

The Role of Domain Knowledge and
Cross-Functional Communication in

Socio-Technical Coordination
Daniela Damian1, Remko Helms2, Irwin Kwan3, Sabrina Marczak4, and Benjamin Koelewijn2

1Dept. of Computer Science,
University of Victoria

Victoria, Canada
danielad@cs.uvic.ca

2Dept. of Computer Science,
Utrecht University

Utrecht, The Netherlands
r.w.helms@uu.nl

bskoelewijn@gmail.com

3School of Elec. Engr. and
Computer Science

Oregon State University
Corvallis, USA

kwan@eecs.oregonstate.edu

4Computer Science School,
PUCRS

Porto Alegre, Brazil
sabrina.marczak@pucrs.br

Abstract—Software projects involve diverse roles and artifacts
that have dependencies to requirements. Project team members
in different roles need to coordinate but their coordination is
affected by the availability of domain knowledge, which is
distributed among different project members, and organizational
structures that control cross-functional communication. Our
study examines how information flowed between different roles
in two software projects that had contrasting distributions of
domain knowledge and different communication structures.
Using observations, interviews, and surveys, we examined how
diverse roles working on requirements and their related artifacts
coordinated along task dependencies. We found that
communication only partially matched task dependencies and
that team members that are boundary spanners have extensive
domain knowledge and hold key positions in the control
structure. These findings have implications on how
organizational structures interfere with task assignments and
influence communication in the project, suggesting how
practitioners can adjust team configuration and communication
structures.

Index Terms—Software coordination, cross-functional
communication, global software teams, socio-technical
coordination, domain knowledge, distributed development

I. INTRODUCTION
When project members with interdependent tasks do not

communicate effectively, coordination breakdowns occur and
result in integration failures [1], lower developer productivity
[2][3] and defects [4]. Studies that replicated these
findings are based largely on developers’ work on code
artifacts (e.g. [2]), but coordination across a project involves a
wider set of artifacts and functional roles other than developers.
For example, changes in requirements may trigger negotiations
between project managers and customers, changes in
architecture and the associated code, or revising testing
procedures by the quality assurance staff.

In software engineering research, we have limited
knowledge about the influence of the thin distribution of
domain knowledge on the coordination of various roles along
task dependencies and across team boundaries. Various project
roles possess differing levels of domain knowledge—
knowledge about the users’ needs, their business and system
environment that is relevant to their tasks [5]. Managers have

to make tradeoffs in task assignments by balancing both a
person’s application domain and technical knowledge [6] and
often mandate cross-functional communication by assigning
certain roles to liaise between functional or geographically
remote teams [7][8][9]. While such organizational structures
generally aim to increase the efficiency of communication in
the project, they influence software projects in various ways
[9][10][11][12].

 In this paper, we present an exploratory study in which we
investigated the influence that the cross-functional
communication structure and the distribution of domain
knowledge (referred to as organizational structures henceforth)
had on coordination in a software team. We examine and
contrast two projects from a large IT organization that had
different distributions of application domain knowledge and
different cross-functional communication structures that
controlled information flow between roles. We specifically
investigate how diverse roles working on requirements and
their related downstream artifacts coordinate along the
dependencies among their tasks. To uncover details of
coordination in these projects, we use a case study method to
analyze contextual information about tasks, cross-functional
communication, and the distribution of domain knowledge.

Our analyses revealed that in order to understand
coordination one has to look beyond task dependencies in the
project. We found that the various roles in coordination engage
in more communication than anticipated from task
dependencies, which could be explained by adherence to the
cross-functional communication structure as well as patterns of
seeking domain knowledge from certain roles. In particular, we
find that team members tend to communicate across
applications within the same domain, that members engage in
backchannel communication to complete their tasks, and that
members brokering communication across application domains
have extensive domain knowledge.

The contributions of this paper include (1) the empirical
evidence that coordination is affected by the interplay of
organizational structures and task dependencies and (2) the
strategies employed to overcome the thin spread of domain
knowledge in the projects we studied. Our findings have
implications with respect to the study of socio-technical

978-1-4673-3076-3/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA442

coordination to account for these additional organizational
structures, and configuring teams to optimize the dissemination
of domain knowledge in software projects.

II. RELATED WORK AND RESEARCH QUESTIONS
Research into software team coordination has confirmed

that aligning organizational factors and technical factors affects
software quality and cost [1][2][13][14]. In particular, these
researchers have analyzed socio-technical alignment, which
examines how the technical aspects of software engineering are
matched by the work-related interactions of software
developers. One measure of socio-technical alignment is socio-
technical congruence (STC) [2], which calculates the
alignment of actual communication with the anticipated
coordination needs of team members based on technical task
assignments and task dependencies. Applications of this
approach yielded significant empirical evidence about
coordination in software development—higher socio-technical
congruence generally correlates with higher developer
productivity [2] and reduced integration failures [1]. Managers
and researchers could use STC to diagnose and improve team
coordination [13].

However, most research on socio-technical alignment has
been focused on developers’ work from repositories and
development artifacts such as code [4], defects [15] or software
builds [1]; studies of coordination in open-source tend to focus
on developers as well (e.g. [16]). This focus on code and
defects overlooks the coordination that takes place within a
wider set of stakeholders such as business analysts, testers,
requirements analysts and project managers. A way to study
coordination between diverse roles is to look at a higher level
of abstraction: requirements.

