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Fig. 1. Illustration of our method: from tracking trajectories (left), the relevant features are extracted using our techniques (second step), data are clustered
(third step) and mapped to specific crowd features (right).

Abstract—We propose a new methodology to detect social
aspects of crowds in video sequences based on pedestrian features,
which are obtained through image processing/computer vision
techniques. The main idea is to apply and extend the concepts of
Fundamental Diagram (FD) with more features, such as grouping
and collectivity. Using crowd features we identify the crowd type
and the main characteristics. In addition, we also investigated
two further results: the visual assessment of people in real video
sequences in order to detect crowd characteristics, and the usage
of our method to detect similarity of crowds in videos.

Keywords-image processing; fundamental diagrams; classifica-
tion; crowd analysis.

I. INTRODUCTION

In the last years there is a growing interest in under-

standing the behavior of crowds in video sequences. This

problem is important in many applications, including the

safety of pedestrians in complex buildings or in mass events,

pedestrian dynamics, computer animation, crowd simulation,

virtual reality and games. Many methodologies to detect

groups and crowd events have been proposed in the literature

and achieved results showing that groups, social behaviors

and navigation aspects can be successfully detected in video

sequences. For example, counting people in crowds [1], [2],

abnormal behavior detection [3], [4], study of social groups in

crowds [5], [6], [7], [8], understanding of group behaviors [9]

and characterization of crowd features [10]. Most of these

approaches are based on individual pedestrian tracking or

optical flow algorithms, and in general consider features like

speed, directions and distance over time.

However, there is an important attribute that can influence

personal behavior, which affects the group that the individual

belongs to. Chattaraj et al. [11] suggest that cultural and

population differences can produce deviations in speed, density

and flow of the crowd. In their work, authors discuss the

Fundamental Diagrams (FD) used in planning guidelines [12],

[13]. The cultural influence can be considered in crowds

attributes as personal spaces, speed, pedestrian avoidance side

and group formations [14], and many works ([15], [16], [9],

[8]) focus on the identification of groups using computer

vision.

In addition to the work on groups and crowd charac-

terization, we are also interested in automatically detecting

the type of crowds existent in a video sequence. The main

motivation is that we want to work with spontaneous videos

(not controlled ones), and for that we need firstly to know the

main type of crowd existent in the videos. There is limited

research about the types of crowd and crowd membership,

and there is no consensus about how to classify the types of

crowds. For instance, Momboisse [17] proposed a system that

consists of four types: casual, conventional, expressive, and

aggressive, while Berlonghi [18] classified crowds as spectator,

demonstrator, or escaping, to correlate to the purpose for

gathering.

Another approach was proposed by sociologist Herbert

Blumer according to emotional intensity. He distinguishes

four types of crowds: casual, conventional, expressive, and

acting [19]. His system is dynamic in nature. That is, a

crowd changes its level of emotional intensity over time,

and consequently can be re-classified as any of the four

types. Crowds can be active (mobs) or passive (audiences).

Active crowds can be further divided into aggressive, escapist,

acquisitive, or expressive mobs according Greenberg [20].

In this paper we are interested in automatically detecting

crowd features and the type of crowd existent in a given

video sequences, which can be used to provide a better

understanding of cultural aspects in populations. Furthermore,

detecting the type of a crowd in video sequence can be useful

to help simulating coherent crowds. Many methods have been

2016 29th SIBGRAPI Conference on Graphics, Patterns and Images

2377-5416/16 $31.00 © 2016 IEEE

DOI 10.1109/SIBGRAPI.2016.34

201



proposed in this area, usually known as data driven crowd

simulation [21], [22], [23], [24], [25], [26].

