, using the location of the elements (walls,

doors and windows) contained therein. It is also possible to

use floor plans generated procedurally as the input (e.g. [23]

or [24]).

The method presented here, in addition to the geometric

information, also uses information from user-defined archi-

tectural styles, which are semantically assigned to a building.

Thus it is possible to specify, for example, what kind of

9190

material must be applied to the façade, the type of roof and

the type of material it is made of, as well as the style of

window and door to be used in a particular building.

Figure 1 presents an overview of the building generation

process. The Builder Agent interprets the input info (a 2D

floor plan and architectural style) and requests to the spe-

cialized builders the creation of three-dimensional elements

to be inserted in the building (doors, windows and roof).

These elements are customized according to architectural

style, both in the form and the material used. The Builder

Agent is responsible for consolidating the integration of the

elements and walls of the building.

2D Floor Plan
Architectonic Style (Semantics)

Builder Modules

Windows Doors Roofs

Style Style Style Style

Generated 3D Model

Builder Agent

Figure 1. Architecture of the proposed model.

A. Information input

For the operation of the model, two types of input infor-

mation are required: geometric (2D floor plan) and semantic

(architectural styles). In the following sections these inputs

are described, as well as their uses.

1) Geometric information: For the three-dimensional ge-

ometry of the building to be generated, a minimum set of

data needs to be supplied by the user. A list of edges and

vertices must be informed to define the interior walls of each

room and the exterior walls of the building.

During this step points can also be defined to represent

the center of doors and windows. The dimensions of these

openings (height and width) are defined as a style character-

istic. Rooms and their adjoining walls are given a type (e.g.

kitchen, bathroom, living room, etc.), and this information

directly influences the application of semantics.

2) Semantic information: The second set of user input

data concerns the architectural style of each building. It

serves to customize the final appearance of the exterior and

of each internal room in the house, assigning textures or

materials and defining shapes for doors, windows and roofs

given the specified style.

The same set of semantic information can generate dif-

ferent results, because a wide range of behaviors can be

defined for each item subject to configuration. In addition

to the information that can be inserted into an entry, it is

also possible to create relationships of inheritance, enabling

specialization as well as reuse of inherited settings.

To better understand this concept, we give as an example

an architectural style that generates buildings made of bricks,

with high ceilings. Given that the building is made of bricks,

it can be assumed that it supports the weight of a high

ceiling. It is possible to create a new style by inheriting

all previous information, but including new definitions to

use wood as a material, and also to present low roofs since

wooden structures support less weight.

The information defined in a semantic input is as follows:

• List of materials: each material is characterized with

a type (e.g. OutsideWall, Ceiling, Glass) and a list of

room types, this last being used to restrict the types

of material used in each room (e.g. Material1 {Type:

Ground, RoomType: Kitchen, Bathroom}, in this case

Kitchen and Bathroom can use the same Material1 type

of material for the ground).

• Window styles: defines dimension information (width

and height), opening direction, depths of the opening,

room types to which it applies and materials. This

option allows overwriting materials in the master list of

materials described above (e.g. only bathroom windows

may have frosted glass).

• Door styles: similar to window styles, kept separate to

provide scalability for future work, so that different

characteristics can be considered (e.g. doors with a

rounded top, sliding doors, doors with glass panes, etc.).

• Roof styles: roof types that can be used in the building,

defining allowable dimensions, materials and shapes.

• Builder modules: used in the construction of specific

parts, such as doors, windows and roof. This parameter

allows the definition of custom modules to meet the

specific needs of each architectural style, as detailed in

Section III-C.

A semantic definition is not simply a definition of appear-

ances, it gives meaning to what is being created. It enables

informing that a material is more resistant than another, that

a specific room type is associated with a characteristic type

of window and that a given architectural style requires that

the roof be of type Hipped. This semantic information can

be used in simulations and games, to help guide characters

in moving from one room to the other and in performing

specific actions. For example, to make a character use the

bathroom, it must move to the correct room and this is

possible if the room is assigned with a specific type.

B. Builder Agent

The geometric and semantic information provided by the

user are used as an input in the main generation process,

9291

which is performed by the Builder Agent. If the creation

of buildings with different styles is required, the previous

set of semantic rules is cleared using the redraw operation.

Otherwise, the same rules are used and the result will retain

exactly the same style of the last building generated.

