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ABSTRACT

Most of the techniques available nowadays for crowd simulation
are focused on a specific situation, like people evacuation. Even if
one consider heterogeneous crowds, very few of existing method-
ologies consider the psychological traits of individuals in order to
determine the behavior of agents. Therefore, this work aims to add
psychological factor as input for agents simulation, which is going
to determine their group behavior and, therefore, how individuals
move and evolve in virtual environments. The proposed input is
the individuals OCEAN attributes which are used to parametrize
BioCrowds, a crowd simulation method. We implemented two dif-
ferent parameterizations to map from OCEAN to crowd parameters
and compare results. Obtained results with both methods indicate
a positive correlation, once they presented a similar behavior in
both tested scenarios. In addition, we show how heterogeneous
behaviors we can generate in comparison to original BioCrowds.
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1 INTRODUCTION

The area of crowd simulation has been the studying focus for sev-
eral researchers through many years because of its numerous and
varied applications in diverse fields. It can be used to simulate large
crowds of people [17], crowd’s navigation [2, 15, 16], among others.
Although the existence of a large number of techniques in litera-
ture for control and parametrizations of crowds [2, 12, 15], most of
them are focused on a specific situation, where agents have skills to
perceive the world, seek goals, avoid collisions, among others. One
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existing challenge is to simulate realistic individuals in crowds con-
sidering the diversity of behaviors caused by personality aspects.
Very few of the existing methods for crowd simulation take into
account such aspects [1, 3, 4]. These traits can be very useful in pro-
viding specific information about a crowd, which can be translated
into different behaviors such as desired speed, group cohesion, eye
gazing, among others.

The goal of this work is to extend the Biocrowds [2] model, al-
lowing it to consider psychological traits for agents. Specifically, we
are interested about implement and compare two different psycho-
logical theories in order to define the crowd behavior. The first one
is proposed by Durupinar et al. [4] and aims to define individual
behaviors based on OCEAN attributes in a empiric way based on
psychological theories present in literature. Succinctly, OCEAN is
a psychological traits model proposed by Goldberg [9], which tries
to define the personality of an individual. More details about it will
be presented on Section 3.2. The second one is based on Favareto
et al. [7] and it is also empirical, but input data comes from real
crowds in video sequences. Our main contribution is to propose
a framework where different personality parametrization can be
tested using a crowd simulator. It is important to emphasize that,
although we chose BioCrowds [2] as our crowd simulation method,
any other crowd simulator could be used.

2 RELATED WORK

Several ways to simulate crowds were developed in last years. The
origin of crowd simulation goes back to Reynolds [15] and Hel-
bing [12] works, which evolved in time thanks to many contri-
butions. One of the state-of-art methods was developed by Van
den Berg et al. [16], named Optimal Reciprocal Collision Avoid-
ance (ORCA). It is a velocity-based method for collision avoidance
between multiple agents and was developed originally for the ro-
bot industry. Using the ORCA method, He et al. [11] present an
algorithm to simulate group behavior, similar with the observed
behavior in real life. Such groups are dynamic, meaning each one
can have any format and number of agents inside it.

Durupinar et al. [3] developed a simulation model based on psy-
chological traits which aims to represent emotions and emotion con-
tagion between agents in an effective way. To this end, the OCEAN
(Openness, Conscientiousness, Extraversion, Agreeableness, Neu-
roticism) psychological traits model, proposed by Goldberg [9] is
used. In short, the agent’s personality with its impression of other
agents, as well the environment itself, will change this agent emo-
tion, which can lead to a behavior change. In general, this change of
behaviors is visually perceived by animation as gestures and poses.

3 PROPOSED MODEL

We propose to extend Biocrowds model [2] in order to include
psychological aspects of people into the crowd. Figure 1 presents
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the overview of our model. As previously mentioned, we work with
two methods presented in literature, as proposed by Durupinar et
al. [4] and Favaretto et al. [7]. The input are the agents OCEAN
(on the left of the figure). More specifically, the user defines the
agents’ OCEANSs and also specifies the groups structure. In next
sections, we firstly describe the groups parameters we intend to
deal in our work (see Section 3.1). Then, Section 3.2 details the
proposed method to simulate the individuals psychological traits.

