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Abstract—The area of crowd simulation has been widely
explored in several contexts from entertainment to safety
purposes. In this paper we present an approach to simulate the
evacuation of crowds in facilities such as hospitals, geriatric
clinics, orphanages and etc, where agents adopt different
profiles, e.g. workers, patients and families. We use Snook
tables to parametrize the effort of people to push patients
impacting the people speed when evacuating in this specific
context. This model can be applied in games, although our
main goal is to contribute with safety systems by computing
evacuation times and finding out the number of trained people
needed in different scenarios. To control the motion of people in
crowds and to avoid collisions we use BioCrowds, but any other
crowd simulator could be used as well. Results indicate that
the total evacuation time is reduced by having more trained
workers, smaller hospital floors and an approximately similar
number of rescuers and dependents number of patients and
rescuers. In addition, we compare our method with another
simulation in a hospital and obtained results were coherent.

Keywords-Crowd simulation; rescue method; injured people
motion;

I. INTRODUCTION

In real life, during emergency scenarios in crowded envi-
ronments, there is a probability of human lives being lost.
Earthquakes, tsunamis, fires and many other phenomena can
occur and lead to panic evacuation situations. Therefore, this
type of situation can be even more dangerous to human
lives if a fraction of the population depends on the help
of others to evacuate, like in facilities as hospitals. In this
case, it is important to study the space and the impact of
dependent people in a hazardous scenario as to find out the
ideal number of trained people, the recommended number of
patients and best routes to be used in the evacuation process,
etc.

Years of research in crowd simulation area has been key to
understanding human behavior in these situations, so that an
optimal solution can be elaborated. One of the first studies
in the behavior of crowds was proposed by Reynolds [18].
He described an approach for simulating a flock of birds and
schools of fish in a polarized, non colliding group motion.
Many other works have been conducted in this area, as the
case of the Implicit Crowds model [10]. This model uses
an energy-based model that takes into account the expected
future state of agents as well as their current state to reach an

integration scheme for simulations. Although many methods
were proposed to simulate crowds [5, 7, 16, 20, 21], few of
them have been specifically proposed in in the context of
this work. Paravisi et al. [15] proposed a method to rescue
agents by carrying them during a certain time, using NIOSH
equations [22]. In this work we are interested about pushing
people, instead of carrying them, simulating what normally
happens in hospital evacuations, when using wheelchair and
stretchers.

One of the simulators present in literature is
BioCrowds [4], a free-of-collision method to simulate
many infinitesimal agents. As used by Paravisi [15],
in his work, we adapted the idea of pushing agents to
provide evacuation in facilities using BioCrowds [4]. The
main contribution of this paper is to use Snook tables
[19] (responsible for data definition about push/pull/carry
weight in literature) in the context of crowd simulations.
As a consequence, our agents can be tired when they
rescue others, impacting their speed. In addition, we create
different profiles and behaviors for altruist (including
trained staff) and dependents agents and integrated it in a
crowd simulator to provide evacuation in facilities.

This paper is organized as follows. Related works are
discussed in Section II. The method we propose is presented
and described in Section III. Simulation results will be
shown and evaluated in Section IV, while conclusions and
possible directions this work may take in the future are
addressed in Section V.

II. RELATED WORKS

Helbing and Molnár [8] created a physical particle system
model, for crowd simulation, based on the idea that pedes-
trians are subjected to social forces, that is, a measure of the
motivation to perform actions, which is also influenced by
the rest of the crowd. Later on, Helbing et al. [9] expanded
the model by adding escape panic features to the social force
equation based on socio-psychological studies [3, 11, 17]
and reports video analysis of simulations in these types of
situations. From this study they summarized escape panic
characteristics as follows:

• People try to move faster than normal;
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• Interactions between individuals become physical in
nature;

• Moving and passing through bottlenecks becomes un-
coordinated;

• Jams build up;
• Arc formations and clogging on the exits;
• The physical interactions during jams cause dangerous

pressures;
• Escape is slowed down by fallen or injured people; and
• There’s tendency towards mass behavior.

This model was later used by Braun et al. [1, 2] to simulate
rescue situations by giving agents levels of altruism and
dependency, that is, agents with a high level of altruism
rescue the highly dependent ones. Therefore, using those
parameters the authors are capable of model heterogeneous
crowds, where individuals have following attributes:

• Idi - Identifier of the agent;
• IdFamilyi - Identifier of the family agent i is part of.