We propose to extend the FD to extract and classify crowd

features. According Zhang [27], the FD denotes the relation

between pedestrian flow and density and is associated with

many qualitative self organization phenomena such as lanes

formation and jams. Specifications of various experimental

studies, guidelines, and handbooks display substantial differ-

ences in maximal flow values and the corresponding densi-

ties, as well as the density where the flow vanishes due to

overcrowding. In this paper we propose to extend FD data

(speeds and densities) using the following crowd attributes:

collectivity [10] and population information, namely the total

number of people and grouping data (size and number of

groups). Results indicate that the proposed extension to FD

can be used to better characterize crowds in video sequences.

The main contributions are: a new methodology by extend-

ing FD to detect crowd features, that are used to identify

the crowd type existent in the video sequence and to analyze

similarity between crowds.

This paper is organized as follows. The next section dis-

cusses the related work. In Section III, we detail the proposed

approach. Section IV shows the experiments performed to

evaluate our method. Finally, Section V concludes this article.

II. RELATED WORK

The crowd analysis, in general, handle with the detection

of the groups of individuals and their trajectories. Here, we

cover relevant recent work that focus on analysis of crowd

scenes and the identification of group behavior. Sochman

and Hogg [28] presented an on-line algorithm for social

group inference from trajectories of multiple individuals. The

social group inference is formulated as a Social Force Model

prediction error minimization. In [29], authors propose an

agent-based formulation of pedestrian behavior and a method

to estimate hidden personal properties. The work presented by

Ge et al. [30] describes an automated pedestrian detection and

tracking method that extracts trajectories from video. These

methods handle several features to infer the groups. Our idea

is to extend the FD to extract and classify crowd features.

The Fundamental Diagrams describes the important relation

between density and flow [31] in pedestrian video sequences.

The understanding of individual trajectories can arise from

studies in pedestrians dynamics and highlight the relationship

between crowd density and pedestrian movement.

The concept of the FD is applied in several studies. One

example is the detection of cultural differences in crowds.

Chattaraj et al. [11] performed a study to verify the cultural

influences in individuals trajectories using the FD computed

with populations from Germany and Indian. More specifically,

they studied the FD using populations with the same size

distributed in corridors with two different lengths. The authors

observed differences in the estimated minimum personal space

for groups, indicating the influence of the cultural differences.

Helbing, Johansson and Al-Abideen [32] use the FD for crowd

disasters analysis. They presented an algorithm to extract

positions and speeds of pedestrians as a function of time and

to determine critical crowd conditions, which is important for

organization of safer mass events.

The FD can also be used in results of crowd simulators [33],

[34]. In the generation of pedestrian trajectories [33], the

problem of simulating the movement and behaviors of human-

like agents is used in testing and learning phases. The authors

proposed an approach based on biomechanical principles and

psychological factors. This algorithm exhibits the FD in the

crowd movements relative to speed and density relationship.

Best et al. [34] proposed an algorithm for density-dependent

behaviors in crowd simulation. Their approach aims to gener-

ate pedestrian trajectories, being applicable to a large number

of GPL multi-agent algorithms that use a combination of local

and global planners. Wolinski et al. [35] apply the FD as a

macroscopic data metric for evaluation of crowd simulations

proposed by his framework.

In this work, we use the FD in addition to other features

captured from video sequences, such as collectivity, presence

of groups, size of groups and etc.

III. THE PROPOSED APPROACH

Our approach presents three main modules, as illustrated in

Fig. 1: people tracking, statistical data extraction and crowd

analysis. The first module (Fig. 1 on the left) is responsible for

obtaining the individual trajectories of observed pedestrians

in real videos (as an alternative for non-existent scenarios,

simulated trajectories can be used). In the second module (Fig.

1 in second and third steps), the statistical information from

trajectories is obtained, and finally the last module (Fig. 1 on

the right) is responsible for detecting crowd features.