Agent (" Method F
‘ BioCrowds

OCEAN
ﬁ @ Group features

Agent Method D
OCEAN
) | S o e E

it it

Simulated crowds

Figure 1: Overview of our method. The input is the agents
OCEAN and two methods from literature have been consid-
ered in our work: Methods F and D that generate group fea-
tures for the crowd to be simulated. Then BioCrowds simu-
lates the agents motion based on the features.

3.1 Group Features Generation

Groups in real life are not the same: they can have different goals to
achieve, velocities, cohesions, etc. According to Dyaram et al. [5],
members of a strongly cohesive group tend to stay together, being
an active part of it. In our method, a cohesion value {g is set to
define how much a group g tends to stay together, in the inter-
val [0,3], where 0 is the lowest cohesion value and 3 is the high-
est. This interval was defined according to the work proposed by
Favaretto et al. [6]. Furthermore, a cohesion distance value g4 is
defined to represent the maximum distance an agent can be away
from the rest of the group g, without leaving it (i.e. breaking the
groups structure). This cohesion distance is calculated as follows:

Hg = Hs — (gg(H;‘HP )), where Hp = 1.2m is the Hall’s personal

space and Hs = 3.6m is the Hall’s social space. These distance
spaces are described by Hall [10], which defines regions, called
by the author "proxemics", that a person tends to maintain to feel
comfortable. {;4x value stands for Maximum Cohesion ({max = 3)
and represents the higher cohesion value a group can achieve. For
instance, if {5 = 0 for a certain low cohesive group g, then pg = 3.6
meters, i.e. this group can have its members more spread in the
environment.

In addition we compute the separation distance (64 = Hs + Hp —
Hg). If an agent gets farther from the rest of the group than &g,
it is removed from such group and creates a new group for itself.
Such distance is defined as follows: D; 4 = d(p;, py), where d is the
Euclidean function that computes the distance between the agent
i position and the center of its group g. In a similar way;, if a non-
grouped agent j has its distance to the center of the closest group
g smaller or equal than pg, and the same immediate goal, it can
enter into this group. Also, groups of agents have a desired speed
to be assigned among the members. We propose to connect this
concept with group cohesion as well. We defined the mean desired
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speed of group g as 1/;5] = 1.2 m/s, as found in literature [8, 14].
We empirically defined a variation on such desired speed, varying

from var % = 0to Uar,l/:lgax = 0.2. So, the individual speed of
an agent i is determined as a function of group speed ,; and a
group standard variation o4 which is computed as follows: o4 =

17 1Z ) dg

Vg
varmax—((varmax—varmin T

Just as group desired speed, the desired default value for angular

). So, agent i speed is s; = Yy +0yg.

o gs . . (44
variation of groups members is set as g = 0 with var * = 0and

var,igax = 1. With all defined, one vector V; of group features is

created for each group to be simulated, depending on the cohesion
2] Vg 4 %9 ;
value (§g): Vg = {g, 89, Vg0, s Omax> Ag> Opin> Tmax }» Which
respectively states for cohesion distance, separation distance, mean
desired speed, minimum variation of speed, maximum variation of
speed, desired angular variation, minimum angular variation and

maximum angular variation of group g.

3.2 Psychological Traits

We chose to work with the OCEAN (Openness, Conscientiousness,
Extraversion, Agreeableness, Neuroticism) psychological traits model,
proposed by Goldberg [9], since it is the most accepted model to
define an individual’s personality. We selected two different works
which relates individual OCEAN traits and agents behaviors. First
one is presented by Durupinar et al. [4] and proposes a simula-
tion model based on OCEAN traits to change the visual behavior
of agents. The second model is proposed by Favaretto et al. [7],
which describes a way to map data captured in real video sequence
to individual-level traits based on individual and group features.
There is a natural challenge in evaluating the result of crowd sim-
ulation with personalities: it is hard to find data about such traits
that can be used in this context. So, we propose to implement two
psychological definitions to evaluate their coherence, as discussed
in Section 4.

