
Clustering Molecular Dynamics Trajectories with a
Univariate Estimation of Distribution Algorithm

Rodrigo C. Barros∗, Christian V. Quevedo∗, Renata De Paris∗ and Márcio P. Basgalupp†
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Abstract—Molecular Dynamics simulations of protein recep-
tors are an emergent tool in rational drug discovery. Nevertheless,
employing Molecular Dynamics trajectories in virtual screening
of large repositories is a very costly procedure, which ultimately
may become unfeasible. Data clustering have been applied in this
context with the goal of reducing the overall computational cost
in order to make this task feasible. In this paper, we develop
a novel estimation of distribution algorithm called Clus-EDA
for clustering entire trajectories using structural features from
the substrate-binding cavity of the protein receptor. This novel
approach is capable of reducing the original trajectory to about

4% of its original size whilst keeping all relevant information for
the analysis of receptor-ligand binding. The resulting partition
generated by the estimation of distribution algorithm is further
validated by analyzing the interactions between 20 ligands and
a Fully-Flexible Receptor model containing a 20 ns Molecular
Dynamics simulation trajectory. Results show that Clus-EDA is
capable of outperforming traditional clustering algorithms such
as k-means and hierarchical clustering by providing the smallest
variance of the free energy of binding within the conformations
in each cluster.

I. INTRODUCTION

Proteins are flexible systems, and such a flexibility is key
in determining their corresponding functions [1]. Rational drug
design is an emerging technology which attempts to map the
behavior of a protein and its potential binding to a given drug
candidate. It is the interaction between drug candidates (hereby
also referred to as ligands) and target proteins (receptors)
in computational simulations that form the basis of rational
drug design. The rationale is the following: given a receptor,
molecular docking experiments sample a large number of
conformations and orientations of a candidate ligand within
the protein binding site. The energy provided by the potential
binding of ligand and receptor roughly indicates whether the
ligand is a potential drug for the given disease [2].

The major problem with molecular docking software nowa-
days is that they only consider the flexibility of the ligand,
whereas the receptor is assumed to be a rigid structure. This
is explained due to the large computational cost that is required
for also considering the receptor’s flexibility. Among the
available methodologies to explicitly consider the receptor’s
flexibility in docking simulations, a possible alternative is
to select a series of different conformations derived from a

Molecular Dynamics (MD) simulation of the target receptor.
MD simulation is a well-known strategy to investigate in detail
the atomic dynamic behavior of proteins in aqueous solution.
It recognizes subtle internal motions and slow conformational
deviations, including bond vibration, chain reorientation, and
backbone rearrangements at different timescales [3], [4].

MD simulations are intrinsically a time-consuming process.
The computational cost largely increases when docking experi-
ments are used for the fast screening of virtual libraries against
an entire MD ensemble in order to exploit all conformations of
the protein receptor [3]. These MD ensembles, hereby called a
Fully-Flexible Receptor (FFR) model, typically hold over 104

MD structures. For this reason, recent studies on combining
docking and MD simulations have developed novel techniques
to systematically reduce the number of MD structures with-
out losing essential information, usually employing clustering
algorithms for achieving the desired reduction [5]–[7]. By
clustering highly-similar MD conformations regarding their
substrate-binding cavities, one can extract the most relevant
information during the molecular docking experiments, reduc-
ing its overall computational cost. Even though clustering is the
approach employed in this work, we note that several papers
employ learning approaches for the domain of molecular
dynamics, with goals as diverse as predicting bioactivities of
ligands to target proteins [8], drug classification [9], [10], and
free energy of binding prediction [11], [12].