A. Initial detection and tracking

The initial people detection is performed using the work

proposed by Viola and Jones [36]. The boosted classifier

working with haar-like features was trained with 4500 views of

people heads as positive examples, and 1000 negative (datasets

CoffeBreak and Caviar Head were used[37]). This detector

performs the initial position detection of people based on

their heads, which are the input parameters for the next step:

tracking. Once the individuals are detected, the trajectories

are obtained using the method proposed by Bins et al. [38],

which is based on multiple disjoint patches obtained from the

target. The patches are represented parametrically by the mean

vector and covariance matrix computed from a set of feature

vectors that represent each pixel of the target. Each patch is

tracked independently using the Bhattacharyya distance [39],

and the displacement of the whole template is obtained using

a Weighted Vector Median Filter (WVMF). To smooth the

trajectory and also cope with short-term total occlusions, a

predicted displacement vector based on the motion of the target

in the previous frames is also used. The appearance changes

of the target are handled by an updating scheme.

The output of tracking phase (illustrated in Fig. 2) is a vector

of each person i with the positions �Xf
i = (xi, yi), at each

frame f . It should be noticed that tracking is not a contribution
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of this work, and any pedestrian/crowd tracking algorithm can

be used in this phase.

(a) Initial Detection (b) Tracking

Fig. 2. Tracking phase in our approach: (a) the input image and heads
detection, and (b) the people detection and tracked trajectories.

B. Statistical Data Extraction

From data extracted in the first phase, we have following

information for each person i, at each frame f :

• i) position �Xf
i of person i (meters);

• ii) speed sfi of person i (meters/second); and

• iii) angular variation αf
i (degrees) of agent i w.r.t. a

reference vector �r = (1, 0).

To obtain the desired parameters in the world coordinate

system, we computed the planar homography for each video,

and transformed the extracted trajectories to the world coor-

dinate system by assuming that the head position is on the

ground place (z = 0). Since our videos are close to top-view,

this assumption does not produce large errors in the projection.

Even for videos that are not really top-view, we assume that

the error are not impacting the crowd features of interest, as

discussed in the next section.

Then, we compute the following parameters for each pair

of agents i and j: s(si, sj), o(αi, αj) and d( �Xi, �Xj), where

s(si, sj), o(αi, αj) are the differences of speed and orien-

tation and d( �Xi, �Xj) is the Euclidean distance between the

two individuals. We use the notion of distances based on

the ”Proxemics” described by Hall [40] to define that two

agents belong to the same group according to three tests: If

d( �Xi, �Xj) ≤ 1.2meter and o(αi, αj) ≤ 15◦ and s(si, sj) <
βmax{si, sj}, where β = 5% was empirically defined. Based

on these rules, agents are grouped in pairs. In the next step,

we check which pairs have one individual in common, and

merge them into larger groups. This process is performed

until the group formation does not share individuals, i.e. they

are disjoint. In the first moment, such established groups are

nominated Temporary Groups. These groups keep temporary

if they stay stable (without inputs or outputs of agents) during

at most 10% of total frames of video. After this period, if

they keep the group structure, they are classified as Permanent
Groups. Then, for each frame f , we calculated the following

data:

• Number Gf of existing groups;

• Number νfG of individuals that belong to any group;

• Number ξf of people that do not belong to any group

(i.e. are alone in the scene);

In order to have information for each processed video k, we

computed the average for all frames, obtaining Gk, νk, ξk. In

addition we compute τk, which is the percentage of frames in

video sequence k that contains at least one group.
Next section presents our extension to the commonly used

FD, as previously discussed. Indeed, we propose to extend

data normally used in FD (density × flow) to the following

crowd features (densities, speeds and collectivity values) at

each measurement section (ms), which is a part of the image

empirically defined as a region of 6m2 (Δx = 3 and Δy = 2),

as illustrated in Fig. 3. Consequently, at each ms we have the

3 types of data, as described in next sections.

(a) Fundamental Diagrams

Fig. 3. Illustration of image subdivision and ms where collectivity, density
and speeds are computed.