It is important to understand each OCEAN factor individually.
To do so, we should take into account the definition of each factor,
in short: i) Openness (O) = [0;1]: reflects the degree of curiosity,
creativity and a preference for novelty and variety; ii) Conscien-
tiousness (C) = [0;1]: reflects the tendency to be organized and
dependable;iii) Extraversion (E) = [0;1]: reflects the sociability and
talkativeness; iv) Agreeableness (A) = [0;1]: reflects the tendency to
be cooperative and compassionate with others; and v) Neuroticism
(N) = [0;1]: reflects the degree of emotional stability. Following
such definition, we proceed to map OCEAN attributes based on
Durupinar and Favaretto into our group features (called henceforth
as Methods D and F).

3.2.1 Method D. As previously mentioned, Durupinar et al. [4]
proposed a simulation model based on OCEAN traits to represent
the visual behavior of agents. Table 1 shows the relationship (third
column) between OCEAN traits (second column) and some pro-
posed Durupinar’s behaviors (first column) used in our mapping,
as shown in Durupinar et al. [4] work. In order to define the agent
desired speed, the Durupinar’s Walking speed i/; was chosen. There-
fore, the desired speed value s; of agentiiss; = 1.2((//iD —1), where

lp _ Z?:l Si

g = =5 — states for the group speed and replaces the default
value defined in Section 3.1. Moreover, the speed deviation ag is
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Table 1: Relationship between OCEAN traits and Du-
rupinar’s behaviors used for our mapping. Imp,p stands for
Durupinar’s Impatience Such mapping is proposed by Du-
rupinar et al. [4].

Behavior OCEAN traits Equation
Walking Speed E (,//l.D =Ei+1
Exploring Environment O ExP = 0;.10
Impatience CEA Impgp

defined following the definition in Section 3.1. To define the an-
gular variation, the Exploring Environment behavior was chosen,
because it seems logical to think that the more an agent wants to
explore a given environment, the more it is going to deviate from
its original path. Plus, this behavior is a direct mapping from the
Openness trait from OCEAN, which evaluate, among other things,
the curiosity of an individual. Therefore, the agent angular varia-

tion value «; is defined as ; = 1 — EloD , where Ex represents the
Durupinar’s exploring environment and «; actually represents a
percentage of a maximum angle (i.e. 90°). In addition, ey = u
states for the group angular variation and also replaces the default
value from Section 3.1. For cohesion, the Durupinar Impatience
behavior was chosen, since it incorporates tolerant and orderly
behaviors, necessary to maintain a group. I mpiD is calculated as fol-
lows for agent i: Imp? = (wg,1FE;)+(wa, 1(1-A;))+(we, 1(1-Cy)),
where wg 1, wa 1 and wc,; are weights for each OCEAN’s E, A
and C traits and should sum 1. We empirically defined them as
wg = 0.1,wq = we = 0.45. Fg, can assume two values depending
on E; attribute: if the OCEAN E trait is positive (i.e. E; > 0.5), it
assumes the value Fg;, = (2E;) — 1. Otherwise, Fg, = 0, as described
in Durupinar work [4]. Then, the group impatience is defined as

n D
Impg = Z':l# and the group cohesion {; is {y = 3(1 — Impy).

The value is multiplied by 3 in order to keep this parameter between
0 and 3.

3.22 Method F. Favaretto et al. [7] described a way to map
equations to compute individual-level traits from video sequences,
based on individual and group features. Based on proposed equa-
tions we generated inverse functions, in accordance to Favaretto
model. The cohesion of a group {j is the mean value of the agents

cohesion ¢; within the group, as described: {; = 32%: L , where i
is an agent of group g and n is the total number of agents inside this
group. The result is limited between 0 and 1, so it is is multiplied
by 3 in order to keep this parameter between 0 and 3, as defined by
Favaretto. The collectivity value ¢; of a certain agent i is calculated

as defined in Equation 1, where i is the agent, qﬁlQ is the result of
the partial collectivity based on an equation Qp from Favaretto’s
mapping in the NEO PI-R questionnaire [7] and ¢; is the agent
final collectivity calculated as the mean value of the partial results.
Also, ¢; > 0 to avoid division problems in Equation 2. For clarity,
we replicate some part of the table from [7] with some NEO-PI
questions (Table 2). For instance, in Equation 1, when we mention

¢iQ9‘1° we are referencing questions 9 and 10, as shown in Table 2.