A family is a predefined group formed by some agents
who know each other;

• DEi - Dependence level of the agent represented by a
value in the interval [0, 1], which mimics the need for
help of agent i.

• ALi Altruism level of the individual represented by a
value in the interval [0, 1]. It represents the tendency of
helping other agents.

The work of Braun [1, 2] has been an inspiration for this
paper, where we also modeled agents with different profiles
in the context of evacuations in a rescue method. However,
in Braun’s work, agents are not impacted by the fact they
are rescuing others.

Paravisi et al.[15] expanded BioCrowds by using the
altruism and dependency levels, as proposed by [1] inte-
grated with revised NIOSH equations [22]. This last one is
responsible by establishing a relation between the maximum
weight that an altruist can carry, as well as how many agents
are needed to carry a dependent one, with the NIOSH lifting
equations.

Zehrouni et al. [24] and Masoud et al. [12] model hospital
evacuations on a macroscopic level, i.e. people should be
evacuated from one facility and reach another one. Zehrouni
et al. [24] presents a simulation of evacuation plans in the
region of Ile-de-France in case of severe flooding. This
study combines health care processes in a regional level
with a Markov chain flood model to investigate the flow of
patients from affected hospitals towards receiving hospitals.
The results of the simulations were then used to estimate the
impact of future floods in the infrastructure of the region.
Masoud et al. [12] describes an objective programming
model of hospital evacuation under uncertainties. The study
categorizes evacuating hospitals according to their ability
to be reached by vehicles and patients according to their
need of specialized care. The aim of this work is to more

accurately evaluate evacuation plans given the uncertain state
of the infrastructure in case of a disaster. The study showed
probabilistic approaches and can be used to solve large-scale
problems.

Yokouchi et al. [23] proposed a model of horizontal
evacuation in a hospital based on crowd density. The study
describes three types of patients, according to their mo-
bility capabilities, transferable by sheets, transferable by
wheelchairs or able to walk without help. This model was
utilized to simulate the evacuation of an existing hospital
and investigate how the area occupied by different types of
patient locomotion would affect the evacuation process. min
Jiang et al. [14] modeled the evacuation of a large hospital
in the region of Shenyang. The model was built based on
video and camera observations and questionnaires carried
out in the hospital. The behavior characteristics of the crowd
as well as their walking speed were based on the collected
data. The study then simulated the produced model utilizing
the FDS+Evac fire simulation software developed by NIST,
USA [13]. The study has concluded that pedestrians walk
slower in hospitals and a third of the pedestrians do not
know where to go when hearing a fire alarm. The simulations
found out the usual exit methods were a significant risk in
the evacuation of the simulated hospital.

The main contribution of this paper is a model for
simulating crowds with different evacuation profiles and
considering Snook tables [19] to simulate people pushing
others with wheelchair and stretchers, and how it impacts
the individual speeds.

III. THE MODEL

This section describes our model to provide agents en-
dowed with various profiles relevant to simulate crowd
evacuation in facilities (e.g. hospitals, geriatric clinics, or-
phanages and etc). Firstly we present some details about
original BioCrowds (Section III-A) and then we detail our
re-parametrization in BioCrowds. Our main goal is to sim-
ulate the rescuing process of dependent agents by workers
in the facility, to consider various agents profile that behave
differently and its impact in the evacuation efficiency.

A. Original BioCrowds

The BioCrowds method proposes the space discretization
populating the environment with uniformly distributed mark-
ers. Agents in the environment compete for these markers,
based on proximity criteria, and use them to determine their
movement vectors. Indeed, each agent i, located at position
~xi accesses the markers inside its personal space Ri to
search for markers that are closest to i than any other agent
j. So, a marker is only available to the closest agent. In
original BioCrowds all agents know how to reach the goals
and are homogeneous, i.e. they have same abilities, same
maximum speeds, same personal space and all other
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For a given agent i, with a set of N available markers
S = {a1, a2, · · · , aN}, we calculate it’s movement vector
~m using Equation 1:

~m =
N∑

k=1

wk(~ak − ~x), (1)

where ~ak is the marker’s position and ~x is the agent’s posi-
tion. wk is the marker’s weight, calculated from Equation 2:

wk =
f(~g − ~x,~ak − ~x)∑N
l=1 f(~g − ~x,~al − ~x)

, (2)

where ~g is the position of agent i goal.
To determine function f , let us first assume that all

markers ~ak affecting agent i are at the same distance ~ak−~x
from this agent. Such function should prioritize markers that
lead the agent directly to its goal, i.e., it should (i) reach its
maximum when the (non-directed) angle θ between ~g − ~x
and ~ak − ~x is equal to 0◦; (ii) reach its minimum when
θ = 180◦; and (iii) decrease monotonically as θ increases
from 0 to 180◦. Also, if the distances ~ak − ~x differ, the
markers further from the agent should have relatively smaller
weights, to prevent them from dominating the computation
of the tentative motion vector ~m. A possible choice for f
that satisfies these assumptions is defined in Equation 4:

f(x, y) =
1 + cosθ

1 + ||y||
, (3)

where θ is the angle between x and y. Please refer to
BioCrowds original paper [4] for further details about the
method.