The redraw operation was created to allow the Builder

Agent to repeat the generation with the same semantic com-

binations, allowing the application of the same architectural

style to different buildings, as seen in Figure 6. Once the

semantic style to be used is defined, the Builder Agent

handles other steps such as the construction of exterior and

interior walls, as well as the ceiling and the floor, storing

the partial results hierarchically starting from a root node

representing the building as a whole.

In addition to this processing performed by the Builder

Agent itself, some other specific processes are handled

by subprocesses handled by builder modules, for example

the generation of the openings. Such builder modules are

discussed in Section III-C. At the end of every processing

cycle, the results of the subprocesses are attached to the main

result and this is arranged in a scene as a three dimensional

object.

C. Builder modules

Some parts of a building have a greater need for detail

and their generation may require specific characteristics, de-

pending on architectural style. To facilitate the management

and application of these specific needs of each style, the

model makes use of builder modules, which are responsible

for generating the different elements of the building. At the

planning stage of this work, we identified three types of

elements that potentially have this kind of need: windows,

doors and the roofs.

If there is a need to use an external module to generate a

new element, which was not predicted, it must be informed

alongside the semantic data and a new builder module must

be defined following the rules set in the implementation

section. In the following sections, the three default builder

modules are presented.

1) Roof: The builder module for roofs used in this work

generates three types of roofs: Hipped, Flat and Mansard.

The Hipped type is built based on the Straight Skeleton

algorithm [25]. This algorithm allows the creation of a

skeleton calculated according to the contour of a polygon,

which in this case is the contour of the building, as seen in

Figure 2, calculated on the contour of the floor plans used in

Section V. The technique used was based on the optimized

generation process proposed by [26].

2) Window: The process of procedural generation of

windows can be as simple or as complex as desired, because

there is a great visual diversity, even in a single architectural

2Images obtained at http://buildingwatch.blogspot.com.br/2009/11/
47-french-provincial.html
and http://responsive-ins.com/wp-content/uploads/2013/02/Hip-Roof.jpg

Figure 2. Example of skeleton calculated using the Straight Skeleton
algorithm. In blue, the contour of the building, and in red the resulting
skeleton.

Figure 3. Example of the Mansard and Hipped roof models generated by
the builder module and its real world equivalents. 2

style. To demonstrate one possibility as well as keeping the

method real-time, we opted for the generation of simple

windows, without architectural details like those seen in

Figure 4. The window model created by the builder module

follows the principles suggested by [27], which define a

window as the recursive subdivision of an area in two

others. However, up to two levels are considered, with a

total of three combinations for the frames of the windows

(a single external frame, or two children frames, either

vertical or horizontal). If a higher level of customization

is necessary, the creation of custom builder modules is

possible, generating different models for windows.

9392

Figure 4. Example of window models generated by the builder module.

3) Door: The door models follow a simpler principle

than that of window models, considering the external frame

and the door, as presented in Figure 5. As in previous

modules, for any necessary customization, a custom door

builder module can be used.

Figure 5. Example of door models generated by the builder module.

IV. MODEL IMPLEMENTATION

To implement the prototype the game development engine

Unity has been used 3. The choice for a game development

engine was made because our method is suited for use in

games, but also due to the ease of prototyping. The devel-

opment environment was integrated with the Builder Agent

to reveal some features seen in Section III-B. Among these

features are the preloading of style and geometric informa-

tion files, executing the method using a set of preloaded

information and forcing a redefinition of combinations of

semantic files before generating a new building.

A. Data input

To acquire the geometric and semantic information pro-

vided by the user the XML format has been chosen 4. The

choice for this format is due to the clarity in the hierarchical

3http://www.unity3d.com
4http://www.w3.org/XML/

organization of the data. This characteristic enables automa-

tion in the acquisition of the input, facilitating integration

with any other source of floor plan files (CAD programs,

for example).

1) Structure of the geometric information: The geometric

information used as input is as follows:

• Plan - root node of all the geometric information,

representing the floor plan.

• Points - contains all the points shared by the edges of

each interior or exterior wall.

• Floor - the data structure is prepared for the inclusion

of multiple floors in a future work, but for now only

one floor entity is supported.

• Wall - Each floor has a list of walls. The walls are

edges formed by the points defined in Points, referenced

by attributes p1 and p2. To differentiate interior and

exterior walls we set IsInternal = ”true”. As for the

exterior walls, the walls of the floor must be defined

in sequential order, following either an anti-clockwise

or a clockwise direction, forming the perimeter of the

floor.