IVA *18, November 5-8, 2018, Sydney, NSW, Australia

Qo-10 Q13 50
Q0 _ 4, Ou_ __ 20
& ! & 800N; — 100
¢in2723 - E;, ¢iQ24725 —1-N;,
2¢ng710 + ¢in3 + 2¢iQ22723 + 2¢iQ24725
$i = Z , (1)

Table 2: Equations from each NEO PI-R item selected. [7]

NEO PI-R Item ‘ Equation
1 - Have clear goals, work to them in orderly way ‘ Q1 = 0%
2. Follow same route when go somewhere ‘ Q2 =a;
9. Rather cooperate with others than compete

Qo-10 = ¢i
10. Try to be courteous to everyone I meet
12. Usually seem in hurry ‘ Oz =si +a;

13. Often disgusted with people I have to deal with ‘ Q13 =¢i+ (7%
i

15. Would rather go my own way than be a leader ‘ Q15 = &H

22. Feel need for other people if by myself for long
23. Find it easy to smile, be outgoing with strangers
Qa2-25 = Ji + i
24. Rarely feel lonely or blue

25. Seldom feel self-conscious around people

In addition to group cohesion, we also cornpute the group angular

variation value a defined as: ag = i n‘ , where i is an agent of
group ¢, n is the total number of agents inside this group and
a; is the angular variation of i, which is computed according to
Equation 2. For this attribute, we compute the percentage of a
maximum possible angle (i.e. 120°). An agent individual angular
variation factor ¢;, similar to the agent collectivity ¢;, is the mean
value of partial equations aQ" involving the questions Qp, from the
NEO PI-R questionnaire set (illustrated in Table 2), where angular
variation « is used, as shown in Equation 2:

. 1
a2 =1-0;, a2 =13125-F - —,
! ! 16¢;
ain + al.QlS
== @)
where ¢; is the previous result of the agent collectivity. The mean

speed value of a group  is calculated as follows: g = 1.2=51— Li - =3

where i is an agent of the group, n is the total number of agents
inside this group and s; is the speed factor of an agent, which is
multiplied by the human desired speed (i.e. 1.2 m/s). Similar to
angular variation a; and collectivity ¢;, the speed s; is also the
mean value of partial equations s;~" represented in the Equation 3.

S.Ql _ oCi — (40{i)_1 sle _ 2E; —a;j + 1
! 4

k] i 3 9
§Q1 4 gQu

si = %, ®3)

where «; is the agent angular variation result and g is a normal-
ization factor for the Consciousness C input, defined as o = 5.25
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in accordance to Table 2. Finally, the speed deviation oy is defined
following the definition in Section 3.1. At the end of method F, we
have for each group: : Fg = {{y,dg, g, ¥4}, which respectively
states for cohesion, collectivity, angular and speed variations of
group g.

3.3 BioCrowds Simulation

In this section we describe the last phase of our model, where,
based on group parameters found in last sections, we simulate the
motion of groups and agents. The Cohesion value {j is responsible
to keep the group cohesive, it means, keep the agents of the group
together and more or less close to each other. The Desired Speed
value ¢4 defines the optimal speed for agents inside this group
and, therefore, is the speed that agents want to reach. This value is
directed affected by the group Speed Deviation o4. When agents
are instantiated, their speed value is randomly set between the
interval [y — 04, ¥4 + 04]. As it was explained in Section 3.1, the
Speed Deviation value oy is calculated in function of the group
Cohesion {j, so, the higher the Cohesion value, the less the Speed
Deviation for the group. Finally, the Angular Variation value a4 is
responsible to define how straight agents of a given group g are
going to move towards their goal. So, a low value for this parameter
should generate a more straight movement.