Requirements are central elements in project planning and
resourcing and provide a focal point around which team
members coordinate their tasks [15][17][18]. Requirements
create dependencies among downstream artifacts such as
design, architecture, code, and test cases. Environments (e.g.
[19]) now leverage traceability links between requirements and
these associated artifacts to enable collaboration and software
governance throughout the entire project life cycle. Recent
studies found that communication driven by requirements takes
place within cross-functional teams involving developers,
business analysts and testers [17][20] and that the most
predominant reason for communication was changes in
requirements [21].

Despite this evidence, we have limited knowledge as to
whether the communication of these multiple roles aligns with
their task dependencies and consequently about the role of task
assignments in coordination. To complete their tasks, team
members often stretch their communication by reaching out to
those that possess in-depth domain knowledge across different
teams and geographical locations [7]. Therefore, our first
research question is exploratory and seeks to unveil details of

the elements of the socio-technical alignment of software
teams, namely the task dependencies as well as the
communication of the wider set of stakeholders:

RQ1: What is the nature of task dependencies, project
communication and socio-technical alignment in a
requirements view on coordination?

Organizational structures that control cross-functional
communication is one factor that may influence the
communication among the various stakeholders. Such a
structure typically introduces a hierarchy in which certain
organizational roles control information flow within and across
teams or departments [25]. These hierarchies and groups exist
in all kinds of project sizes [16]. Bird et al. [10] identified that
in popular open-source software projects, communication was
centered on small, interoperating groups of developers, and
Hinds and McGrath [9] observed that dense structures tended
to be associated with communication problems. In contrast,
Cataldo and Ehrlich found that hierarchical networks delivered
more features than close-knit networks but had lower quality
[11]. Social network analysis has also been used to identify a
relationship between communication structure and software
quality [1][14]. Although organizational structures aim to
prevent communication issues and increase communication
efficiency [25], they may also impede knowledge flow if the
structure is not defined according to task assignments, and
studies of organizational behavior document the role of
informal networks in task accomplishment (e.g. [27][28]). This
leads us to our second research question:

RQ2: How does the cross-functional communication structure
influence actual communication of various roles in
coordination?

Involving multiple functional roles also introduces
differences in domain knowledge within the team. Domain
knowledge is the implicit knowledge about client needs, their
business domain and the system’s environment [29].
Communicating domain knowledge to others improves team’s
understanding and can increase team buy-in [30]. The domain
expert often brokers knowledge across geographical boundaries
[8] or roles [31], bridges gaps between people that are
otherwise not communicating [7][32][31], and is able to
promote innovation [22][33]. Often, the domain expert does
not plan to be in this brokering position, which leads to limited
access to that expert [6][30]. Thus, coordination and
communication patterns within projects may not align with task
coordination and instead follow informal connections governed
by domain expertise [27][28]. A requirements perspective on
coordination allows us to examine communication driven by
the distribution of domain knowledge in the project.

RQ3: How does the spread of domain knowledge influence
communication of various roles in coordination?

443

III. RESEARCH METHODOLOGY
We used a multiple case study methodology [34] and a

combination of quantitative and qualitative data collection
methods to study coordination in two projects called SHIP and
APP within a large multinational organization that we call
ORG. ORG develops software applications to support its
primary business of selling and supporting IT equipment. ORG
releases quarterly versions of its software applications, which
are organized in portfolios according to the ORG business area
they serve. ORG’s headquarters are in the United States, while
its development centers are located in the United States, Brazil,
India, and Russia.

SHIP and APP serve different business areas within ORG
and, at the time of our study, had different team configurations
in the US and the offshore locations, different distributions of
application domain knowledge among its members, as well as
different cross-functional communication structures to cope
with its newly formed relationship with Brazil and India. Both
project teams were considered successful, delivering on time
and on-budget.

A. Project Descriptions
The SHIP project enhanced and maintained a critical

internal software application supporting ORG's shipping
process. The application was eight years old and was
outsourced to Brazil three years prior to our study. We
investigated a four-month release during which the application
was updated to accommodate changes in ORG’s business
process and the database infrastructure.

Project team configuration. The project team (14 persons)
consisted of its original four members in US: system architect,
developer leader, and 2 developers, and 10 newly hired
members in Brazil: developer leader, test leader, 5 developers
and 3 testers. In Brazil, the team was distributed across three
buildings on-site. Additionally there were 3 business partners
located in the United States who acted as customers for the
application. They were representatives of ORG’s shipping
production team (e.g. logistic manager and environment
coordinator) who worked together with the ORG IT
infrastructure team.

Knowledge about the application and its domain. This
team had access to up-to-date project documentation detailing
its requirements and architecture. The team could also access
the application’s domain knowledge through the American
developer leader, system architect and a senior developer
originally involved in the application’s inception. New
Brazilian hires travelled to the United States development site
for six months for training. Developer leaders were in charge
of gathering and negotiating requirements for new releases
with the internal customers. The project manager’s
responsibility was to manage the schedule, resources, and
budget. The system architect supported the developer leaders
regarding architecture, though this did not often occur in this
iteration due to the few architecture changes.

 Cross-functional communication structure. SHIP’s
communication structure is illustrated in Fig. 1b (legend for all
our networks is in Fig. 1a). The symbols represent team roles;

the connecting dotted lines represent the project’s hierarchical
control structure, whereby some roles need to contact the ‘next
in line’ role for communication with the others. For example,
the developers and testers were asked to contact their
respective leaders for any communication with the project
manager or system architect, though they were encouraged to
communicate directly if necessary.