1) Density (people/sqm): The density 〈Φ〉 is defined as the

number of people divided by the area of a measurement section

ms at each frame, as defined in [41]:

〈Φ〉ms =
Na

Δx.Δy
, (1)

where Na is the number of people in ms and Δx and Δy are,

respectively, the length and width of ms. The average density

Avg〈Φ〉f , at each frame f , is then calculated as follow:

Avg〈Φ〉f =
1

Nms

Nms∑
o=1

〈Φ〉fmso , (2)

where Nms is the number of measurement sections in which

the image (each frame f ) was divided into.
2) Speed: The Speed 〈Θ〉, also inspired on [41], is the

average of the instantaneous velocities si of all persons i in a

measurement section ms, given by:

〈Θ〉ms =
1

Na

Na∑
i=1

si, (3)

where Na is the number of people in that measurement section

ms. At each frame f , the average speed Avg〈Θ〉f is defined

as:

Avg〈Θ〉f =
1

Nms

Nms∑
o=1

〈Θ〉fmso , (4)

where Nms is the number of measurement sections in frame

f .
In addition to Avg〈Φ〉f and Avg〈Θ〉f , we also computed

the collectivity in the video sequence.

203



3) Collectivity: The Collectivity 〈Ψ〉, computed for each

pair of people, was inspired on [10]. However, since we want

to know this parameter for each agent at each time step

(without considering a path in front of each one, because

we compute this in real-time), we do not consider the path

similarity. The collectivity is calculated as a decay function

of �(i, j) = s(si, sj).w1 + o(αi, αj).w2, considering s and

o respectively the speed and orientation differences between

two people i and j, and w1 and w2 are constants that should

regulate the offset in meters and radians. We have used w1 = 1
and w2 = 1. So, values for �(i, j) are included in interval

0 ≤ �(i, j) ≤ 4.34.

The collectivity of a specific measurement section ms is

calculated as follow:

〈Ψ〉ms =
1

N2
a

Na∑
i=1

Na∑
j=1

γe(−β�(i,j)2), (5)

where again Na is the number of people in that measurement

section ms, γ = 1 is the maximum collectivity value when

�(i, j) = 0, and β = 0.3 is empirically defined as decay

constant. Hence, 〈Ψ〉ms is a value in the interval [0; 1]. The

average collectivity Avg〈Ψ〉 at each frame f is given by:

Avg〈Ψ〉f =
1

Nms

Nms∑
o=1

〈Ψ〉fmso , (6)

where Nms is the number of measurement sections of the

video.

Finally, we have for each video k a

vector �Vk of extracted data where �Vk =
[Gk, νk, ξk, τk, Avg〈Φ〉k, Avg〈Θ〉k, Avg〈Ψ〉k]. Each element

of �Vk is quantized into three values: small, medium and

high values, in order to provide crowd classifications in

video sequences. In addition to such information used in the

quantization process, we computed also the standard deviation

for all average values (Std〈Φ〉, Std〈Θ〉, Std〈Ψ〉), which were

also quantized. The quantization process is performed through

clustering, as explained next.

4) Clustering: In order to quantize each element in �Vk,

we used K-means clustering [42]. More precisely, we select

k = 3 to generate exactly three clusters, and apply K-means to

each individual element of ∪k
�Vk, i.e. the collection of vectors

considering all analyzed video sequences. The class centroids

are then used to quantize each element of �Vk into low, medium

and high values, namely S0, S1 and S2. For example, a given

video sequence k can have few groups (Gk ∈ S0), a higher

number of individuals (νk ∈ to S2), and a medium value of

individuals grouped (ξk ∈ to S1).

C. Mapping Crowd Features

This step is responsible for mapping the computed features

into crowd characteristics. The list we are interested is detailed

as follows:

• Crowd type: (Casual, Conventional, Demonstrator);

• Presence of groups, if G > 0;

• Size of groups: three levels of interactions (no grouping,

medium, high), based on νfG;

• Crowd density: three levels of crowd density (low,

medium, high), based on Avg〈Φ〉k; and

• Crowd interaction: three levels of interactions amount

(low, medium, high), based on Avg〈Ψ〉k.