4 EXPERIMENTAL RESULTS

During the simulations, some information is recorded regarding the
agents: their positions and the time each of them arrives at its final
goal. In next sections we present some achieved results obtained
with our method in two different scenarios.

4.1 Goal Seeking Scenario

First scenario aims to evaluate a very important crowd behavior:
goal seeking. We modeled a 30x30 meters scenario with four goals.
Ten agents, part of same group, start near to the upper right corner
and have the same pre-defined schedule, i.e. to reach all four goals
in a certain order: G2, G1, G4 and G3. It was ran eight test simula-
tions for each method (i.e. Methods D and F). For each of them, we
configured OCEAN values in order to achieve the attributes with
values as defined in Table 3. Such values, used in each method, are
presented in Table 4. The idea is to check if the cohesion value really
impacts on the willingness of agents to stay inside a group. Plus,
it is expected some difference concerning groups formation when
changing its desired speed and angular variation. High cohesion
value is defined in the interval [2.5; 3] and low cohesion value in
[0;1]. As well, high desired speed value is defined between [1;1.2]
and low desired speed in [0.2; 0.4] and high angular variation value
is defined between [60; 90] degrees and low angular variation in
[0; 15]. In order to evaluate the obtained results, some metrics were
defined, as follows: Time (total simulation time (in seconds), Maxi-
mum quantity of groups (formed during the simulation), Average
speed ( in m/s), Average angular variation (in degrees) and Average
distance (the average distance, in meters, which agents kept from
its group’s center). These metrics are used in next sections where
we simulate agents in BioCrowds using the setup defined in this
section. Table 4 shows the input parameters for both Method D
and Method F, where an underline d means the parameter is for
Method D and an underline f means it is for Method F.
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Table 3: Simulations parameters for Goal Seeking case.

Sim || Cohesion || Desired Speed || Angular Variation
1 High High Low
2 High Low Low
3 Low High Low
4 Low Low Low
5 High High High
6 High Low High
7 Low High High
8 Low Low High

Table 4: OCEAN Input for both Method D and Method F.

Sim || Og || Cq || Eq || Aa || Na || Of || Cr || Er || Ar || N

0.9 09109 | 091 0.1 || 091 09| 091 09| 02

091091021 091 011 09| 011 06 | 09 | 02

091021 091 021 011071 091 08| 01| 09

09 | 02| 021 02 01 071 011 0.7 011 0.8

031091091 09| 011 011091 051 09| 02

031091 021 091 011 021 0.2 02| 09| 02

0302091 02 011 021 091 041 021 0.9

|| N[ || WD =

031021 021 02] 011021021 021 02 08

4.1.1  Results for Method D. For the simulations using Method
D, the eight simulations presented in Table 3 and results are shown
in Table 5. It is possible to notice that the expected result was

Table 5: Results for Method D.

Sim || Time || Groups || Avg Spd || Avg Ang || Avg Dist
1 128 1 0.6 16.89 1.26
2 579 1 0.13 16.95 1.21
3 87 1 0.84 11.73 2.23
4 648 4 0.16 11.11 1.97
5 170 2 0.56 3441 1.32
6 789 2 0.13 38.5 1.22
7 124 1 0.65 26.5 2.31
8 608 2 0.14 31.16 2.22

achieved, i.e. groups with higher cohesion values had closest agents
and vice-versa. For example, Sims 1 and 2 have have higher cohesion
values (Table 3) and presented a lower value for Average Distance
between agents (Table 5), while Sims 3 and 4 have low cohesion
values (Table 3) and presented a higher value for Average Distance
between agents (Table 5). In addition, the desired speed and angular
variation seem to influence on group behavior, mainly in the group
formation. For example, Sims 5 and 6 have a high cohesion values
and a high angular variation value (Table 3). Even with the high
cohesion value, the initial group split, forming two groups (Table 5).
Sims 1 and 2 have the same initial parameters, except for the angular
variation, which is lower (Table 3). In these cases, the initial group
kept the same structure (Table 5). Simulations with higher cohesion
presented lowest average distances, so agents stayed close to each
other. Besides, when looking at the results for simulations with
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low angular variation, the only simulation which groups has been
separated is the number 4, which had low cohesion.