In this paper, we propose a novel clustering algorithm for
reducing the number of MD conformations and making it
feasible to combine docking and MD simulations. Since data
clustering is basically a combinatorial optimization problem,
we propose a novel method based on the Estimation of Distri-
bution Algorithms (EDAs), namely Clus-EDA. It is designed
to considerably reduce the number of conformations (roughly
keeping ≈ 5% of the original MD ensemble) while optimizing
a measure of clustering validity. Our research hypothesis is that
Clus-EDA is capable of outperforming traditional clustering
algorithms in the task of reducing MD conformations. For ver-
ifying such a hypothesis, we analyze the partitions generated
by Clus-EDA based on features from the binding cavity of
an MD simulation regarding the InhA-NADH complex [13],
and we compare the provided results with those achieved by
k-means [14] and hierarchical agglomerative clustering [15].978-1-4799-7492-4/15/$31.00 c©2015 IEEE



This paper is organized as follows. Section II details
our novel method for clustering MD simulations based on
Estimation of Distribution Algorithms, namely Clus-EDA.
Section III describes the methodology adopted for performing
the empirical analysis, and the results of the experiments are
discussed in Section IV. Section V presents work related to the
proposed approach, and we end this paper with our conclusions
and future work directions in Section VI.

II. CLUS-EDA

Clus-EDA is an Estimation of Distribution Algorithm
(EDA) for data clustering. EDAs are a particular class of
evolutionary algorithms that explore the space of candidate
solutions by building and sampling explicit probabilistic mod-
els of promising solutions [16]. The main characteristic of
EDAs is the absence of random operators during evolution.
Instead of employing these nature-inspired genetic operators,
the future populations are generated by learning and simulating
a probability distribution based on the individuals that are
selected from the current population [17].

Clus-EDA samples solutions encoded by a probabilistic
model, which is responsible for determining whether each
object in a dataset is a medoid or not. A medoid is a cluster
representative, and the number of medoids indicate the number
of clusters found by Clus-EDA. Each individual in Clus-EDA
is a binary vector of size n, where n is the number of objects
in the dataset – in our case, the number of conformations of
an MD simulation. Since we are working with a FFR model
that contains a 20 ns MD simulation trajectory, the number of
objects in the trajectory dataset is 20,000. Figure 1 depicts the
encoding scheme in Clus-EDA.

Fig. 1. Individual representation in Clus-EDA. Each gene corresponds to an
object, and the encoding indicates whether the object is a medoid (1) or not
(0).

Clus-EDA is a univariate EDA also regarded as a univariate
marginal distribution algorithm (UMDA) [18]. It employs a bi-
nary probability vector p = (p1, p2, ..., pn) as its probabilistic
model, where pi denotes the probability of object xi to be
a medoid. To learn the probability vector, each pi is set to
the proportion of 1s in the population of selected individuals.
Clus-EDA follows the pseudocode described in Algorithm 1.

Algorithm 1 Clus-EDA high-level pseudocode.

initialize probability vector p
sample p to generate initial population P
while (not done) do

select population of promising solutions S from P
update probability vector p with S
sample p to generate new candidate solutions N
erase P and incorporate N into P

end while

Since our goal is to considerably reduce the size of an
MD simulation, we initialize the probability vector p with

probability of 0.05 for every single position. In other words, the
initial probability for each object to be a medoid is 5%. In each
generation of Clus-EDA, we employ the truncation method for
selection, which chooses 50% of the fittest individuals of that
particular generation to update the probabilistic model. Once
the model is updated, Clus-EDA samples the probability vector
p to generate an entire novel population of individuals that fully
replace the previous generation. The iteration continues until
a maximum number of generations is achieved.

A. Decoding Individuals into Partitions

Clus-EDA is an evolutionary hard partitional clustering
algorithm. Given a set of n objects to be clustered, X =
{x1,x2, ...,xn}, a hard partition is a collection of k non-
overlapping clusters P = {C1,C2 ...,Ck} such that:

• C1 ∪C2 ∪ ... ∪Ck = X

• ∀i, Ci �= ∅
• Ci ∩Cj = ∅ for i �= j

For decoding the individuals into partitions, the first step
is to identify which objects are defined as medoids. Note that
the number of clusters is variable since it is constantly updated
according to the EDA’s probabilistic model. For each non-
medoid object xi, Clus-EDA computes the Euclidean distance
between xi and every single medoid, and finally assigns xi to
the cluster represented by its closest medoid.