Our goal is to characterize crowds based on such aspects.

The last four of them map directly to specific elements of
�Vk, as explained above. The first one (crowd type), however,

is related to a more subjective classification and not directly

to measured data. To tackle this first aspect, we proposed

some hypothesis, which are based on the studies presented

by Momboisse [17] and Berlonghi [18], and detailed next:

• Hypothesis 1: Casual crowds should have low or medium

density of people, low or medium speed, small or medium

quantity of groups, low collectivity and low frequency of

groups.

– Avg〈Φ〉k ∈ S0 or S1

– Avg〈Θ〉k ∈ S0 or S1

– Gk ∈ S0 or S1

– Avg〈Ψ〉k ∈ S0

– τk ∈ S0

• Hypothesis 2: Conventional crowds should have medium

or high density of people, people in similar and high

speeds, very small groups, most part of people walk alone

and medium or high collectivity.

– Avg〈Φ〉k ∈ S1 or S2

– Std〈Θ〉k ∈ S0

– Gk ∈ S0

– Avg〈Ψ〉k ∈ S1 or S2

– ξk ∈ S2

• Hypothesis 3: Demonstrator crowds should have high

density, small speeds, high collectivity, big groups and

high frequency of groups

– Avg〈Φ〉k ∈ S1 or S2

– Avg〈Θ〉k ∈ S0

– Gk ∈ S2

– Avg〈Ψ〉k ∈ S1 or S2

– τk ∈ S2

The high-level characterization of the crowd type given

above provides the expected values for the elements of �Vk

in each type (casual, conventional, demonstrator). To use it in

a practical system, we actually compute a weighted sum of

the elements in �Vk, in which the weights (scores) are based

on the three hypothesis provided above. They were obtained

empirically, and are defined in Table I. Then, each video k
has a final score for each hypothesis, and the crowd type is

assigned based on the hypothesis with the highest score. The

next section shows and discusses experimental results.

IV. EXPERIMENTAL RESULTS

We evaluated our technique running some experiments.

Initially, we performed a survey to assess the people un-

derstanding as a function of visual video information. We

want to find out if numerical measured data, e.g. size of
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(a) Video 1 (b) Video 2 (c) Video 3 (d) Video 4 (e) Video 5 (f) Video 6

(g) Video 7 (h) Video 8 (i) Video 9 (j) Video 10 (k) Video 11 (l) Video 12

(m) Video 13 (n) Video 14 (o) Video 15 (p) Video 16 (q) Video 17

Fig. 4. Representative frames from all videos used in our tests.

TABLE I
COMPUTED SCORES FOR EACH HYPOTHESIS ACCORDING TO THE SUBSETS

OF �Vk FOR VIDEO k.

Feature Cluster Hyp. 1 Hyp. 2 Hyp. 3
Density: low 0.2 0 0
Avg〈Φ〉 and medium 0.1 0.1 0.1
G high 0 0.2 0.2
Avg Speed: low 0 - 0
Avg〈Θ〉 medium 0.1 - 0.1

high 0.2 - 0.2
Std Speed: low - 0.2 -
Std〈Θ〉 medium - 0.1 -

high - 0 -
Collectivity: low 0.2 0 0
Avg〈Ψ〉 medium 0.1 0.1 0.1

high 0 0.2 0.2
Grouped people: low 0 - 0
ν medium 0.1 - 0.1

high 0.2 - 0.2
Non-grouped people: low - 0 -
ξ medium - 0.1 -

high - 0.2 -
Group low 0.2 0 0
frequency: τ medium 0.1 0.1 0.1

high 0 0.2 0.2

groups of people, can be perceived in short sequences. The

survey was composed by 17 videos and the subjects were

invited to answer 5 questions about each video. The videos

illustrated people walking or standing in several situations.