The APP project contained around one hundred
applications within four application portfolios. Though the
applications were developed originally in the United States, the
current release was outsourced to a team in Brazil and three
testers in India. We examined a subset of the APP
requirements.

Project team configuration. Twenty-five project members
were assigned to the requirements examined in our study,
though the entire project had 45 members. All 25 were located
in Brazil: 4 requirements analysts (RAs), 1 test leader, 7
testers, 3 developer leaders (dev leads), and 10 developers.
About a third were contractors or new hires in the company.
The team members worked in three buildings on-site. There
were also five business partners in the United States who were
internal clients for these applications.

Knowledge about the applications and their domain. In
contrast to SHIP, the distribution of application domain
knowledge among the project members in APP was uneven.
The domains of the four application portfolios were: ORG
employee career tracking and advancement, sales reports for
different world regions, incident compliance in ORG’s
manufacturing plants, and project management. The new team
in Brazil had no previous experience with the application
portfolios and could not contact the original designers. There
was no documentation on the applications’ functionality or
context of use within ORG. Although the Brazilian team
members were recruited based on their knowledge of the four
application portfolios, the developers and their leaders had to
reverse-engineer the applications over the course of four
months with help from end users based in the United States to
understand their intended functionality. For the new releases,

TABLE II. REQ. MAP TO APPLICATION PORTFOLIOS IN APP PROJECT

Appl. Porfolio A A A A B B B C C D

Application ID 1 2 3 4 5 6 7 8 9 10

Num. Req. 1 1 1 1 4 1 2 3 2 4

TABLE I. ANONYMIZED SAMPLE REQUIREMENTS

SHIP project APP project
Change shipping label
to a new standard

Add a filter option for the production issues
list to facilitate searching for a specific issue

Allow email
notification when order
has been shipped or is
available for pickup

Allow users to schedule an automated
distribution of the selected production report
by e-mail

Improve the
calculation of the
estimated delivery date
to improve customer
satisfaction.

Build a new configurable notification feature
to replace the current warning mechanism
that notifies workers that a part has to be
returned to the physical inventory

444

the requirements analysts and dev leads gathered and
negotiated requirements with the United States customers, and
prioritized them together with the project manager.

Cross-functional communication structure. Because this
team consisted mainly of novice developers and testers in
Brazil, the United States headquarters imposed a restrictive
communication structure (Fig. 1c). The dev and test leaders
were the points of contact between the teams and the RAs, and
no direct communication between the different roles was
supported.

B. Data Collection and Conceptualizations
Two of the authors conducted a three-month on-site
observation of both project teams, inspected project
requirements and planning documentation, and deployed a
survey. They also attended project meetings, shadowed project
members, and interviewed team members to validate our
understanding. We used social network analysis [35] to
represent and analyze data about the project members and their
coordination.

Requirements and their dependencies. We were given
access to study 18 requirements in the SHIP project and 20
requirements in the APP project (see examples in Table I).
There were 5 sets and 4 sets of requirements’ dependencies (i.e.
"refined-to”, "requires", and "conflicts-with” dependencies) in
the SHIP and the APP project respectively. The 20
requirements in the APP project belonged to 10 applications in
4 application portfolios as shown in Table II.

Task dependencies and anticipated coordination needs.
We used the project planning documentation to identify
project members’ assignment to the tasks of analysis, design,
coding and testing of each requirement. We also identified
interdependent tasks in consultation with the development and
test leaders. We validated this information using detailed
meetings with the design team, particularly with the team
leaders. In a requirements view on coordination, two project
members have a task dependency and thus an anticipated
coordination need if they work on tasks related to a set of
interdependent requirements. We represent these task
dependencies in a coordination needs network (see each
projects’ networks in Fig. 2a and 2b).

Actual communication. To capture communication about
tasks that specifically related to work on requirements and
their interdependent artifacts, we deployed a survey 3 months
into the project, at the end of development phase. We used a
survey because surveys are a standard procedure in social
network analysis research and the survey covered a variety of
communication channels (face-to-face, telephone, email)
available to the distributed teams. The survey was customized
for each project member. It presented a list of members with
which the respondent had a coordination need (based on
planning documentation) and asked them to indicate who they
communicated with in their tasks, and which requirement that
was related to. The respondent could also indicate additional
members s/he communicated with. We also asked for the
reason of communication, which was one of the following:
requirements clarification, negotiation, communication of
requirements changes, or coordination of activities. Our

survey is available from http://bit.ly/NJXBRB. As much as we
could, we validated the information collected through our on-
site observations and interviews.

IV. ANALYSIS AND RESULTS

RQ1: What is the nature of task dependencies, project
communication, and socio-technical alignment in a
requirements view on coordination?

Table III presents summary data for each of the projects.
To explore socio-technical alignment in interactions involving
multiple functional roles, we first computed the socio-
technical congruence index by Cataldo and colleagues [2] and
which calculates the percentage of the anticipated coordination
needs that are satisfied by actual communication taking place
during the project. We found only 64% and 58% match in the
two projects respectively, implying that at least one third of
the anticipated coordination needs between team members did
not have corresponding communication. However, both
projects had substantial emergent communication, which are
communication links not predicted by coordination needs:
38% and 21% in APP and SHIP projects respectively. We thus
explored the nature of both task dependencies and actual
communication and present the findings below.