• Windoor - the walls can contain a list of openings,

which can be configured to behave as a door (isDoor
= ”true”) or a window. This opening instance must

contain a point in the 2D space of the floor plan. If this

point does not lie upon the parent wall, the opening is

ignored. As an alternative, the opening can be centered

in the wall using the centralize = ”true” option, but

this is only considered in cases where there is only one

opening in the wall.

• Room>Wall - different from the walls defined for the

floor, the walls defined in a room are references to walls

already defined for the floor. To create the list of walls

for a room the same standard used for exterior walls

must be followed, that is, they must be set in sequential

order in either counterclockwise or clockwise direction,

forming the outline of the room.

2) Structure of the semantic information: The semantic

information used as input is as follows:

• style - root node of all the semantic information and

representative of a style. In this element, the inherit
= ”...” attribute defines whether the style inherits in-

formation from another style. Circular references are

not allowed in the definition of inheritance and a style

without a parent is defined as a child of the default

style.

• Materials - a list with the definition of all materials

used by the style. For each material a type can be

defined with the type attribute. The types of room in

which the material is allowed should be defined in the

attribute RoomTypes, separated by ’,’. For the material

to function, its definition must contain in the attribute

name the exact name of the material in the asset library.

9493

• BuilderModules - in this entity the modules responsible

for the construction of doors, windows and roof are

defined. In the attribute builderType one of the three

types must be specified and in the attribute assembly
the full path to the script implementing the module.

• FloorStyle - defines general styles for the floor. The

attributes minGroundOffset and minTopOffset let you

set a minimum distance that the opening must have to

the top and bottom of the floor.

• WindowStyle - a list of specific styles of windows in

rooms. Each window style must contain at least one

room type for which it is intended and optionally a

list of allowable materials, which overwrites materials

of the same type defined at the root of a style. For

each window style the type of decorative frame can

be configured using the decorationFrameType attribute,

however the standard window builder module prototype

only supports two types, the None and SimpleBordered
types.

• DoorStyle - defined the same way as WindowStyle,

except using unique properties of each.

• RoofStyles - in this element the types of roof available

and their properties are defined. Some properties are

common to all roof types, while others are specific to

a roof type. For example, the attributes minOuterOff-
set, maxOuterOffset and minInnerOffset, maxInnerOff-
set define the length of the roof extending outward from

the wall, and from the top to the base, respectively.

These attributes are consumed by the types of roof

Mansard and Hipped, for which they are meant, but

ignored by other types of roof.

B. Builder modules

To make modularization possible, an interface was created

to define the method Build used by the Builder Agent.

Every module developed must implement the interface IBuil-
derModule present in the source code of the prototype,

otherwise it is impossible for the agent to create an instance

of the module. Once the interface has been implemented, the

module must be defined in the styles for which it is used.

The module definition is performed in the BuilderModules
element of the semantics file.

V. RESULTS

To evaluate the functionality and efficiency of the im-

plementation, four floor plans were created, each in its

respective XML file, and two style files which were inherited

from the default semantic file and applied as semantic input.

With these input information defined, four case studies

were developed. In the first, a single semantic is applied to

four different buildings. In the second case the same four

buildings receive multiple semantic variations. In the third,

a floor plan receives many variations in style and finally,

in the fourth, a performance test is performed to verify the

efficiency of implementation.

All tests were run on a computer with the following

configuration: Intel Core i5 2500k, 8GB of RAM and a

NVidia GeForce GTX550Ti graphics card.

A. Case 1

In the first case study a single predefined style was

applied to four different buildings, in order to evaluate

if dependencies exist between the semantic and geometric

information. As can be seen in Figure 6, the same visual

identity has been kept for all houses and there has not been

problems in the application of the style. The total time to

generate the four houses was 61 ms.

Figure 6. Same semantic applied to four different floor plans.

B. Case 2

For the second case study, prior to generating each

building the redraw operation has been performed (see

Section III-B), so that every new three-dimensional model

was generated with a new semantic variation of the two style

files. The result is 4 houses with different styles. Figure 7

presents the result of using different styles with the same

geometric information of the previous case. The total time

to generate the buildings was 64 ms.

Figure 7. Variations of two semantic styles applied to four different floor
plans.

9594

C. Case 3

In the third case, different styles are applied as variations

for a single floor plan, to check the visual consistency in the

application of these different styles. The results can be seen

in Figures 8, 9 and 10. Examples of interior style variation

can be seen in Figure 11. The total time to generate the

buildings was 90 ms.

Figure 8. Style variations applied the same floor plan.

Figure 9. Style variations applied the same floor plan.