The weights will cause the agent to move towards their
goal as long as there are markers available along the way.
An agent’s movement will be blocked by the absence of
markers. Indeed, vector ~m is a good candidate for specify-
ing next step movement of the agent while guaranteeing
a collision free trajectory and capturing the increase of
speed in larger spaces. However, in calculating the actual
displacement, we have to also consider the maximum speed
smax (displacement per simulation step) which is related
to the distance traveled by the agent at each time step.
Consequently, we calculate the actual displacement v as:

~v = s
~m

||m||
, (4)

where s = min(~m, smax). So that the position of the agent
is updated through: ~x(t+ 1) = ~x(t) + ~v.

B. BioCrowds Extension

Our BioCrowds extension uses different agent classes to
define the hospital heterogeneous crowd. Agents are defined
through the following attributes:
• i: Identifier of the agent;

• Pi: The percentile of agent i that determines its
ability to push weight. Possible definitions are:
90, 75, 50, 25, 10, according to Table I. It is going to
be detailed later;

• Gi: Identifier of the group which agent i is part of. A
group is formed by an agent rescuing and the one being
rescued;

• ~vi,t: agent i velocity at frame t;
• ~xi,t: agent i position at frame t.
• tdi,t: traveled distance of agent i from the beginning

of simulation until frame t, described as Equation 5:

tdi,t =
t∑

f=1

d(~xi,(f+1) − ~xi,f ), (5)

where d states for the Euclidean distance between two
points.

• τi: The class that the agent belongs to can be either
altruist, dependent or trained. The altruist class is
assigned to the population which will try to rescue
the dependent agents, however once one altruist agent
saves one dependent agent, it does not enter in the
facility again. The dependent is the class given to agents
who need rescue and cannot rescue others. In fact, this
type of agent only move if someone is rescuing it.
The trained class is assigned to trained agents. They
rescue others and can go back in the facility to keep
rescuing, while they have health (energy) to do that.
Further details about how this process happens is later
described.

• Di: this parameter is determined using Snook Ta-
bles [19]. This factor determines the maximum distance
that a given weight can be pushed by agent i.

Reviewing Snook Tables

Snook and Ciriello [19] made a set of empirical observa-
tions and generated the Snook tables. Basically, such tables
define the maximum acceptable weights, for a set of tasks,
that a population should follow in order to not injure them-
selves. These tables are based on controlled experiments and
can be used to find the percent of an industrial population ca-
pable of sustaining the efforts tabulated in lifting, lowering,
pushing, pulling, and carrying. Indeed, they state for a more
general model than the Revised NIOSH Lifting Equation
[22] because they apply to a broader variety of tasks. While
the NIOSH equation establishes a recommended weight limit
for lifting, the Snook tables provide guidance as a regular
part of daily work to assist in jobs involving lifting, lowering,
pushing, pulling and carrying.

In this work, we use tables on push weights proposed by
Snook and Ciriello [19]. These tables define values of weight
that a certain population can push for a certain distance.
Table I shown some data contained in such tables and used
in this work.
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Table I
THIS TABLE CONTAINS A SET OF EXPERIMENTS CONDUCTED BY

SNOOK [19]. THE DATA IS HOW MANY kg A CERTAIN % OF
POPULATION PUSH IN A CERTAIN height DURING A A CERTAIN distance.
WE CONSIDERED ONLY THE TABLE OBSERVED WITH MALES AND THE

CONSIDERED HEIGHT OF OBJECT TO BE PUSHED IS 95cm.