Task dependencies are grouped within application
portfolios. To explore task dependencies in the two projects,
we constructed the coordination needs network inferred from
these dependencies (Fig. 2a and b). To visualize and analyze
the networks in this study we used the social network analysis
tool Netminer 4.

To compare the properties of networks we laid out the
graphs using the Spring algorithm [36] that minimizes edge
overlap. In the coordination needs network, two project
members are connected if their tasks relate to the same
requirement or an interdependent set of requirements. The
nodes’ shape indicates a team member’s role in the project
while the size shows their experience in the organization
(larger nodes are more experienced). The node color indicates
location, where white indicates Brazil and darker color
indicates the US. We also show members’ assignment to the
application or portfolios defined by ORG. While there is only

TABLE III. ATTRIBUTES OF SHIP AND APP
Attribute APP project SHIP project

Nodes (members in actual
communication)

35 20

Communication links 104 103
Anticipated coordination needs 112 126

Socio-technical congruence index 0.58! 0.64!
Emergent nodes 10 (/35=

29%)
6 (/20= 30%)

Interactions involving emergent
nodes

11 (of 104=
11%)

14(/103= 14%)

Emergent interactions 39 (/104=
38%)

22(/103= 21%)

Emergent interactions in line with
control hierarchy

29 (/39=
74%)

16 (/22= 72%)

Emergent interactions within
same application portfolio

24 (/39=
62%)

22 (/22=100%)

Backchannel communication 55 (/104 =
53%)

26 (/103=25%)

445

A
B

C

D

A
B

C

D

A

B

C

D

Broker Emergent member

Developer

Developer
leader Project

manager

System
architect

Test
leader

Tester

Business
Partner

Developer

Project
manager

Reqts.
analyst

Tester

Business
Partner

Bus. partner
Manager

Developer
leader

Test
leader

Fig. 2. Coordination needs networks in the SHIP (a) and APP project (b)

Fig. 3. SHIP (a) and APP’s (b) communication network with application portfolio’s highlighted
(boxes)

Fig. 4. Comm. links that do not follow task assignments but are according to hierarchical structure in
SHIP (a) and APP project (b)

(a) (b)

(a) (b)

(a) (b)

Fig. 1b. SHIP’s hierarchical
structure

Fig. 1c. APP’s hierarchical
structure

Fig. 1a. Legend

Business partner (customer)

Developer

Developer leader

Project manager
Reqts. analyst (in APP)
System architect (in SHIP)

Test leader

Tester

Business analyst

Logistics manager

Environment coordinator

446

one application in SHIP, there are four application portfolios
in APP (boxes A, B, C, D in Fig. 2b), for which project
members have been assigned based on their knowledge of the
application domains.

We found that the task dependencies within APP largely
align with the grouping of applications into the four
application portfolios (75% are within application portfolios).
Since there were no architectural dependencies between the
application portfolios, the few cross-portfolio dependencies
were the result of some members being assigned to
requirements in multiple portfolios due to their domain
knowledge.

Actual communication is grouped within application
portfolios. Fig. 3 illustrates the social networks constructed
from the survey on actual communication in the two projects.
The networks include the nodes in the coordination needs
networks as well as additional members with which our
respondents identified as having had communication. Two
members are connected if they reported an instance of task
communication. The node layout for the actual communication
network is the same as for the coordination needs network to
enable easy comparison of the networks.

We find that there are many more communication links in
comparison to coordination needs and that communication
largely fits within application portfolios (see Fig. 3b). To
examine how tightly connected the portfolio-based groups are
in APP relative to the entire project network we calculated the
Segregation Matrix Index (SMI) [37] for each of these groups.
The SMI index tests if a pre-defined group of nodes is
segregated from the larger network and ranges from 0 (no
segregation) to 1 (complete segregation). The results show
high segregation (>0.6) in each application portfolio for both
actual communication (Fig. 3b) and coordination needs (Fig.
2b) networks (Table IV). The high SMI index scores illustrate
that team members working within the same applications
portfolio tend to be more connected than team members
working in different application portfolios.

Emergent interactions involve team members that

possess domain knowledge. Emergent communication
occurred between team members who had no coordination
needs. From Table III, 38% of the total communication is
emergent in APP, involving 10 emergent members, while in
SHIP 21% of communication is emergent, involving 6
emergent members. About 10% of the overall communication
involved emergent members. One instance of emergent
communication that we observed in SHIP is between the dev
lead #8 (Fig. 3a) and developer #16 who was not assigned to
work on any requirements. Dev lead #8 was working on the
requirement to upgrade a particular component to a new
technology and contacted developer #16 who had knowledge

of the new technology in the customer’s operational
environment.

Table V lists the roles of the emergent communicators.
Most of these members represent sources of application
domain knowledge; they are customers, business analysts or
environment coordinators, or had been involved in
requirements negotiations in SHIP (e.g. dev leads) or in the
reverse engineering efforts in APP (e.g. developers).

TABLE V. EMERGENT ROLES AND MEMBERS (NUMBERS INDICATE NODES ON
THE SOCIAL NETWORK)

APP project SHIP project
Bus. Partners/Customer (126,
135, 137, 139)
Developer (129, 134, 136)
Test Leader (127)
Tester (132)
Project Manager (133)

Developer (16)
Developer Leader (17)
Project Manager (5)
Logistics manager/Cust (3)
Environ. Coordinator (6)
Business Analyst (23)

Communication brokers have domain knowledge. To
identify communication brokers—those who mediate between
members not communicating directly—we applied the
Betweenness Centrality Index (BCI) [35], an index ranging
from 0 to 1 (where 0 is low and 1 is high). We ranked the
members’ BCI score and considered a threshold calculated as
the median + 1.5 * interquartile range [38] to identifying ‘top’
brokers from each project. Using this threshold three brokers
stand out in each of the two projects. They are outlined in
Table VI and marked by a circle in Fig. 3a and b.