The binary encoding adopted by Clus-EDA has several
advantages over other typical encodings in evolutionary clus-
tering problems. For instance, let us consider the case of the
integer encoding in which each gene (object) has a value
over the alphabet 1, 2, ..., k. Such an encoding is naturally
redundant (1-to-many), since there are k! different genotypes
that represent the same solution [19]. Furthermore, it assumes
the number of clusters k is previously known, which is often
not the case in real world applications, such as the one that is
being approached in this paper.

B. Fitness Function

For evaluating how fit an individual is in Clus-EDA, we
make use of an efficient clustering validity criterion, namely
the simplified silhouette width criterion (SSWC) [20]. It is
an efficient implementation of the well-known silhouette width
criterion (SWC) [21], which is given by:

SWC =
1

n

n∑
i=1

s(i) (1)

s(i) =
b(i)− a(i)

max{a(i), b(i)} (2)

where a(i) is the average dissimilarity between the ith object
and its cluster, and b(i) is the average dissimilarity between
the ith object and the nearest neighbor cluster. For singletons
(clusters with a single object xj), it is assumed by convention
that s(j) = 0.

The difference between SSWC and the original SWC is
in how a(i) and b(i) are computed. Whereas SWC computes



the average dissimilarity by employing all objects belonging
to the corresponding cluster (complexity of O(n2)), SSWC
computes the average dissimilarity by using the cluster pro-
totypes instead (complexity of O(n)). Clus-EDA employs
the SSWC as its fitness function, computing the average
dissimilarity based on distances to the corresponding medoids.

Besides the possibility of employing SSWC as a single-
objective fitness function, Clus-EDA also allows the search for
a trade-off between performance (as given by SSWC) and
complexity (given by the number of clusters). The idea is to
penalize solutions with too many clusters. Since SSWC ∈
[−1,+1] is a measure that should be maximized, we decrease
it by a factor of w × k, where w is a user-defined parameter
and k is the number of clusters.

III. METHODOLOGY

In this section, we present the Molecular Dynamics dataset
in detail, and the experimental methodology that was employed
for comparing Clus-EDA with k-means [14] and hierarchical
agglomerative clustering [15] in the task of clustering MD
trajectories.

A. MD Trajectory Data

The MD trajectory data comprises conformational fea-
tures from the substrate-binding cavity of an MD simulation
considering the InhA-NADH complex from Mycobacterium
tuberculosis (PDB ID: 1ENY) as described in [13]. Data for the
MD ensemble were collected at every 1 ps, resulting in a set
of 20,000 instantaneous receptor conformations. The structural
properties that were extracted from the substrate-binding cavity
of every MD conformation are:

1) the pairwise RMSD distances between binding cavity
atoms (in Å);

2) the volume (in Å3); and
3) the number of heavy atoms of each residue that

belongs to the substrate-binding cavity of the enzyme
(PDB ID: 1BVR) [22].

The first property (pairwise RMSD distances) was eval-
uated by monitoring the differences between the backbone
atoms (N, Cα, C, and O) within the substrate-binding cavity
from the first structure against the conformation under compar-
ison. The RMSD values were calculated using the ptraj module
from AmberTools12 [23]. The second and third properties
were collected using the CASTp software (Computed Atlas of
Surface Topography of proteins) [24]. CASTp provides an on-
line resource for locating, delineating, and measuring concave
surface regions on three-dimensional structures of proteins
based on the solvent-accessible surface area model [25] and
the molecular surface model [26]. The measurement of volume
for every MD conformation was obtained by considering the
residues that encloses the cavity of the InhA substrate analog
from the 1BVR structure [22], which contains the largest
number of atoms. We collected the number of heavy atoms
from the 10 main residues that lie in the substrate-binding
cavity of the enzyme (Figure 2).