It is interesting to notice that in simulations with high values
of angular variation, even with high cohesion values (Table 3),
agents were able to split into other groups (simulations numbers
5 and 6, in Table 5). A possible explanation for this behavior can
be that agents may vary more their angles in related to the group’s
center direction, consequently moving away from their group and,
therefore, splitting eventually. Yet, Table 5 also shows that the last
two simulations (i.e. 7 and 8), with low cohesion values, had less or
equal groups than the previous two (i.e. 5 and 6), with high cohesion
values. It is possible that the angular variation may cause a great
impact on the group formation.

4.1.2  Results for Method F. For the simulations with Method
F mapping, the same eight simulations presented in Section 4.1
were executed. Table 4 shows the Method F input used for each
simulation, as explained in Section 4.1. The same metrics defined
in section 4.1 are computed and shown in Table 6. It is possible to

Table 6: Results for Method F.

Sim || Time || Groups || Avg Spd || Avg Ang || Avg Dist
1 134 1 0.59 18.33 1.35
2 500 1 0.17 23.37 1.33
3 99 1 0.73 12.91 2.34
4 815 5 0.16 9.15 2.16
5 212 2 0.48 39.34 1.41
6 947 1 0.12 48.40 1.40
7 150 1 0.55 26.90 2.33
8 741 4 0.18 33.25 2.48

notice that the result expected at the beginning was also achieved,
meaning groups with higher cohesion values had closest agents
and vice-versa. Yet, the desired speed and angular variation seems
to have influence on group behavior, mainly in the group formation.
As observed with Method D mapping, simulations with higher co-
hesion presented lowest average distances, so agents stayed close
to each other. In fact, all simulations mapped with Method F ob-
tained very similar results with the simulations with Method D.
Figure 2 shows a comparison between the metrics found for both
mappings and the original BioCrowds method, without psychologi-
cal parameters, illustrated as a constant line. It indicates that both
methods, when mapped to BioCrowds, present a similar correspon-
dence. Also, the influence of OCEAN input on the original behavior
of BioCrowds algorithm is clearly observed among all metrics and
shown the main goal of this work.

4.2 Evacuation Scenario

In this case-study, we want to create an evacuation scenario where
agents spawn at the center of it and desire to reach one of the
available exits. Our goal is to evaluate the psychological model in
this type of event. We model a 30x30 meters scenario with four exit
goals namely G1, G2, G3 and G4. A varying number of agents (i.e.
50, 100 and 200) start at the center of the environment and the num-
ber of groups is equal to the number of agents, i.e. there is no group
in this simulation. Each agent has the goal to leave the environment
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Figure 2: Comparisons between Method F and Method D. X
axis is the simulation identifier (i.e. 1-8) and Y axis is the
value for metrics. On the top/left: time, top/right: the aver-
age speed, on the bottom/left: average angular variation and
bottom/right: average distance.

using the closest exit.It was executed nine test simulations for each
method (i.e. method D and method F), varying number of agents
and OCEAN input. The idea is to verify how agents would behave
with three different OCEAN inputs: a Neutral personality, a Blue
personality (for example, a a pessimist/negative individual) and
a Pink personality (for example, a optimistic/positive individual).
In addition, we also evaluate the impact of quantity of agents on
resulting metrics. Such personalities were chosen following the
concept of emotion discussion in personalities, as observed in liter-
ature [13]: O+ (person is aware of his/her feelings), C+ (person is
optimistic), C- (person is pessimist), E+ (person has a strong rela-
tionship with positive emotions), E- (person presents relationship
with negative emotions), A+ (person has a strong relationship with
positive reactions), A- (person presents relationship with negative
reactions), N- (known by the emotional stability) and N+ (person
feels negative emotions). It is expected that Pink agents move in
higher speeds towards their goals, giving little or no importance to
the group formation and having low angular variation. On the other
hand, it is expected that Blue agents move in a slower pace, trying
to stay together with other agents and having a higher angular
variation than Pink agents. The quantity of agents used is 50, 100
and 200 and the OCEAN values used as input for both Method D
and Method F is: Neutral personality: (0=0.5, C=0.5, E=0.5, A=0.5,
N=0.5), Blue personality: (0=0.2, C=0.2, E=0.2, A=0.2, N=0.8) and
Pink personality: (0=0.8, C=0.8, E=0.8, A=0.8, N=0.2).