% of population 2.1m 7.6m 15.2m 30.5m 45.7m 61.0m
90 34 30 28 27 23 20
75 44 39 36 35 30 26
50 54 48 45 44 37 32
25 65 58 54 52 45 38
10 75 66 62 60 52 44

Calibrating BioCrowds based on Snook Tables

We used the presented Snook table [19] for 95cm height
mark based on the height of the handle on the wheelchair.
The observed population presented data in the following
discretized distance values: 2, 7, 15, 30, 45 and 61 meters,
as illustrated in Table I. So, for each population percentile,
we interpolate between the discretized points getting an
approximate curve to be able to estimate the distance that
any agent can move while pushing an object of 95cm height.
We can easily calibrate the population of the hospital with
female characters and use other tables as reference. This
can be done, e.g. when we are going to simulate a specific
facility.

Regarding data contained in Snook and Ciriello [19]
tables that recommend maximum weights to not generate
injuries in industrial workers, we hypothesize that it should
not be the maximum weight to be pushed by people, in
panic situations or evacuation scenarios. We proposed to
expand the agents behavior to support panic situations, so
when the agent is pushing a wheelchair at the maximum
distance allowed for a given weight (i.e the agent is probably
very tired), Equation 6 decreases the agent velocity ~v′i,t in
the same proportion than the traveled distance increases in
relation to the maximum recommended. Important to notice
that agent i velocity will never be equal to zero, as shown
in next equation:

~v′i,t =

{
~vi,t, if tdi,t < Di
~vi,t
tdi,t
Di

, otherwise. (6)

This updated velocity is true for altruist and trained
agents. Dependent agents share the velocity of the res-
cuer agent, that can be altruist or a trained one. When a
trained/altruist agent rescues a dependent one, a group is
formed and the second one inherits attributes from the first.
It is defined as Equation 7:

~v′i,t = ~v′j,t, (7)

where i is a dependent agent and j is an altruistic or trained
agent.

Since the trained agents can enter into the building again
to keep rescuing others, their velocity can be very impacted

as a function of the distance they move while pushing and
saving others, as seen in Equation 6. With that being said we
included a possibility of ”recovering” for the trained agents,
between carrying two different dependents. It is defined
by recovering some fraction of their maximum speed after
rescuing a dependent agent (simulating that the agent rested
between the two routes). We implemented this by a simple
mean between the maximum speed (attributed to all agents
at the beginning of the simulation) and the current speed of
each agent i:

~vi,t+1 = avg(smax, ~vi,t+1)

, where t+1 is the time that trained agent i is going back to
the facility to rescue another agent. Next section discusses
experimental results obtained with our model.

IV. EXPERIMENTAL RESULTS

We modeled three hospitals in accordance to District
Hospitals presented in Guidelines for Development [6], by
the World Health Organization. For a ”one bed patient
rooms”, it specifies a width of 3.3 meters and length of
3.9 meters, width the entrance being 1.25 meters wide. The
corridors should be 2-3 meters in width, we opted for 3
meters to provide a better flow of the crowd. The 3 hospitals
modeled have the same width of 72m but vary in length and
capacity:
• Hospital 1, length of 20 m and capacity for 28 depen-

dents or patients (Figure 1);
• Hospital 2, length of 40 m and capacity for 56 depen-

dents or patients (Figure 2);
• Hospital 3, length of 60 m and capacity for 84 patients

or dependents (Figure 3).
Our experiments vary four parameters:
• total Population size: varies in 40, 50, 80, 100, 160 and

200;
• proportion of dependents and altruists for the same size

population: we tested 80% to 20% and 50% to 50%;
• percentage of altruists that are trained for the same

population: we tested 0%, 20%, 50% or 100%; and
• the hospital size, as illustrated in Figures 1, 2 and 3.
Each of the cases was executed 5 times so we could

average the results, in order to minimize the random effects.
At the beginning of the simulation, dependent agents are
randomly assigned to rooms (each room has maximum one
dependent), then an emergency situation starts. Both classes
of altruists (altruists and trained) are randomly positioned
inside the building to be simulated, so that they can be either
visiting a room or walking in the corridors.

The main goal of our experiments is to investigate the
impact of the population composition, that is the percentage
of each class, and hospital sizes in the evacuation time.
In addition, we compared our results with a case study
presented by Yokouchi et al. [23], as discussed in Section
IV-C.
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In section IV-A we discuss the results of experiments
where we maintain constant population and vary the agent
classes. In Section IV-B we discuss the results of exper-
iments where we maintain constant the agent classes and
vary the hospital capacity.

Figure 1. Layout of the Hospital 1 model.

Figure 2. Layout of the Hospital 2 model.