Our final objective is to cluster different behaviors found
within the substrate-binding cavity along an MD simulation,

Fig. 2. Substrate-binding cavity of the InhA enzyme from Mycobacterium

tuberculosis (PDB ID: 1BVR) identified by the CASTp software. The protein
receptor, with secondary structures represented by ribbons, is colored grey.
The residues are represented in sticks within the molecular surface, which
represents the substrate-binding cavity. Image generated by PyMol [27].

drastically reducing the number of snapshots in the Fully-
Flexible receptor model while keeping all relevant information
from the original number of snapshots.

B. Baseline Algorithms

In order to verify the effectiveness of Clus-EDA in reducing
the number of MD conformations and making it feasible
to combine docking and MD simulations, we analyze the
obtained results with those provided by well-known clustering
algorithms, namely k-means [14] and UPGMA [15], the latter
being a hierarchical agglomerative clustering algorithm.

k-means is a well-known partitional method that locally
optimizes the average squared distance between objects and
their nearest cluster center (centroid). It randomly generates k
centroids, and refines them throughout several iterations, where
it computes the distance of every object to the k centroids in
order to determine the cluster memberships [14]. To make the
resulting k clusters as compact and separate as possible, the
k-means algorithm minimizes the sum of squared errors (J)
between every object xi that belongs to a given cluster Cj and
its centroid cj , for all k clusters, as follows:

J =
k∑

j=1

∑
xi∈Cj

dist(xi, cj)
2 (3)

where dist(a, b) is the Euclidean distance between a and b.

Unlike partitional clustering methods such as k-means,
hierarchical clustering algorithms seek to cluster data into
levels of a hierarchical structure, such as a “tree” of clusters
[28]. They can be divided into two basic approaches, namely
agglomerative and divisive clustering. Agglomerative hierar-
chical clustering employs the bottom-up strategy, starting with



each object as a singleton (cluster with a single object) and
iteratively merging the closest pair of clusters until all the
objects lie within a single cluster or the maximum number
of clusters is reached. Divisive hierarchical clustering, on the
other hand, employs the top-down strategy, starting with all
objects within the same cluster and splitting a cluster into
smaller clusters until each object becomes a singleton cluster
or a termination condition holds. We decided to employ an
agglomerative algorithm since the divisive methods cannot
efficiently handle large datasets. To measure the proximity
between two objects in different clusters, the agglomerative
algorithms employ distinct strategies, each one defining its
method’s name: single linkage, complete linkage, median,
centroid, group average, and Ward’s.

In UPGMA [15], which is a group average based agglom-
erative algorithm, the distance between two clusters is defined
as the average pairwise proximity among all pairs of objects
in different clusters. UPGMA takes into account the number
of objects in each cluster, as follows:

UPGMA(Ci,Cj) =
1

|Ci||Cj |
∑
x∈Ci

∑
y∈Cj

dist(x,y) (4)

Both k-means and UPGMA require the number of clusters,
k, to be set by the end-user.

C. Validation of Data Partitions

After Clus-EDA generates its final near-optimal par-
tition, we perform exhaustive docking experiments on
AutoDock4.2 [29] in order to search for evidence that validates
the quality of such a partition. These experiments are con-
ducted between 20,000 snapshots (FFR model) and 20 different
compounds, which are extracted from 20 InhA structures
deposited at PDB [30]. Figure 3 shows the 3D structures of the
20 compounds and the rotatable bounds defined in the docking
experiments.

In order to preserve the reaction mechanism between
ligands and the target protein, NADH should be treated as a
coenzyme. Hence, for experiments with ligands, the coenzyme
was considered as part of the protein receptor structure. Con-
versely, we removed the NADH coenzyme from each snapshot
of the FFR model when we performed the experiments with
adducts (INH-NAD and PTH-NAD), since they already have
the coenzyme as part of their structures.