In APP, the brokers are two RAs (#104 and #119) and a
dev lead (#117). In SHIP, they are dev leads (#2 and #8), and
test leader (#13). In both our projects, dev leads and RAs are
brokers because of their knowledge of the application
functionality and requirements. Our interviews with members
playing these roles in both projects indicate that the RAs and
dev leads were the points of contact when customers needed to
be contacted.

To summarize, we observed that in these two projects, both
the task dependencies and the actual communication were
grouped by application portfolios, that there was more
communication in the projects than anticipated by the task
dependencies, and that the individuals that emerged as brokers
in communication have extensive domain knowledge.

RQ2: How does the cross-functional communication structure
influence actual communication of various roles in
coordination?

To answer this question we analyzed whether actual
communication instances matched the hierarchical control
structure. We found that only 45% and 78% of the actual
communication links were according to the mandated cross-
functional communication structure in the APP and SHIP

TABLE IV. SMI ANALYSIS RESULTS FOR APP

Appl.
Portfolios

SMI
(communication)

SMI
(coord. needs)

A 0.92 0.94
B 0.65 0.63
C 0.69 0.76
D 0.98 0.97

TABLE VI. TOP BROKERS BY BETWEENNESS CENTRALITY INDEX (BCI)

APP Brokers by BCI SHIP Brokers by BCI
Req. Analyst #104 0.99 Dev lead #2 0.92
Req. Analyst #119 0.88 Dev lead #4 0.89

Dev lead #117 0.77 Test leader #13 0.82

447

project respectively. Because of the possibility that project
members engaged in communication outside of the control
structure in order to complete their tasks, we investigated the
alignment between the actual communication and the cross-
functional communication structure in light of the task
assignments. We first examined whether any mismatch
between the two was along a task dependency; then we
examined to which extent the emergent communications—the
communications not predicted by the task assignments—
conformed to the cross-functional communication structure.

Task assignments create the need for backchannel
communication. We found that 53% of communication in the
APP project meets a task dependency but disregards the cross-
functional communication structure. This communication is
referred to as backchannel communication [28][20]. This is a
high percentage for the APP project, though not surprising
given that its mandated communication structure was
restrictive of direct communication between developers and
testers, as well as their communication with the RAs who were
familiar with the requirements. An example situation that we
observed included a tester who, suspecting that one of the
defects he encountered relates to critical functionality,
contacted the RA directly (the test leader he was supposed to
contact was not available on that day) to confirm the criticality
of the functionality. He was later praised for his proactive
attitude as the defect was going to significantly delay an
upcoming milestone. In contrast, the 25% backchannel
communication in the SHIP project reflects its less restrictive
cross-functional communication structure.

Most emergent communications align with mandated
cross-functional communication structure. The emergent
communications follow a different pattern: 72% and 74% of
such communications respectively (see Table III) are in turn in
line with the mandated structure. They are highlighted as bold
lines in the networks in Fig. 4a and b. Our interviews and
observations confirm this finding: emergent communications
mostly involved contacting colleagues within the same
application portfolio (8 links in APP and 2 in SHIP) or
addressing team leaders for issue resolution (9 link in APP and
2 in SHIP). Situations we observed include a RA asking a
customer for requirements clarifications, or a developer
disagreeing with a change request for one of the requirements
he was implementing and, after unsuccessfully advising with
his fellow developers on the same requirement, deciding to
talk to his dev lead – and in the same functional team -- to
make a decision.

RQ3. How does the spread of domain knowledge influence
communication of various roles in coordination?

To answer this question we examined to what extent the
actual communication could be explained by the distribution
of application domain knowledge in the two projects.

Communication clusters around application domains.
The SMI analysis earlier (Table IV) showed that actual
communication mainly takes place within the application
portfolios, meaning that members communicate more within
the same application portfolio than across portfolios. For SHIP

this is evident as there is only one application, and for APP
there are only 20 out of 104 links in between portfolios. Since
there were no architectural dependencies between these
applications, the underlying commonality among the
applications within the same portfolio was the business
domain that they were serving, suggesting that people within
the same application portfolio were contacted for their
application domain knowledge.

Our interviews confirmed that an underlying application
domain knowledge network supported each application
portfolio. All but one portfolio (Fig. 2b) were configured with
a cross-functional team comprised of at least a developer, a
tester, a dev lead and a RA. Among these roles, some were
knowledgeable of the application domain through negotiating
with the customer (e.g. RAs and dev leads) or through reverse
engineering the application functionality (e.g. developers).

Most emergent communications seek domain
knowledge within the same portfolio. Examining the
emergent communications in detail shows that 62% emergent
communications took place within the application portfolios of
the APP project (thick lines in Fig. 5) and they were with
members that represented sources of application domain
knowledge. An example of emergent, domain knowledge-
based communication between RAs and customers is shown in
Fig. 5 and corroborated by the data we collected on reasons for
communication: RA #119 asked for requirements
clarifications from customers #135 and #137 in application
portfolio A and dev lead #125 asked for clarifications and
negotiated requirements with customer #139 in application
portfolio D. We observed that in three of the four application
portfolios there is at least one customer that emerged in the
communications, indicating that project members sought
customers for their domain knowledge.

