
Species Autonomous Evolution in Games Using Player Behavior Modeling
Sidney Reis Lucas Fialho Soraia Raupp Musse∗

Pontifı́cia Universidade Católica do Rio Grande do Sul, Programa de Pós Graduação em Ciência da Computação, Brasil

Figure 1: On the left: The game initial screen. On the right/up: the characters evolution based on defense attribute and, on the right/down, their
evolution based on motion speed attribute.

ABSTRACT

The usage of player modeling in games is constantly growing and
being studied nowadays. It is a way of connecting the user to the
game in a personal way, since the game will have different results
and obstacles based on the user playstyle. Generally, games that
use player modeling comes with a confirmation from the user to
proceed with the changes in the game. Our proposed model is an
attempt to make the game even more personal. We built a prototype
that does not ask the player for guidance, the game autonomously
change and shape the player characters by the way he/she acts in the
game. The developed prototype is a species evolution game, where
the player chooses one species from four available. This species
is only controlled by the player, while the others are autonomously
controlled by AI agents. The objective is to evolve and survive in
the game, since there are some threats to the user like species com-
bat and starvation, for instance. The results of this prototype was
satisfactory, it was possible to create a game where the player will
just play accordingly to their preferences, leaving the customization
of the species to the player modeling automatically generate.

Keywords: autonomous evolution, games, player behavior, player
model, playstyle, character customization

1 INTRODUCTION

The game industry is a challenging and constantly growing area. It
requires a lot of effort from different other fields that begins from
software development and can extend to psychology studies, for ex-
ample. A game needs to be aware of the new hardware technologies
to accommodate the game for the latest updates and also, it needs to
be original or implement a different gameplay to make success [6].

Games where the player choices matters are becoming a very
popular genre lately. This kind of game is made of choices that are
selected by the user and it changes the process and sometimes the

∗e-mail: soraia.musse@pucrs.br

narrative of the game. These user preferences can be explicitly seen
on games such as the Infamous (series) [7], where the character and
its actions can be either evil or good. Also, an already known and
still ongoing trend is games whose features allow players to mod-
ify characters body and their specific characteristics. Some of them
have used these features in order to simulate their evolutionary be-
havior. These can be found implemented in games like Spore [1]
and Niche [5], for instance. In Spore, the player is capable of mod-
ifying the species he/she controls, adapting their bodies and skills
to fit the player goals. In Niche [5], it is possible to see a more
complex evolution process based on the species genetics.

In this paper, we propose a game that learns the player playstyle
to generate autonomous evolution of species. In this way, the evo-
lution method should provide modifications in the species’ charac-
teristics w.r.t. player’s actions. It is also important to notice that
the player is able to control all characters of a chosen species, one
at each time. With that being said, the characters not being con-
trolled by the player are autonomous, making the game’s world not
completely user-dependent. In addition, such characters are not im-
pacted by gamer decisions.

2 RELATED WORK

This section presents the related work that contribute to the Player
Modeling feature designed in the proposed method. Its goal is to
personalize the user characters w.r.t. user actions. Missura and Grt-
ner [3] proposed solutions for automatically adjust the difficulty of
computer games for different types of players and supervised pre-
dictions from short traces of gameplay. The difficulty is increased
overtime based on the ability, experience, perception and learning
curve of each individual player. The hard part of this intelligent
difficulty adjustment is the wrong choices, which can easily lead to
players stopping to play the game if they get bored (for being too
easy) or get frustrated (for being too hard).

Nery, Teixeira, Silva and Veloso proposed, in their work [4], a
World of Warcraft player categorization based on the players behav-
iors through semi-supervised learning. Depending on the player’s
gameplay style, different categorizations can be applied. For in-
stance, a player who prefers to interact with the world will have an
Explorer’s profile, but if the same is more focused on its character

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Short Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 606

(and continues interacting more than acting), it will be placed on
the Socializer category.

Concerning games that approach the evolution area, in [2],
Izidoro, Castro and Loula present the modeling of the population
dynamics and biology evolution, aspects implemented in the Calan-
gos, an educational game based on the Brazilian Caatinga fauna and
flora. In addition, the authors proposed an application of those con-
cepts in a simulator. In Calangos, the player controls the behavior
of lizards found in Caatinga, affecting the ecology and evolution of
those lizards.