Once the exhaustive molecular docking experiments are
performed, we analyze the agreement among snapshots that lie
within the same cluster. For each snapshot, the docking exper-
iments produce a value of the free energy of binding (FEB) of
that particular receptor conformation with the ligand at hand.
Hence, the rationale for validating a clustering partition is the
following: a good partition should have snapshot clusters with
low FEB variance regarding the FEB achieved by the cluster
representative (medoid). Such a measure is hereby referred to
as FEBvar , and is given by:

FEBvar =

∑k

j=1

∑
xi∈Cj

(
FEBxi

− FEBμj

)2
k − s

(5)

where FEBxi
is the free energy of binding between the

snapshot represented by object xi and the corresponding
ligand, and FEBμj

is the free energy of binding between the
representative snapshot (cluster medoid) and the corresponding
ligand. Finally, s is the number of singletons, which should
be excluded from the computation since singletons have a
single object (the cluster medoid) and thus a null deviation.
If singletons were taken into account, partitions with many
singletons would artificially reduce the final FEBvar value.

The lower the FEBvar , the greater the agreement among
snapshots that were clustered together, which means that all
snapshots that lie within the same cluster may be discarded
except for their representative, which is now the only required
snapshot to be used during the molecular docking experiments.

Besides the biological validation through the analysis of
FEBvar values, we also analyze the SSWC values of the
resulting partitions generated by Clus-EDA and the baseline
algorithms k-means and UPGMA.

D. Parameters

Clus-EDA is an evolutionary algorithm, and as such it
requires two main parameters to be set a priori: number of
individuals and number of generations. In the experiments, we
set those values to 500 individuals and 500 generations, and
no effort towards parameter tuning was performed whatsoever.
The selection mechanism in Clus-EDA is by truncation, which
defines that 50% of the individuals in the current generation
are used to update the probabilistic model.

For the fitness function that penalizes SSWC’s value
according to the number of clusters in the partition, we set the
penalizing factor w to 0.00005, which means that a partition
with 5,000 clusters penalizes SSWC in 0.25, whereas the
trivial solution (a partition with 20,000 clusters) decreases the
value of SSWC in 1 unity.

Finally, we set the probability of generating medoids in
the initial population to 5%, considering that we could achieve
a considerable reduction in computational effort by reducing
the MD simulation to around 1,000 receptor snapshots (5%
of the total size of the trajectory, which is 20,000 snapshots).
Nevertheless, we are aware that the initial probability of 5% of
generating medoids will be iteratively updated by Clus-EDA,
and no further constraint on k is imposed here.

E. Statistical Analysis

In order to provide some reassurance about the validity and
non-randomness of the results, we validate our novel algorithm
by presenting results of statistical tests that follow the approach
proposed by Demšar [32].

In a nutshell, this approach seeks to compare multiple
algorithms on multiple datasets, and it is based on the use
of the Friedman test with a corresponding post-hoc test. The
Friedman test is a non-parametric counterpart of the ANOVA
test, as follows. Let R

j
i be the rank of the jth of k algorithms

on the ith of N data sets. The Friedman test compares the
average ranks of algorithms, Rj = 1

N

∑
iR

j
i . The Friedman

statistic is given by:



Fig. 3. Stick representation of the 3D structures of the 20 ligands used in docking experiments. Each ligand, with its structures colored by atom type, is
identified by their name and its corresponding PDB ID. The dashed circle represents the rotatable bounds selected by AutoDockTools 1.5.6 [31].

χ2

F =
12N

k(k + 1)

⎡
⎣∑

j

R2

j −
k(k + 1)2

4

⎤
⎦ (6)

is distributed according to χ2

F with k− 1 degrees of freedom,
when N and k are big enough.

Iman and Davenport [33] prove that Friedman’s χ2

F is
undesirably conservative, and thus they derive an adjusted
statistic:

Ff =
(N − 1)× χ2

F

N × (k − 1)− χ2

F

(7)

which is distributed according to the F -distribution with k−1
and (k − 1)(N − 1) degrees of freedom.

If the null hypothesis of similar performances is rejected,
then we proceed with the Nemenyi post-hoc test for pairwise

comparisons. The performance of two classifiers is signifi-
cantly different if their corresponding average ranks differ by
at least the critical difference:

CD = qα

√
k(k + 1)

6N
(8)

where critical values qα are based on the Studentized range
statistic divided by

√
2.