Communication brokers are boundary spanners. To
identify if communication brokers also mediated
communication across multiple application domains in APP,
we examined whether these brokers’ communication across
the boundaries of the four portfolios was higher than that of
the non-brokers. We found that the three brokers had in

Fig. 5. APP’s Communication that is emergent within same application

portfolio

A
B

C

D

448

average 2.33 outbound communications, a number much
higher than that of 0.63 communications for non-brokers.

This finding, combined with the fact that these brokers
possessed domain knowledge suggests that brokers acted as
boundary spanners [5] across the four application domains in
APP. An alternate explanation to the brokers’ communication
across domains is that they had higher task dependencies than
the other members (Fig. 2b). However, we observed that other
members with high cross-domain task dependencies, such as
#122, did not score high either as brokers or as boundary
spanners, suggesting that higher task dependencies alone do not
lead to boundary spanning.

To summarize the answers RQ2 and RQ3, we found that
whenever the mandated communication structure did not align
with the task dependencies members engaged in backchannel
communication to complete their tasks, but most
communications that emerged with members not in a task
dependency was in adherence to the mandated communication
structure. Domain knowledge was influential as well. Seeking
application domain knowledge was also a predominant reason
for communication with members not in a task dependency and
communication brokers who were also domain knowledgeable
served as boundary spanners across application domain areas.

V. DISCUSSION
Strategies to overcome the thin spread of domain

knowledge. Laying out a cross-functional communication
structure in response to domain knowledge distribution to
complement task assignments was a strategy to manage newly
formed development relationships with Brazil. The two
projects had two different approaches to dealing with the
different distributions of domain knowledge in their projects,
namely through (1) involving new hires in training on the
application domain or in reverse engineering its functionality
and (2) prescribing cross-functional communication structures
that controlled information flow.

SHIP retained application domain knowledge by involving
the original US-based developers and 6-month on-site training
of new hires. In contrast, APP, which consisted of Brazilian
new hires, had the entire development team reverse
engineering the applications. Both projects involved
development leaders in requirements negotiations with those
knowledgeable of the domain, customers.

 By designing their cross-functional communication
structures, both projects placed team members in key positions
to control communication in the project in a manner that was
beneficial for disseminating domain knowledge. They were
the RAs and dev leaders who were involved in negotiations of
requirements with customers; when needed, project members
contacted them to clarify requirements or coordinate changes
using their knowledge of the application domain. This
suggests a strategy of aligning communication to connect
domain knowledge experts within the team with those who
may lack this knowledge.

Task assignments are not sufficient to explain
communication in a project. We observed multiple instances
of emergent interactions among team members that fell

outside of the assigned tasks. Our findings underscore a
necessary trade-off that software projects have to make to
balance task assignments and spread of domain knowledge.
Because application domain knowledge is spread thinly in
organisations, one could easily overload the few people with
application domain knowledge by involving them in many
tasks [6]. To prevent this overload, some team members are
assigned to tasks when they do not have sufficient domain
knowledge to complete them.

Despite the differences in these projects, our analysis
found that about a third of the actual communication in both
SHIP and APP was not related to the task assignments. Our in-
depth analysis of these emergent interactions suggests that
they were either initiated within the mandated cross-functional
communication structure by problem solving with those of the
same role or with the team leaders; or, by seeking domain
knowledge from customers or environment coordinators or
those in the same application portfolio, none of which in a task
dependency.

However, task assignments should not be ignored, as they
appeared to overrule the mandated communication structure.
Team members with task dependencies engaged in
backchannel communication to complete their tasks. This
finding confirms earlier research on informal networks
through which employees disregard formal structure in order
to increase their productivity (e.g. [28]), and suggests that in
these projects the formal structure interfered with the task
assignment structure. Identification of such informal patterns
is useful in configuring teams and communication structures
that optimize access to domain knowledge in projects.

Our findings suggest that socio-technical alignment cannot
be sought only from an examination of task dependencies
alone, and that there exists a more complex relationship
among communication, coordination needs as derived from
requirements, the hierarchical control structure and the spread
of domain knowledge.

Boundary spanners are communication brokers that
have domain knowledge. The three top brokers in the project
with multiple applications (APP) also acted as boundary
spanners [5] across three of its four application domains. The
brokering of communication across domains was facilitated by
these project members’ roles and position in the projects’
cross-functional communication structure. In APP, the top
brokers were RAs and the dev leaders who interacted with the
customers and acquired information about their business
environment beyond one application portfolio. This provided
them with a higher level view of the applications and allowed
them to communicate across the application domains, similar
to other studies’ findings of tech leads and architects emerging
as boundary spanners because of their broader outlook in the
project [39]. Moreover, these brokers’ position in the
communication structure not only supported the dissemination
of domain knowledge within the network but also specifically
may have reinforced accumulation of domain knowledge by
the broker [40].

449

VI. THREATS TO VALIDITY
Our evidence of the influence of these organizational

structures on the socio-technical alignment is based on self-
reported data about communication, and a threat to the internal
validity is that the socio-technical interactions were also based
on factors such as familiarity with the others or access through
physical co-location. Self-reported communication in
questionnaires, though a standard practice in research on social
networks [35], is open to risks of individual bias and memory
and poses a threat to our study’s construct validity. We
mitigated this threat by using multiple sources of evidence [34].
Besides the survey, we used interviews and direct observations
(which provided qualitative accounts of how the teams
coordinated) to collect data on the relationships.