4.2.1 Results for Method D in Evacuation Environment. For the
simulations of the evacuation environment with Method D, the
nine simulations with Blue and Pink personalities were executed.
The same metrics defined in Section 4.1 are computed and shown
in Table 7. It is interesting to notice that Pink agents move faster
than the remaining ones. As a consequence, they achieve the goals
in less time, if compared with the others. Blue agents presented
higher angular variation and low speeds, so they take more time to
achieve the goals.

237



IVA *18, November 5-8, 2018, Sydney, NSW, Australia

Table 7: Results for Method D in Evacuation Environment

Sim || Qnt Agts Type Time || Avg Spd || Avg Ang
1 50 Neutral 50 0.36 24.53
2 100 Neutral 51 0.35 26.81
3 200 Neutral 62 0.31 31.88
4 50 Blue 200 0.14 39.37
5 100 Blue 241 0.13 40.37
6 200 Blue 246 0.12 43.35
7 50 Pink 23 0.76 16.27
8 100 Pink 26 0.70 19.64
9 200 Pink 30 0.62 22.35

4.2.2  Results for Method F in Evacuation Environment. Similar
to Section 4.2.1 we executed the nine simulations and Table 8 shows
the obtained results.Prior analysis show a similar behavior related
to the defined personalities. Blue personality generated the slowest

Table 8: Results for Method F in Evacuation Environment

Sim || Qnt Agts Type Time || Avg Spd || Avg Ang
1 50 Neutral 48 0.40 24.49
2 100 Neutral 54 0.39 27.79
3 200 Neutral 64 0.35 30.50
4 50 Blue 224 0.12 34.67
5 100 Blue 261 0.10 36.23
6 200 Blue 302 0.09 38.26
7 50 Pink 25 0.71 17.95
8 100 Pink 28 0.68 20.77
9 200 Pink 31 0.60 23.40

average speeds and speed deviations in both methods (i.e. Method
D and Method F). Higher angular variations were also generated
by Blue personalities in both methods. In the same way, Pink per-
sonalities generated similar behaviors in both methods. The fastest
average speeds, highest average speed deviations and lowest angu-
lar variation, in both methods, resulted from the simulations with
Pink personalities. By calculating the Pearson correlation between
the results from Sections 4.2.1 and 4.2.2, we achieved values higher
than 0.98 to both average speed and average angular variation in
the evacuation scenarios. It indicates that proposed methods were
able to reproduce similar behaviors with the two methods for psy-
chological input. Therefore, with both methods presenting similar
behaviors, we can not define that one method is better, or more
fitted, than the other.

5 CONCLUSION AND FUTURE WORK

This work proposes an extension to BioCrowds model [2] in order
to parametrize it to simulate psychological traits of crowds based on
different methods. The obtained results show that our framework
was able to generate heterogeneous group of agents, having differ-
ent behaviors according to their psychological input. We are able
to compare the results achieved with both methods (i.e. Method D
and Method F), showing that they havea higher correlation. Also,
the results achieved with Method F were pretty similar with the
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results achieved with Method D, in both scenarios, indicating that
our framework is robust enough to receive two different psycho-
logical inputs and indeed generate similar behaviors. Our work
has some limitations. So far, only two methods were mapped (i.e.
Method D and Method F). A possible future work is to explore other
psychological methods. Moreover, an interactive interface would
be interesting, where the user could create its own psychological
theory (with inputs and formulation to generate groups parameters,
following what was explained in Section 3), test it and compare
with others already implemented. It could be a helping tool for
researches to define and test psychological hypotheses. Another
future work is the investigation of Countries culture using our
method. This prototype was developed at Unity, but we are still
using simple visualizations and focusing on numerical results. In
next work we intend to produce more attractive visual results in
terms of environment and virtual human animations.
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