We used videos from different countries obtained from various

databases available on internet [10], [43], [44] and also filmed

by the authors. Before asking the subjects, we presented some

concepts that should help subjects to answer the questions, as

briefly presented as follows:

• Casual crowds [19]: Are relatively large gatherings of

people who happen to be in the same place at the same

time; if they interact at all, it is only briefly. People in

a shopping mall or a subway car are examples of casual

crowds. Other than sharing a momentary interest, such

as a clown’s performance or a small child’s fall, a casual

crowd has nothing in common.

• Conventional crowds [19]: Are made up of people who

come together for a scheduled event and thus share

a common focus. Examples include religious services,

graduation ceremonies, concerts, and college lectures.

Each of these events has pre-established schedules and

norms. Because these events occur regularly, interaction

among participants is much more likely; People leaving

events or environments can also be examples.

• Demonstrator crowds [18]: Are crowds who often have

a recognized leader, organized for a specific reason or

event, to picket, demonstrate, march, or chant.

The questions for each video from our dataset (see Fig. 4)

are of multiple choice. Follow the questions and possible

answers:

1) In your opinion, which of the following best describes

the crowd type in above video?

a) Casual Crowd;

b) Conventional Crowd;

c) Demonstrator Crowd;

d) None of them;

e) I don’t know.

2) About groups (people walking together, to the same

direction, with similar velocities), do you think the major

part of people are grouped or alone in this video?

a) Grouped;

b) Alone;

c) I don’t know.

3) About the size of the groups (quantity of people by

group), which of the following you might noticed?

a) Small groups (group < 3 people);

b) Big groups (group ≥ 3 people);

c) There are no groups;

d) I don’t know;

4) About the crowd density (quantity of people by square

meter), which of the following you might noticed?
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a) Low density;

b) Medium density;

c) High density;

d) I don’t know.

5) In the video above, might you noticed any interaction

between people?

a) No, there are no interactions;

b) Yes, few interactions;

c) Yes, many interactions;

d) I don’t know.

The survey was answered by 10 people resulting in 850

responses (85 answers from each subject). The results were

used to validate our approach of group definition and group

features. Since each data in our method was clustered in 3

levels, we mapped the answers to the possible levels. We

considered correct when the major part of subjects answer

in accordance with the higher hypothesis. Fig. 5 shows the

correctness of the method in comparison with the people

answers.

Fig. 5. Correctness of our method when compared to the subject answers.

Regarding Q1, although the correctness rate is not bad

(88%), some videos were misclassified, in our opinion, by

the subjects. Indeed, the classification is not obvious, mainly

because the difference between the crowd types (casual x

conventional) and (conventional x Demonstrator) is not very

clear in the video sequences.

Concerning Q2 (76%) the question seems difficult to really

measure the reality. For example, 70% of answers chosen

option <Alone> for Video 5 (see Fig. 4), and numerically it is

corrected (Total number of people in the videos: 21, Number
of Groups: 4, Mean people by group: 2.25 and Number of
non-grouped people: 12.). Our method selects <MEDIUM>
for this metric, which is also correct, but not correspond to

the performed question (Grouped or alone?).

We expected that Q4 (65%) was easily to visually assess

the information about crowd density, however it seems to be

a problem of concepts of low and medium densities, mainly

when the crowd is medium density in comparison with low

and high.

Concerning Q3 (67%), our method presented some errors

in groups detection. For instance, in Video 15 (see Fig. 4),

although people are not grouped, they spend some little time

close to each other due to probable environment characteristics

(door from where people are arriving and directions where

they are going). In this case, the method detected groups, but

subjects perceive that people are not really grouped.

Finally, participants achieved higher correction rates in Q5

(94%), indicating that people can visually assess the interac-

tion among people.

A. Finding Similar Crowds in Videos

We also have evaluated our approach using the hypothesis

values to investigate if we can detect similar crowds in the

videos sequences. Each video k is represented for H1,k, H2,k

and H3,k values, as detailed in Section III and Table I. More-

over, we assumed that such hypothesis depict well each video.