Our study also examined only two projects and thus there
are limitations to generalizing to other software engineering
projects. Our findings apply to projects in which ongoing
development of product releases includes forming new teams at
remote locations, and where access to application
documentation or original designers is limited. Factors that we
did not investigate, such as ethnic culture, may have also
affected communication in these teams. Research into the
effect of cultural factors on requirements communication is a
topic for future work.

VII. CONCLUSIONS
Analyzing socio-technical coordination around tasks and

their requirements-based dependencies allowed us to study the
alignment of communication involving multiple roles with the
technical tasks in these two projects. Our exploratory study
reveals the importance of examining not only communication
that occurs around assigned work, but also communication that
emerges from unexpected dependencies, often driven by
domain knowledge seeking behavior. We identified that:
• Team members tended to communicate with others who have

similar domain knowledge
• Surprisingly, team members followed the project’s cross-

functional communication structure to gain this knowledge
• Also surprisingly, task dependencies alone were not enough

to explain communication flow in a project
• Domain knowledge experts were communication brokers and

boundary spanners across multiple applications
Because domain knowledge is fundamental to effective
software development, we hope that both researchers and
practitioners pay close attention to how domain knowledge
experts influence communication patterns in software teams.

Implications for research. As our study was an
exploratory study, more research must be done on domain
knowledge distribution and cross-functional communication in
software projects. Future methods for the analysis and
measurement of socio-technical alignment should consider
emergent communicators. Emergent interactions may indicate
a deficiency of sufficient domain knowledge within a team,
and the presence of the experts could be made more visible for
improved leverage of their knowledge.

Similarly, the satisfaction of coordination through indirect
paths, specifically with brokered communication should also
be considered when examining alignment. Coordination can
be brokered as a result of adherence to cross-functional
communication structures or access to knowledgeable
members. This can be integrated in measures of socio-
technical congruence by modeling transitive connections. If
communication between A to B and B to C is observed, where
B is a broker, one can model the transitive connection from A
to C as brokered communication, and indicate that this
communication link satisfies a corresponding coordination
need. Indirect paths for coordination have not been considered
in previous studies of socio-technical alignment and their
presence should be studied in relationship to project success.

Implications for practice. Our analysis of socio-technical
alignment considered structures other than task assignments. A
practitioner can use our findings to improve communication
within a software engineering organization. For example, our
findings indicate that domain knowledge experts are rare and
should be accessible. When organizing teams, managers should
give particular attention to potential brokers by identifying
members that have exceptional knowledge of the particular
application domains or components in the system.
Communication structures should strive not only to ensure that
these experts are not overwhelmed with emergent interactions,
but also to make them accessible for domain knowledge
dissemination. When the communication structure intersects
with task assignments, team members will engage in
backchannel communication to complete their work.

The presence of backchannel communication is not
necessarily problematic but may indicate areas where the task
assignment was not congruent with either the cross-functional
communication structure or the distribution of domain
knowledge in the team. Software managers can optimize the
team configuration when forming new teams, especially in
outsourcing relationships as those we studied.

By understanding the interrelationships between task
assignments, cross-functional communication structure, and
domain knowledge, organizations gain an increased ability to
facilitate communication and coordination in their projects. We
hope this will lead to software projects with less wasted
communication, less coordination overhead, and increased
leverage of the diversity in project roles and domain
knowledge.

ACKNOWLEDGMENT
We thank the project members for their time in our

research, and NSERC Canada for funding this project. We also
thank Gail Murphy, Margaret-Anne Storey, and Jane Cleland-
Huang for their comments on early drafts of this paper.

REFERENCES
[1] I. Kwan, A. Schroter, and D. Damian, “Does socio-technical congruence

have an effect on software build success? A study of coordination in a
software project”, IEEE Transactions on Software Engineering, 37(3),
May-June 2011, pp. 307-324.

[2] M. Cataldo, P. Wagstrom, J. Herbsleb and K. Carley, “Identification of
coordination requirements: implications for the design of collaboration
and awareness tools,” in CSCW, 2006, pp. 353–362.

450

[3] D. Damian, L. Izquierdo, J. Singer and I. Kwan, “Awareness in the
Wild: Why Communication Breakdowns Occur”, In Intl Conf. on Global
Software Engineering, 2007, pp. 81-90

[4] M. Cataldo, J. Herbsleb and K. Carley, “Socio-technical congruence: a
framework for assessing the impact of technical and work dependencies
on software development productivity”, in ESEM, 2008, pp. 2–11.

[5] B. Curtis, H. Krasner and N. Iscoe. “A field study of the software design
process for large systems”. Comm. ACM, 31(11), 1988, pp. 1268-1287.

[6] Reinersten, R. Managing the design factory, Free Press, 1997
[7] A. Boden and G. Avram, “Bridging knowledge distribution - The role of

knowledge brokers in distributed software development teams”, in
CHASE, 2009, pp. 8-11.

[8] A. Milewski et al. “Guidelines for Effective Bridging in Global Software
Engineering,” in Intl Conf. on Global Soft. Engineering, 2008, pp. 23-
32.

[9] P. Hinds, and C. McGrath, “Structures that work: social structure, work
structure and coordination ease in geographically distributed teams,” in
CSCW, New York, NY, USA, 2006, pp. 343–352.