IV. RESULTS

We executed Clus-EDA, k-means, and UPGMA in the MD
trajectory dataset described in Section III-A. Since Clus-EDA
is a stochastic approach, we execute it 10 times by varying
the seed of the random number’s generator. Both k-means
and UPGMA have a single parameter, which is the number of
clusters k, and since they are deterministic approaches, they are
executed a single time. Instead of averaging the results from
the multiple executions of Clus-EDA, we present the results



from the best and the worst executions according to the fitness
function’s values.

The results reported in this section for k-means and UP-
GMA are regarding the FEBvar and SSWC values collected
from the partitions with the same k value than the one
generated by Clus-EDA, since FEBvar tends to monotonically
decrease as the number of clusters increase. Moreover, we
executed two versions of Clus-EDA. The first version, here-
inafter simply referred to as “Clus-EDA”, employs the SSWC
value as its fitness function. The second version, namely
Clus-EDAwf , employs the weighted formula that penalizes
according to the number of clusters – SSWC is decreased
by a factor of w × k.

Table I shows the FEBvar results provided by the best
executions of Clus-EDA and Clus-EDAwf . To be precise, the
partitions found by Clus-EDA and Clus-EDAwf were further
evaluated in exhaustive molecular docking experiments using
all the 20,000 snapshots and one ligand at a time, and for each
ligand it was computed the FEBvar for the corresponding par-
tition. Recall that FEBvar is an average of the within-cluster
FEB dispersion. The best execution of Clus-EDA provided a
partition with 5060 clusters, whereas the best execution of
Clus-EDAwf generated a partition with 779 clusters. The best
(lowest) results are highlighted in boldface. Note that Clus-
EDA outperformed k-means and UPGMA in 16 out of the 20
ligands that were used during the experiments. Clus-EDAwf ,
in turn, also outperformed k-means and UPGMA in 16 out of
the 20 ligands, though generating a much smaller number of
clusters (779), considering it penalizes for large values of k.

TABLE I. FEBvar VALUES OF THE PARTITIONS PROVIDED BY THE

BEST EXECUTIONS OF CLUS-EDA AND CLUS-EDAwf .

Clus-EDA (k = 5060) Clus-EDAwf (k = 779)

Ligand Protein Clus-EDA UPGMA k-means Clus-EDAwf UPGMA k-means

TCL 1P45 0.23 0.24 0.23 0.30 0.34 0.33

TCL 2B35 0.33 0.35 0.36 0.46 0.50 0.48

665 2H7L 0.31 0.32 0.32 0.42 0.43 0.47

566 2H7I 0.25 0.25 0.26 0.33 0.35 0.39

8PC 3FNE 0.37 0.41 0.40 0.48 0.53 0.55

JPJ 3FNH 0.41 0.42 0.42 0.52 0.56 0.59

JPL 3FNG 0.42 0.43 0.43 0.54 0.60 0.63

JPM 3FNF 0.49 0.51 0.51 0.63 0.67 0.73

468 2H7P 0.36 0.38 0.38 0.46 0.52 0.53

641 2H7M 0.33 0.35 0.34 0.42 0.45 0.50

744 2H7N 0.33 0.35 0.35 0.42 0.46 0.51

INH-NAD 1ZID 0.84 0.80 0.86 1.16 0.91 1.19

5PP 2B36 0.28 0.29 0.29 0.37 0.44 0.39

8PS 2B37 0.45 0.46 0.47 0.58 0.61 0.63

TCU 2X22 0.31 0.33 0.32 0.41 0.47 0.45

PTH-NAD 2NTJ 1.06 1.07 1.12 1.55 1.24 1.49

THT 1BVR 0.38 0.39 0.39 0.50 0.530 0.54

4PI 2NSD 0.40 0.43 0.44 0.53 0.61 0.61

GEQ 1P44 1.98 1.98 2.08 2.47 2.04 2.97

INH-NAD 2IDZ 0.85 0.86 0.87 1.20 0.97 1.21

Number of Wins: 16 1 0 16 4 0

Average Rank: 1.13 2.30 2.58 1.25 2.03 2.73

Table II shows a similar picture than Table I, but now
presenting the results of the worst executions of Clus-EDA
and Clus-EDAwf . In this scenario, Clus-EDA once again
outperformed k-means and UPGMA in 16 out of the 20

ligands, which was also the case of Clus-EDAwf . Note that no
significant difference was noticed regarding the worst and best
executions of both versions of Clus-EDA, indicating a stable
performance throughout executions.