A. The Impact of Trained Agents

In this section we aim to discuss the impact of trained
agents in the simulation. We executed 12 experiments as
seen in Table II. Experiments 1 to 9 vary the agent classes
in the simulation. That is, given a fixed population, each ex-
periment changes the % of dependents, altruists and trained
agents. Figure 4 shows simulation 1, 2, 3 and 4, as defied
in Table II. In these experiments Hospital 3 is simulated

Figure 3. Layout of the Hospital 3 model.

Table II
SIMULATIONS PARAMETERS FOR TRAINED IMPACT CASES.

Sim Hospital Number of Number of Percentage
of altruist dependents Trained

1 3 16 84 0
2 3 16 84 20
3 3 16 84 50
4 3 16 84 100
5 2 44 56 0
6 2 44 56 20
7 2 44 56 50
8 2 44 56 100
9 1 22 28 0

10 1 22 28 20
11 1 22 28 50
12 1 22 28 100

with 84 dependents, which is the maximum capacity, and 16
altruists making the total population 100 agents. It is possible
to see that the evacuation time is smaller with higher trained
percentages of agents in order to evacuate more agents.

Similarly, Figure 5 presents experiments 5, 6, 7 and 8
from Table II. Hospital 2 is simulated with 100 agents, from
which 56 are dependents, so that all the rooms are filled
with one patient, and 44 altruists. Again we can observe
that increasing trained percentages of agents reduce the
evacuation time. It is possible to notice in Figures 4 and 5
that when there are 0% of trained agents, some of dependent
ones are not saved.

Figure 6 shows experiments 9, 10, 11 and 12 from
Table II. Hospital 1 is simulated with a population of
50 agents, where 28 are dependents and 22 are altruists,
shows that a higher percentage of trained altruists enables
faster evacuations. After analyzing these results we can
conclude that trained altruists are more effective reducing
the evacuation time.
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Figure 4. Simulating 100 agents in Hospital 3 changing the percentage
of trained altruists with 84 dependents and 16 altruists.

Figure 5. Simulating 100 agents in Hospital 2 changing the percentage
of trained altruists with 56 dependents and 44 altruists.

B. Impact of hospital size

In this section we discuss the impact of changing the
hospital size int the simulation. We executed 12 experiments
(enumerated from 13 to 24 to avoid confusions with simu-
lations from last section) which can be seen in Table III.

Figure 7 shows experiments 13, 14 and 15. Hospital 3
is simulated with 50, 100 and 200 agents and 22, 72 and
172 altruists respectively. In addition, all 3 experiments had
28 dependents. This graphic shows that having a number of
altruists closer to the number of dependents leads to shorter

Figure 6. Simulating 50 agents in Hospital 1 changing the percentage of
trained altruists with 28 dependents and 22 altruists.

Table III
SIMULATIONS PARAMETERS FOR HOSPITAL SIZE IMPACT CASES.

Sim Hospital Number of Number of Percentage
of altruist dependents Trained

13 3 22 28 20
14 3 72 28 20
15 3 172 28 20
16 2 22 28 20
17 2 72 28 20
18 2 172 28 20
19 1 22 28 20
20 1 72 28 20
21 1 172 28 20
22 3 20 20 0
23 3 40 40 0
24 3 80 80 0

evacuation times. It can be noticed that more altruists,
without dependent to be rescued, generate more flow in the
facility, maybe disturbing the motion of crowd.

Figure 8 shows experiments 16, 17 and 18. Populations
are the same as experiments 13, 14 and 15, but in the
hospital 2 and similarly to those experiments, it is possible
to ascertain that a number of altruists closer to the number
of dependents makes the evacuation faster.

Figure 9 shows experiments 19, 20, 21. They are per-
formed with the same populations that experiments 13 to
18, but simulated in Hospital 1. If we compare the Figures
7, 8 and 9 we can see that the evacuation of the Hospital 1
is faster and that Hospital 3 simulation is the slowest. This
result was expected because Hospital 1 is smaller and so the
time for agents to exit the facility is reduced, in comparison
to the other hospitals.

Figure 7. Simulating agents in hospital 3 changing the number of altruists.

Figure 10 shows experiments 22, 23 and 24. Hospital
3 is simulated with different crowds, each with the same
proportion of altruists and dependents, but different agent
quantities. From this graph we can observe that the more
agents in the hospital the slower the evacuation will be
because of the collision between agents and the rescue
process.

Concluding, this section presents data to validate the
hypothesis that how bigger is the hospital, greater is the
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Figure 8. Simulating agents in hospital 2 changing the number of altruists.