3 PROPOSED METHOD

This section describes the proposed model used in our prototype.
Firstly, it is important to notice that our model contains different
entities impacting the whole game: the user, the autonomous and
controlled characters and the generated newborn characters. Basi-
cally, while the user choses and controls only one of the species
(formed by creatures that can one at each time be controlled as
well), the other species are autonomously animated. For all crea-
tures, attributes and actions were defined in order to evolve in the
game, as described in next sections.

The attributes affect the actions applied by creatures in the game.
The actions are what the creatures are able to do in the game.
Actions can be autonomously performed by autonomous creatures
or manually made by the player, when controlling one character.
When applied, actions can modify attributes. For instance, an at-
tack applied by a creature uses its attribute attack power and cause
damage to the opponent’s health points. Actions are detailed in
Section 3.2. As said before, the role of the player in this game is
not only interact in the virtual world, but feed the player’s model
with information about applied actions. These data is used in the
evolution procedure modifying the attributes of newborn creatures.
More details about the player model and evolution are described in
Section 3.3.

3.1 Attributes
Attributes are the variables that represent creature states. It is di-
rectly influenced by the evolution, the player’s actions and also au-
tonomous actions, and defines how the species looks to the player
(their visual behavior). Following we describe in further details the
attributes for a character i. In addition, all these definitions are ap-
plied for autonomous and controlled creatures.

1. Fatigue Level (f): Creatures have a fatigue level (f). fi value
from creature i is an integer value in the interval [0;MaxF].
It is increased each frame the creature is moving and de-
creased each frame the creature is not moving. This attribute
is in the interval [0;3000], where 3000 is the maximum value
MaxF . Associated to this attribute, two states are possible: i)
- Resting is activated when fi = MaxF

2 and deactivated when
fi = MaxF

15 ; and ii) - Fast Resting determines a more urgent
need for rest and it is activated when fi = MaxF and deacti-
vated when fi = MaxF

1.5 .

2. Movement Speed (s)

The creature speed (si) defines how many space units a crea-
ture moves per second or frame. Important to note that in this
proposed model we use the space unit adopted by the Unity
game engine. The speed takes in consideration the upgrades
in movement action that a newborn creature (affected by evo-
lution) may have, meaning that after some evolution the crea-
ture could have some speed benefits. The evolution definition
are detailed in Section 3.3. The attribute s is a positive ratio-
nal number contained in interval [0.1;0.2] and the value for
initialization is 0.1.

3. Health points (h)

Health points (also called life in the prototype) is the attribute
that handles how much damage the creature can take before
dying. When the health points hi = 0 of creature i, the crea-
ture is permanently removed from the game. h is an integer
number in the interval [0;100] and the creatures are created
with h = 100. h can be decreased by combat (attacks from en-
emy species) and starvation when the species does not eat in
a long time. The attributes Attack and Starvation detail how
these features impact on h attribute.

4. Starvation Level (t)

Creatures only feed or search for food autonomously when
they are hungry, which in this prototype means when the star-
vation level (t = MaxT

2), i.e. reaches the half of maximum
level (t is in the interval [0;MaxT]), where MaxT = 300. In
the prototype, a creature is hungrier when ti is getting smaller.
When ti = 150, the creature starts searching for food au-
tonomously (if the creature is not controlled by the player).
Each fruit eaten by the creature makes ti = ti +200, not over-
coming the maximum value. When ti = 0 the creature enters
in the starving state. During this state, it loses 1 health points
(hi = hi −1) per second. Considering that the creature i starts
with hi = 100 in this prototype, it would take 100 seconds to
die after reaching the starving state. To avoid it, the creature
needs to eat fruits, either autonomously or controlled by the
user.

5. Perception Radius (R)

Each creature has a radius sight that influences how far they
can perceive food when being autonomously controlled. It
makes fruits, in the map, visible to the creatures, so they can
eat. Indeed, creatures with larger radius of perception are able
to find food more easily, since it can detect fruits further. The
Perception radius (R) is defined in space units. The default
value is R= 180 units for all creatures, which can be increased
in newborn creatures caused by evolution, as can be seen later
in Section 3.3. In Figure 2, we show two autonomous crea-
tures (identified as numbers 1 and 2). The circular regions
illustrate perception area for each one.

Figure 2: Perception radius range. Both creatures are hungry, but
one of them is capable of seeing the fruit.