D. Case 4

The fourth case study was generated in order to demon-

strate the model’s performance in the massive generation of

buildings. For this case the same settings of the previous

cases have been used, the only difference being the number

of buildings which have been generated, 100 building dis-

tributed in a grid of 10 x 10 units. The 100 buildings were

9695

Figure 10. Style variations applied the same floor plan.

generated in 4.7 seconds. Figure 12 showcases the diversity

obtained with four floor plans and two style files.

VI. FINAL REMARKS AND FUTURE WORK

In this paper we present a computational model for

procedural generation of customized façades and interior for

buildings for use in three-dimensional virtual environments

in games and simulation. The generation process uses the

Figure 11. Example of interiors generated with style variations.

geometric specifications of a floor plan and a semantic spec-

ification of the visual styles and features of each building

element. A builder agent is in charge of interpreting the

input data and requesting from specialized builder modules

the generation of different items, such as doors, windows

and roof, which are integrated into a virtual building. Using

architectural style configuration files, different looks can be

9796

Figure 12. A hundred buildings generated from four floor plans and two
style files.

generated for the same geometry. The main contributions of

the proposed method are:

• Automating the process of creating three-dimensional

virtual buildings for use in games and simulations;

• A semantic format to specify architectural styles and

building features;

• Generating style variations for the same building in

real-time;

• Possibility to expand the model using different special-

ized builder modules.

For future work, some improvements can be made in order

to raise the level of detail of the generated models. One

possibility is the implementation of the method proposed

by [19], adding the possibility to generate curves and orna-

ments which are characteristic of some architectural styles.

An issue to be handled is the creation of buildings with

multiple floors, enabling the creation of apartment buildings

or houses with multiple floors. This requires the creation of

a builder module to generate stairs and elevators.

REFERENCES

[1] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup,
“Procedural content generation for games: A survey,”
ACM Trans. Multimedia Comput. Commun. Appl., vol. 9,
no. 1, pp. 1:1–1:22, Feb. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2422956.2422957

[2] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch,
M. Pharr, and P. Prusinkiewicz, “Realistic modeling and
rendering of plant ecosystems,” in Proceedings of the
25th Annual Conference on Computer Graphics and
Interactive Techniques, ser. SIGGRAPH ’98. New York,
NY, USA: ACM, 1998, pp. 275–286. [Online]. Available:
http://doi.acm.org/10.1145/280814.280898

[3] J. Lluch, E. Camahort, and R. Vivó, “Procedural multires-
olution for plant and tree rendering,” in AFRIGRAPH ’03:
Proceedings of the 2nd international conference on Computer
graphics, virtual Reality, visualisation and interaction in
Africa. New York, NY, USA: ACM, 2003, pp. 31–38.

[4] K. Onishi, S. Hasuike, Y. Kitamura, and F. Kishino,
“Interactive modeling of trees by using growth simulation,”
in Proceedings of the ACM Symposium on Virtual Reality
Software and Technology, ser. VRST ’03. New York,
NY, USA: ACM, 2003, pp. 66–72. [Online]. Available:
http://doi.acm.org/10.1145/1008653.1008667

[5] L. Streit, P. Federl, and M. Sousa, “Modelling plant
variation through growth,” Computer Graphics Forum,
vol. 24, no. 3, pp. 497–506, 2005. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-8659.2005.00875.x

[6] H. Ali, C. Seifert, N. Jindal, L. Paletta, and G. Paar, “Window
detection in facades,” Image Analysis and Processing, 2007.
ICIAP 2007. 14th International Conference on, pp. 837–842,
Sept. 2007.

[7] J. Benner, A. Geiger, and K. Leinemann, “Flexible gener-
ation of semantic 3d building models,” in 1st International
Workshop on Next Generation 3D City Models, Bonn, 2005.

[8] J. Dollner and H. Buchholz, “Continuous level-of-detail mod-
eling of buildings in 3d city models,” in GIS ’05: Proceedings
of the 13th annual ACM international workshop on Geo-
graphic information systems. New York, NY, USA: ACM,
2005, pp. 173–181.

[9] Y. I. H. Parish and P. Müller, “Procedural modeling of cities,”
in SIGGRAPH ’01: Proceedings of the 28th Annual Confer-
ence on Computer Graphics and Interactive Techniques. Los
Angeles, CA, USA: ACM, August 2001, pp. 301–308.