[10] Bird, C., D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu, “Latent
social structure in open source projects,” In Int. Symp. on Foundations
of Soft. Eng., 2008, pp. 24–35.

[11] Cataldo M. and K. Ehlrich, ”The impact of communication structure on
new product development teams”, In ACM CHI, Austin, USA, 2012, pp.
3081-3090.

[12] N. Nagappan, B. Murphy, and B. Basili, “The influence of
organizational structure on software quality”, Intl Conf. on Soft.
Engineering, 2008, pp. 521-530.

[13] J. Herbsleb, Global software engineering: The future of socio-technical
coordination, in Future of Soft. Eng., 2007

[14] T. Wolf, A. Schroter, D. Damian, and T. Nguyen, “Predicting build
failures using social network analysis on developer communication,” in
Intl Conf on Soft. Engineering, 1-11, 2009, pp. 1–11.

[15] M. Cataldo and J. Herbsleb, “Factors leading to integration failures in
global feature-oriented development: An empirical analysis”, in Intl
Conf on Soft. Engineering, 2011, pp. 161-170.

[16] K. Crowston, K. and J. Howison, “The Social Structure of Free and
Open Source Software Development” First Monday.10(2), 2005.

[17] D. Damian, I. Kwan and S. Marczak, “Requirements-driven
collaboration: Leveraging the invisible relationships between
requirements and people”, in Collaborative Software Engineering,
Springer-Verlag, 2010, pp. 57-76

[18] B. Nuseibeh and S. Easterbrook. “Requirements Engineering: A
roadmap”, in Future of Software Engineering, 35-46, 2000

[19] C. Williams, P. Wagstrom, et al, “Supporting enterprise stakeholders in
software projects”, in CHASE 2010.

[20] S. Marczak, I. Kwan, and D. Damian, “Investigating collaboration
driven by requirements in cross-functional software teams”, In
Understanding and Softskills, Collaboration and Intercultural Issues
Workshop , 2009, pp. 15-22

[21] S. Marczak and D. Damian, “How interaction between roles shapes the
communication structure in requirements-driven collaboration”, In Intl
Conf. on Requirements Eng, 2011, pp. 47-56

[22] K. Ehrlich and K. Chang, “Leveraging expertise in global software
teams: Going outside boundaries” In Intl Conf on Global Software
Engineering, 2006, pp. 149-158

[23] I. Kwan and D. Damian, “The hidden experts in software-engineering
communication”, In Intl Conf on Soft. Engineering, 2011, pp. 800–803.

[24] R. W. Helms, “Application of knowledge network analysis to identify
knowledge sharing bottlenecks at an engineering firm”. In J. Ljungberg
amd M. Andersson (Eds.), Intl European Conf. on Inf. Systems, 2006,
pp. 1877-1889

[25] R. L. Daft. Organization theory and design (10th ed.). Mason, Ohio:
South-Western Cengage Learning, 2010.

[26] C. Bird et al., “Putting It All Together: Using Socio-technical Networks
to Predict Failures,” In Symp. on Software Reliability Engineering,
2009, pp. 109 –119.

[27] D. Krackhardt and R. N. Stern, “Informal networks and organizational
crises: An experimental simulation”, Social Psychology Quarterly, 51
(2), 1988, pp. 123-140.

[28] R. Cross, A. Parker, L. Prusak and S. Borgatti. Knowing what we know:
Supporting knowledge creation and sharing in social networks. Org.
Dynamics, 30(2), 2001, pp. 100–120.

[29] D. Berry, “The importance of ignorance in requirements engineering,” J.
Syst. Softw., 28(2), Feb. 1995, pp. 179–184.

[30] J. Coughlan and R. Macredie, “Effective communication in requirements
elicitation: A comparison of methodologies”, Requirements Engineering,
vol. 7, no. 2, 2002, pp. 47–60.

[31] A. Johri, “Boundary spanning knowledge broker: An emerging role in
global engineering firms”. Frontiers in Education Conf, Saratoga Spring,
2008.

[32] C. D. Rosso, “Comprehend and analyze knowledge networks to improve
software evolution”. J. of Software Maint. and Evolution Research and
Practice, 21(3), 2009, pp. 189-215

[33] R. S. Burt, “Structural Holes and Good Ideas,” American Journal of
Sociology, vol. 110(2), 2004, pp. 249-399.

[34] R. K. Yin, Case study research: Design Methods (2nd edition), London:
Sage Publications, 1994.

[35] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications, Cambridge University Press, 1994.

[36] P. Eades and X. Lin, Spring algorithms and symmetry.Theoretical
Comp. Science, 240(2), 2000, pp. 379–405

[37] M. Fershtman, “Cohesive group detection in a social network by the
segregation matrix index”, Social Networks, 19(3), 1997, pp. 193–207.

[38] N. Eagle, A. Pentland and D. Lazer, “Inferring social network structure
using mobile phone data”. PNAS, 106(36), 2009, pp. 15274–15278

[39] K. Ehrlich et al. “An analysis of congruence gaps and their effect on
distributed software development, Intl workshop on Socio-technical
congruence, 2008

[40] D. Dekker, F. Stokman, and F. Hans Franses. “Broker Positions in Task-
Specific Knowledge Networks: Effect on Perceived Performance and
Role Stressors in An Account Management System” ERIM Report
Series: ERS-2000-37-MKT, 2000

451