6. Attack and defense power (A and D)

These attributes are responsible for attacking and defending
activities of the creatures. The attack action (Section 3.2.2)
uses attack and defense power to define how much damage is
done to the attacked creature. These attributes are A and D,
respectively representing attack and defense attributes. They
are defined in the interval [0;2] and initialized as 0 for all crea-
tures. In addition, these values can be increased in newborn

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Short Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 607

creatures, w.r.t. the evolution method, as can be see in Sec-
tion 3.3.

7. Libido (l)

As going to be mentioned in Section 3.2.3, the libido is used
to define when the creature can breed. The attribute is set
l = 0 for all creatures in the beginning of the game or when a
creature is born, and in both cases it is increased by 1 at each
second. It is in the interval [0;200] and decreases by 50 each
time the creature mates.

3.2 Actions
The actions can be autonomous and/or manually performed by the
player and have outcomes in the game state, using creatures at-
tributes as parameters and modifying those attributes.

3.2.1 Movement of Creatures
The main action of the game is the movement. Creatures can move
across the map and this is necessary to make other actions. The
player can move only one creature of chosen species at a time, but
the rest of the creatures in the game, including the enemy ones,
move autonomously across the map based on the same rules.

3.2.2 Attack
As in a wild environment, the prototype has the option to attack
other species creatures, inflicting damage to their health points.
This attack can be either manual (user action) or autonomous.
When the player’s current creature is attacked by an autonomous
enemy creature, two new actions are possible: the action of escap-
ing from the battle (Run from attacker) or attacking back the enemy
(Counterattack). In this case, our model records the player actions
in order to save the applied playstyle. It is going to be used in evo-
lution method, as shown in Section 3.3.

3.2.3 Breed
The key action to enable autonomous evolution is the mating action.
This is an action only triggered by the manual control from the
player, so autonomous creatures can not mate in the current version
of our game. When the player makes two creatures mate using
the game interface, the breed happens and a newborn is generated
(detailed in Section 3.3).

3.2.4 Feed
Creatures are able to both manually and autonomously feed them-
selves. Fruits are spread across the map, and those fruits are avail-
able to be eaten by the creatures.

3.3 Player Model and Evolution
The evolution process is the key part of the game. It uses some of
the attributes information updated based on the user model. The
goal is to represent the user’s playstyle. The method developed is
a rule-based system implemented through decision-tree. As pre-
sented in previous sections, the characters have attributes and some
of them are used in the player model, as follows: i) Perception ra-
dius R, ii) Movement speed s, iii) Attack power A, and iv) Defense
power D.

We implemented a histogram of actions in order to represent the
playstyle of the user. In this way, the user playstyle is defined by
how many times the user did each of main actions. For example,
let us take the example of a user playstyle more focused on defen-
sive than attacking. Indeed, when the player’s creature runs away
from attackers, counterattack or attack, the action counters are in-
creased. When the player makes two creatures breed, these vari-
ables are checked in order to find out the most used action. So, the
newborn creature will be impacted by this.

At the end of the evolution process, the newborn has its new
attributes defined as presented in last section. Each of these up-
dated attributes modifies certain aspects of the creatures and are vi-
sually illustrated in the game. The visual aspect is shown in sprites
that are selected depending on the evolved attributes. For exam-
ple, players that used to ran away from battles, will generate new-
borns with longer legs, i.e. improving their ability to run (shown
in Figure 4). Players that counterattacked other species will cre-
ate newborns with more tendency to protective behavior, so they
will have artifacts to defend themselves (illustrated in Figure 5). To
achieve such body changing feature, the creatures are represented
in 2D form using sprites in the prototype. Figure 3 illustrates four
possible visual behaviors for two different attributes.

Figure 3: Visual representation of two creatures after evolving per-
ception and/or attack.

Figure 4: Visual representation of movement speed attribute evolu-
tion.

Figure 5: Visual representation of defense attribute evolution.