Figure 9. Simulating agents in hospital 1 changing the number of altruists.

evacuation time. In addition, the impact of agents classes in
the simulation provide results as expected, i.e. the number of
trained agents should be similar to the number of dependents
for a more efficient evacuation time. Too much agents, in
the facility, can create more flow problems, increasing the
evacuation time. Once all these aspects are validated in our
model, as expected, we pursue with a simulation to compare
with a real study case, as discussed in next section.

Figure 10. Simulating different crowds with the same number of altruists
and dependents in hospital 3.

C. Comparison with a Real Case study

We compare our approach with some results described
in Yokouchi et al. [23], where a simulation of crowd evac-

uation in Iwasa Hospital and Maternity was performed. We
build a simplified model of the hospital, described in their
work, illustrated in Figure 11. 1 Yokouchi’s model has three
different profiles for patients, carried by sheets or blankets,
pushed by wheelchair or move unassisted. These profiles
have some predefined percentiles in the total population as
well as velocities. Since our interest here is to compare
with our method to push agents, we only used the 56%
for the patients being pushed on wheelchair with 2.34 m/s
for velocity (as described by Yokouchi et al. [23]). Others
are 23% of autonomous, with 1.2 m/s speed and 21% that
need assistance with blankets, with a velocity of 1.6 m/s.
For their 60 patients experiment that is a total of 36 patients
on wheelchairs, so that is the population we simulated in
our case study. They also have nurses which are rescuers,
in our model they are comparable to the trained agents.
The total number of nurses is 12 and one patient using
wheelchair requires only one nurse, while for the blankets
profile, more than one nurse is needed. So, in our experiment
we have 36 patients (instead of 60) and 7 nurses (instead of
12) to rescue the wheelchair dependents. To calculate the
number of nurses dedicated to wheelchairs profiles, in our
simulation, we simply used the proportional nurses for each
type of population, as described by the authors.

In Yokouchi et al. [23] the authors present results of
simulations regarding 60 patients and 12 nurses. However
we selected from their work only the data concerned with the
profile we are interested in this work, i.e. information about
patients who needs wheelchairs being saved per time. For the
one floor simulation in their hospital it takes a mean of 4.66
minutes to evacuate, and for the wheelchair profile a mean
of 2.29 minutes. Considering our method, we obtained a
mean of 3.6 minutes (running 5 simulations to eliminate the
random effect) using only wheelchairs, in which we utilized
the same velocity for the wheelchair profile of their method.

So, the total simulation time in the both simulations are
2.29 mins in Yokouchi et al. [23] and 3.6 mins in our
simulation. It is important to notice that such difference
can be reasonably explained by some reasons: Firstly, the
fact that we simulated the fatigue, that is the reduction of
the maximum speed of the altruist agents based on Snook
Table, which reduces considerably the ability to rescue.
This characteristic is still more important in this case where
trained agents should perform multiple rescues in the same
simulation. In addition, we modeled a recovery equation that
can be better calibrated if adequate reference is found 2.
Secondly, we are not aware of details about the geometry
of the hospital simulated in their case, so size could also
somewhat impact the evacuation time. Finally, the missing

1Indeed, we did not find accurate information (concerning dimensions)
about their hospital model, so we provide an approximation using metrics
of WHO.

2We did not find information about how this process happens in panic
situations
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details about the hospital model can bring some artifacts in
the environment that can help or not the collision avoidance
in the evacuation scenarios. Yet, one can say that we could
re-simulate more cases having other patients profiles, but
since we are not aware of details about other patients, we
prefer to compare only the main focus of this work, i.e.
wheelchairs profiles.

Figure 11. Concept of the hospital depicted in Yokouchi et al. [23]
experiment.

V. FINAL CONSIDERATIONS

This paper presents a BioCrowds extension for simu-
lating emergency evacuation scenarios in hospitals. Our
contribution is to propose a method for pushing patients,
based on real life observations from Snook tables [19]. Also
we propose a fatigue model for the rescuers, where their
velocities decreased while pushing a patient based on his/her
weight. We show our results with these methods and finally
compare them to a similar case study.

In future works we could add the different dependent
profiles as the work of Yokouchi et al. [23], so that we
can cover different scenarios such as pulling or carrying,
which is already covered in the Snook Tables. We also plan
to expand our model to support multiple floors of a hospital
so we can see the fatigue working over longer periods of
time. Finally, we intend to simulate a complex situation with
dynamic obstacles so we can get approximated results with
reality and simulate a real hospital.
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