TABLE II. FEBvar VALUES OF THE PARTITIONS PROVIDED BY THE

WORST EXECUTIONS OF CLUS-EDA AND CLUS-EDAwf .

Clus-EDA (k = 5174) Clus-EDAwf (k = 817)

Ligand Protein Clus-EDA UPGMA k-means Clus-EDAwf UPGMA k-means

TCL 1P45 0.22 0.24 0.24 0.28 0.34 0.33

TCL 2B35 0.33 0.34 0.35 0.44 0.51 0.49

665 2H7L 0.31 0.32 0.33 0.39 0.44 0.48

566 2H7I 0.25 0.25 0.26 0.33 0.35 0.37

8PC 3FNE 0.38 0.41 0.39 0.49 0.53 0.55

JPJ 3FNH 0.40 0.41 0.43 0.52 0.58 0.58

JPL 3FNG 0.41 0.43 0.43 0.55 0.59 0.60

JPM 3FNF 0.49 0.51 0.50 0.63 0.67 0.69

468 2H7P 0.35 0.38 0.38 0.44 0.52 0.54

641 2H7M 0.33 0.35 0.35 0.43 0.46 0.48

744 2H7N 0.33 0.35 0.35 0.42 0.46 0.48

INH-NAD 1ZID 0.82 0.80 0.85 1.16 0.90 1.17

5PP 2B36 0.28 0.29 0.30 0.36 0.44 0.41

8PS 2B37 0.45 0.46 0.46 0.57 0.61 0.65

TCU 2X22 0.31 0.33 0.33 0.37 0.48 0.45

PTH-NAD 2NTJ 1.07 1.07 1.10 1.55 1.22 1.49

THT 1BVR 0.36 0.38 0.40 0.47 0.54 0.54

4PI 2NSD 0.42 0.43 0.44 0.52 0.61 0.60

GEQ 1P44 2.03 1.96 2.08 2.52 2.04 2.72

INH-NAD 2IDZ 0.83 0.86 0.87 1.16 0.96 1.15

Number of Wins: 16 2 0 16 4 0

Average Rank: 1.15 2.13 2.73 1.30 2.10 2.60

Finally, Table III presents the SSWC values provided by
both versions of Clus-EDA in the 4 experimental scenarios
(varying the versions of Clus-EDA and whether picking the
best or worst executions). Note that the partitions generated by
Clus-EDA consistently present much better values of SSWC
than UPGMA and k-means, indicating that the resulting clus-
ters are compact and reasonably well-separated.

TABLE III. SSWC VALUES OF THE PARTITIONS PROVIDED BY

CLUS-EDA VERSIONS AND BY THE BASELINE ALGORITHMS.

Number of clusters Clus-EDA UPGMA k-means

779 0.26 0.06 0.12

817 0.26 0.07 0.12

5060 0.41 0.11 0.18

5174 0.41 0.11 0.18

Number of Wins 4 0 0

The next step of the experiments is to verify whether the
differences in rank values are statistically significant. For that,
we employ the graphical representation suggested by Demšar
[32], the critical diagrams. In this diagram, a horizontal
line represents the axis on which we plot the average rank
values of the methods. The lowest (best) ranks are to the left
of the diagram. When comparing all the algorithms against
each other, we connect the groups of algorithms that are not
significantly different through a bold line. We also show the
critical difference given by the Nemenyi test above the graph.