[10] S. Greuter, J. Parker, N. Stewart, and G. Leach, “Real-
time procedural generation of ‘pseudo infinite’ cities,”
in Proceedings of the 1st International Conference on
Computer Graphics and Interactive Techniques in Australasia
and South East Asia, ser. GRAPHITE ’03. New York,
NY, USA: ACM, 2003, pp. 87–ff. [Online]. Available:
http://doi.acm.org/10.1145/604471.604490

[11] G. Turk, “Texture synthesis on surfaces,” in Proceedings
of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, ser. SIGGRAPH ’01. New York,
NY, USA: ACM, 2001, pp. 347–354. [Online]. Available:
http://doi.acm.org/10.1145/383259.383297

[12] L. Lefebvre and P. Poulin, “Analysis and synthesis of struc-
tural textures,” in Graphics Interface 2000, May 2000, pp.
77–86.

[13] B. Chan and M. McCool, “Worley cellular textures in sh,”
in SIGGRAPH ’04: ACM SIGGRAPH 2004 Posters. New
York, NY, USA: ACM, 2004, p. 18.

[14] J. Dorsey, A. Edelman, H. W. Jensen, J. Legakis, and H. K.
Pedersen, “Modeling and rendering of weathered stone,” in
SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses. New
York, NY, USA: ACM, 2005, p. 4.

[15] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky,
“Instant architecture,” in ACM SIGGRAPH 2003 Papers,
ser. SIGGRAPH ’03. New York, NY, USA: ACM, 2003,
pp. 669–677. [Online]. Available: http://doi.acm.org/10.1145/
1201775.882324

9897

[16] P. Muller, P. Wonka, S. Haegler, A. Ulmer, and L. Van Gool,
“Procedural modeling of buildings,” in ACM SIGGRAPH
2006 Papers, ser. SIGGRAPH ’06. New York, NY,
USA: ACM, 2006, pp. 614–623. [Online]. Available:
http://doi.acm.org/10.1145/1179352.1141931

[17] P. Muller, G. Zeng, P. Wonka, and L. V. Gool, “Image-based
procedural modeling of facades,” ACM Trans. Graph., vol. 26,
no. 3, p. 85, 2007.

[18] J. Xiao, T. Fang, P. Tan, P. Zhao, E. Ofek, and L. Quan,
“Image-based faade modeling,” ACM Trans. Graph., vol. 27,
no. 5, pp. 161:1–161:10, Dec. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1409060.1409114

[19] D. Finkenzeller, “Detailed building facades,” IEEE Comput.
Graph. Appl., vol. 28, no. 3, pp. 58–66, May 2008. [Online].
Available: http://dx.doi.org/10.1109/MCG.2008.50

[20] P. Merrell, E. Schkufza, and V. Koltun, “Computer-generated
residential building layouts,” in ACM SIGGRAPH Asia
2010 Papers, ser. SIGGRAPH ASIA ’10. New York, NY,
USA: ACM, 2010, pp. 181:1–181:12. [Online]. Available:
http://doi.acm.org/10.1145/1866158.1866203

[21] F. Bao, M. Schwarz, and P. Wonka, “Procedural facade
variations from a single layout,” ACM Trans. Graph.,
vol. 32, no. 1, pp. 8:1–8:13, Feb. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2421636.2421644

[22] M. Ilcik, P. Musialski, T. Auzinger, and M. Wimmer, “Layer-
based procedural design of facades,” Computer Graphics
Forum, vol. 34, no. 2, pp. 205–216, May 2015.

[23] F. Marson and S. R. Musse, “Automatic generation of floor
plans based on squarified treemaps algorithm,” IJCGT Inter-
national Journal on Computers Games Technology, vol. 2010,
pp. 1–10, January 2010.

[24] D. Camozzato, L. Dihl, I. Silveira, F. Marson, and S. Musse,
“Procedural floor plan generation from building sketches,”
Vis. Comput., vol. 31, pp. 753–763, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s00371-015-1102-2

[25] O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Grtner,
“A novel type of skeleton for polygons,” 1995.

[26] P. Felkel and S. Obdrzalek, “Straight skeleton implemen-
tation,” in Proceedings of Spring Conference on Computer
Graphics, 1998, pp. 210–218.

[27] P. J. Birch, S. P. Browne, V. J. Jennings, A. M. Day, and
D. B. Arnold, “Rapid procedural-modelling of architectural
structures,” in Proceedings of the 2001 Conference on Virtual
Reality, Archeology, and Cultural Heritage, ser. VAST ’01.
New York, NY, USA: ACM, 2001, pp. 187–196. [Online].

Available: http://doi.acm.org/10.1145/584993.585023

9998