In order to calculate the distance between two videos from a

set K of videos, we use the Mahalanobis distance. In statistics,

the Mahalanobis distance is a distance measure introduced by

Chandra Mahalanobis [45]. It is based on correlations between

variables which different patterns. Then, we considered �Hk

as a vector of (H1,k, H2,k, H3,k) for video k. Given �Hk and
�Hm representing the hypothesis of two videos k and m, the

dissimilarity measure between them is given by

D( �Hk, �Hm) =

√
( �Hk − �Hm)TS−1

K ( �Hk − �Hm), (7)

where SK is covariance matrix of set K.

The similarity among crowds were tested in 33 short

sequences (17 of them are illustrated in Fig. 4) 1. Using

Equation 7, we computed all possible (n2) combinations,

where n is the number of videos in K set. Firstly, we present

in Fig. 6 the most similar video(s) with each one (some of them

present the same Malahanobis distance). Indeed, this graphic is

a matrix where rows and columns represent the video index.

The plot highlights videos which distances D, between the

hypothesis values ( �H), are smaller.

For instance, videos 16 and 20 (highlighted in blue ellipses

in Fig. 6) are reciprocally the most similar with each other,

according to the proposed metric. Indeed, the blue ellipse on

the left of Fig. 6 represents the most similar crowd with video

16, i.e. video 20. In a reciprocal way, the blue ellipse on the

right presents the most similar crowd with video 20, i.e. video

16. Similarly, the most similar crowds in videos 4, 6, 21 and

28 are highlighted with orange ellipses.

To provide a qualitatively assessment of this result, Fig. 7

illustrates frames of such both videos, that really seem similar.

In addition to our analysis, we observed the similarity in

other numerical groups information, as following described

in Table II.

As highlighted in Fig. 6, videos 4, 6, 21 and 28 also present

smaller Malahanobis distance among them. Fig. 8 illustrates

four frames of these videos where it is possible to remark the

visual similarity.

1Index of videos do not correspond to the set with 17 sequences.
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Fig. 6. Similarity among videos. Blue ellipse on the left define the most
similar crowd with video 16, i.e. video 20. In a reciprocal way, the blue
ellipse on the right presents the most similar crowd with video 20, i.e. video
16. Similarly, the most similar crowds in videos 4, 6, 21 and 28 are highlighted
with orange ellipses.

(a) Video 16 (b) Video 20

Fig. 7. Frames of videos 16 and 20. Red circles describe permanent groups
while blue circles illustrate temporary groups. Yellow dots represent non-
grouped people.

V. CONCLUSION

In this paper, we introduced an extension to FD to extract

crowd characteristics in videos. We included the concepts of

collectivity and group information to characterize crowds. We

evaluated the technique comparing the results of our method

with subjects answers in a survey and interesting analysis

could be made, also based on how people visually understand

the crowd features. In addition, we also used our metric to

find out similarity between crowds in videos. Results seem

promising when observing quantitative and also qualitative

data.

A limitation is certainly the number of answers we had

(850 for 10 persons). We intend to address this aspect in a

near future. Also, the increasing of the number of videos for

similarity analysis is our intention. This method could not be

compared with others in literature because we did not find any

TABLE II
VIDEO INFORMATION, FOR k = 16 AND 20.

Video 16 Video 20
Total number of people 26 28

Number of Groups 6 6
Mean people by group 2.33 2.55

Number of non-grouped people 12 13

(a) Video 4 (b) Video 6

(c) Video 21 (d) Video 28

Fig. 8. Frames of videos 4, 6, 21 and 28. Red circles describe permanent
groups while blue circles illustrate temporary groups. Yellow dots represent
non-grouped people.

technique with the same goal. As described in introduction and

related works, many methods exist to detect many features,

but the main type of crowds and comparison among crowds

in video sequence was not found in literature, as far as we

know.
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