4 EXPERIMENTS AND RESULTS

This section details the results found after testing the prototype with
different mindsets accordingly to test cases that aims to validate the
proposed model. In the test cases, we focus on testing key points
in the game which the goal was to verify if the prototype works as
a species autonomous evolution simulator, being influenced by the
user playstyle.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Short Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 608

Table 1: Test Cases summary.
Current Model

Before Test
Legacy Model

Before Test Parent Attributes Actions Newborn Attributes

TC1 Attacked: 0 Attacked: 0 Attack upgrade: 0 Attack all enemies
encountered Attack upgrade: 1

TC2 Foods eaten: 0 Foods eaten: 2 Perception upgrade: 1
Search for and eat
fruits when not
hungry

Perception upgrade: 2

TC3 Counterattack: 0,
Ran away: 0

Counterattack: 2,
Ran away: 0

Defense upgrade: 1,
Movement speed
upgrade: 0

Ran away from 6
of 6 incoming
attacks

Defense upgrade: 0,
Movement speed
upgrade: 1

TC4 Counterattack: 0,
Ran away: 0

Counterattack: 0,
Ran away: 3

Defense upgrade: 0,
Movement speed
upgrade: 2

Counterattack 6 of
6 incoming attacks

Defense upgrade: 0,
Movement speed
upgrade: 1

TC5 Foods eaten: 0,
Ran away: 0

Foods eaten: 0,
Ran away: 0

Perception upgrade: 0,
Movement speed
upgrade: 0

Search for and eat
fruits when not
hungry, ran away
from all enemy
encounters

Perception upgrade: 1,
Movement speed
upgrade: 1

Details about the player actions are logged into text files each
time the player performs any pre-defined action that can modify
the playstyle model. With that in mind, as mentioned before, the
four actions that trigger logs are: i) Player eats without the current
controlled creature being hungry; ii) Attack nearby enemies; iii)
Counterattack incoming attacks; and iv) Run away from battles.

The test cases used to verify our proposed model are following
presented. Table 1 briefly summarizes the five test cases used in this
analysis. It easy to perceive that the newborn attributes follows the
player model. For instance, in test case 1 (TC1) the player showed a
tendency to attack (see Action in 4th column of Table 1. As a con-
sequence, the newborn had an upgrade in Attack attribute. In TC2
we can see the perception attribute upgraded since the player chosen
for search fruits and eat them even when the avatar was not hungry.
In TC3 the player ran away from 6 incoming attacks, consequently
the newborn downgrade the defense attribute (in comparison to the
its parent) and upgraded movement attribute. In TC4, the newborn
decreased the movement speed attributed as a consequence of coun-
terattacking others and finally, in TC5 the player searched for fruits
when the avatar was not hungry and also ran away from all enemies,
as a consequence the newborn upgraded the attributes perception
and movement.

Some illustrations of the game are shown in next figures. The
combat is illustrated in Figure 6) If the current creature is within
the attack range, the Attack button will trigger an attack, dealing
damage and displaying an attack animation. It is also possible to
open a breed menu (Figure 7).

Figure 6: Offense menu and the attack animation.

5 FINAL CONSIDERATIONS

Even though the gaming field is very explored nowadays, the game
development process needs hard work and time. In our view, the re-

Figure 7: Breed menu.

sults of the prototype were considered satisfactory. It was possible
to create a game where the player will just play accordingly to their
preferences, leaving the customization of the species to the auto-
matically generated player model. The game logs show that the cur-
rent prototype state and the proposed model are capable of generat-
ing creatures that resembles the user playstyle. As possible future
work, we consider that group behavior and autonomous creatures
breed and evolution would be the main features to be developed.
The group behavior feature would make creatures walk together
when near to each other and attack other creatures together. Also, to
make the game more challenging and natural, the autonomous crea-
tures breed and evolution would make enemies breed and evolve
just like the player.

REFERENCES

[1] E. A. Inc. Spore, 2009.
[2] V. N. L. Izidoro, L. N. d. Castro, and A. C. Loula. A genetic-

evolutionary model to simulate population dynamics in the calangos
game. In Evolutionary Computation (CEC), 2013 IEEE Congress on,
pages 277–283. IEEE Computer Society, Out 2010.

[3] A. Missura and T. Grtner. Player modeling for intelligent difficulty
adjustment. LeGo-09, 2009.

[4] M. S. Nery, R. A. S. Teixeira, V. d. N. Silva, and A. A. Veloso. Set-
ting players’ behavior in world of warcraft through semi-supervised
learning. In SBC - Proceedings of SBGames 2013, pages 221–228.
SBGames, Oct 2013.

[5] T. Niche. Niche a genetics survival game, 2016.
[6] M. W. Peter Zackariasson and T. L. Wilson. Management of creativity

in video game development. Services Marketing Quarterly, 27(4):73–
97, 2008.

[7] S. P. Productions. Infamous (series), 2009.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Short Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 609

	175127