Figure 4 shows the critical diagrams for all experimental
configurations. Note that both versions of Clus-EDA out-



perform k-means and UPGMA with statistical significance,
regardless of the fitness function and of the execution. Hence,
we are confident to affirm that Clus-EDA is an effective
approach for clustering MD simulations. Furthermore, by
adjusting parameter w in Clus-EDAwf , one can guide the
search for solutions with different number of clusters, which
ultimately indicates whether one needs a greater or smaller
reduction in the computational cost of the task. Our results with
Clus-EDAwf reduce the MD simulation to 779 (best execution)
and 817 (worst execution) snapshots, which accounts for a
reduction of the trajectory size to ≈ 4% of its original size.
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1 2 3

Clus-EDA k-means

UPGMA

(a) Best execution of Clus-EDA.
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1 2 3
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Fig. 4. Critical diagrams showing average ranks and Nemenyi’s critical
difference.

V. RELATED WORK

Since data clustering can be seen as a combinatorial opti-
mization problem, several efforts towards building evolutionary
algorithms for unsupervised problems have been proposed in
the literature. We refer the interested reader to a thorough
survey on the subject by Hruschka et al. [19], which describes
several evolutionary algorithms (mainly genetic algorithms and
genetic programming) for generating data partitions and data
hierarchies. Notwithstanding, very few studies propose novel
Estimation of Distribution Algorithms for data clustering.

Roure et al. [34] propose an EDA that performs partitional
clustering with an integer encoding in which each gene has a
value over the alphabet 1, 2, ..., k. As previously discussed, this
encoding presents several disadvantages regarding the binary
medoid-based encoding of Clus-EDA, such as the permutation
problem and the need of defining the number of clusters k
in advance. Santana et al. [35] propose an EDA to select
parameters for the Affinity Propagation clustering algorithm
[36], with the final goal of performing gene expression classi-
fication. Meiguins et al. [37] propose the use of EDAs for the

automatic generation of density-based clustering algorithms, in
an approach that makes use of an EDA as a hyper-heuristic
to optimize macro-parameters of a density-based clustering
strategy. Finally, note that several papers propose clustering
strategies to enhance EDAs [17], [38]–[40], though not EDAs
to generate clustering partitions, which is the case of Clus-
EDA. To the best of our knowledge, this paper presents the
first EDA that generates data partitions following the binary
medoid-based approach. Moreover, this is the first attempt
in making use of evolutionary computation for clustering
MD trajectories in order to reduce the computational cost of
molecular docking experiments with a Fully-Flexible Receptor
model.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented Clus-EDA, which is a novel
clustering algorithm based on a univariate estimation of dis-
tribution algorithm. We employed Clus-EDA for clustering a
Molecular Dynamics trajectory that makes use of structural
features from the substrate-binding cavity of the protein re-
ceptor. Our hypothesis was that Clus-EDA could considerably
reduce the number of conformations of the molecular dynamics
ensemble in order to allow the further execution of molecular
docking experiments with ligands of interest.

Clus-EDA works by iteratively updating a univariate
probabilistic model in order to select cluster representatives
(medoids) that ultimately generate the final data partition.
For that, Clus-EDA optimizes an internal clustering validity
criterion, which is an efficient implementation of the silhouette
width criterion [21].

For validating the proposed approach, we compared Clus-
EDA with traditional clustering algorithms such as k-means
and an implementation of hierarchical agglomerative cluster-
ing over the Molecular Dynamics trajectory data regarding
the InhA-NADH complex from Mycobacterium tuberculosis.
Results show that the data partitions generated by Clus-EDA
provide a reduction in variance of the free energy of binding
for most of the tested ligands. Statistical non-parametric tests
indicated that Clus-EDA outperforms the traditional clustering
algorithms with statistical significance considering this bioin-
formatics task.

As future work, we intend to test different clustering
validity criteria as fitness function, such as the Davies-Bouldin
index [41], and also employ multi-objective optimization tech-
niques such as the Pareto approach. Furthermore, we believe
we can improve Clus-EDA with more sophisticated multi-
variate probabilistic models that do not assume independence
among the variables.
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