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Abstract—The easy access and widespread of the Internet
makes it easier than ever to reach content of any kind at
any moment, and while that poses several advantages, there
is also the fact that sensitive audiences may be inadvertently
exposed to nudity content they did not ask for. Virtually every
work on nudity and pornography censorship focus solely on
performing binary classification, where the result is used to
decide whether to completely ignore the accessed content or not.
Such an approach may compromise user experience because the
entire content, either images or frames of a video, has to be
removed/blocked. In this paper, we propose a paradigmatic shift
in the literature of adult censorship: instead of detecting and
excluding the identified content, we propose to automatically
filter out only the sensitive regions of an image. For that, we
have developed an image-to-image translation approach based
on adversarial training that implicitly locates sensitive regions
in images and covers them whilst preserving its semantics, i.e.,
putting appropriate clothing. We test this novel approach on
images of nude women, in which we are capable of automatically
generating bikinis that cover the sensitive parts without the
additional effort of previously annotating body parts. Our results
are visually impressive, proving that it is possible to perform
seamless nudity censorship with small effort of data collection
and annotation.

I. INTRODUCTION

The easy access and widespread of the Internet especially
through mobile phones makes it easier than ever to reach con-
tent of any kind at any moment. This convenience, however,
often comes at a price: in many cases, people are exposed
to content they did not ask for. An example is when people
inadvertently access nudity content. Studies' show that eight
out of ten 18-year-olds think it is too easy for young people
to accidentally see nudity or even pornography online. This
is a concerning issue in many levels, especially in an era
where people are joining the Internet at early ages. Statistics’
show that 93.2% of boys and 62.1% of girls have seen online
pornography before the age of 18. This scenario motivates the
development of computational approaches that are capable of
monitoring and automatically detecting pornography, with the
final goal of protecting sensitive populations.

1 http://www.burnet.edu.au/news/435_burnet_studies_shed_light_on_
sexual_behaviour_of_teenagers
Zhttp://enough.org/stats-youth-and-porn
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Earlier work on nudity and pornography identification fo-
cused on identifying body parts that could be used to detect
sensitive media, such as faces, human skin, and nipples [1]-
[4], while recent studies address the problem using state-
of-the-art representation learning approaches to automatically
learn features capable of distinguishing between sensitive and
non-sensitive content [5]-[7]. Those studies focus solely on
performing binary classification, using the result to decide
whether to completely ignore the accessed content or not.
Note that, in practice, such an approach may compromise user
experience because the entire content, being images or frames
of a video, would have to be removed/blocked.

A more reasonable approach would be to manually identify
and filter only the sensitive regions of an image or video using
some form of content blocking mechanism, as depicted in
Figures (1a)-(1c). To the best of our knowledge, this type of
approach for automatic sensitive content filtering has not yet
been explored in the specialized literature. With that in mind,
we propose in this work a novel type of adult content filtering
task where the goal is to automatically filter out only the
sensitive regions of an image. The motivation behind this task
is to avoid ruining user experience while consuming content
that may occasionally contain explicit content.

The task of filtering out sensitive regions in nudity content
could be addressed in different ways. A possibility that stands
out is to cast such a problem as an object detection task, where
the objects at hand would be the sensitive body parts in nudity
content. Hence, state-of-the-art object detection approaches
such as YOLO [8], Faster-RCNN [9], or RetinaNet [10] could
be used to locate the sensitive regions and then one could
apply an image filter within the detected bounding boxes (as
shown in Figure la). Such a strategy would definitely be an
improvement over binary classification. However, it presents
two major problems: (i) the censorship would still be perceived
by the person consuming the content; and (ii) training an object
detector requires a large dataset with per-object boxes manu-
ally annotated, which is both time-consuming and tedious.

Ideally, it would be desirable to have a method that could
censor sensitive content in a totally non-intrusive manner so
that the user would not notice the nudity, but also avoiding the
need of manually annotating a large amount of body parts for
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Fig. 1. Techniques for censoring sensitive regions of an image. (a)-(c): manual strategies commonly used for localized censorship. So far, no studies have
addressed this problem with an automatic approach. (d): result of our fully-automatic seamless censoring approach using unpaired image-to-image translation.

data-driven approaches. Figure 1d presents this ideal scenario,
which is precisely the approach proposed in this paper. In
a nutshell, we have developed an image-to-image translation
approach based on adversarial training that implicitly locates
sensitive regions in images and covers them whilst preserving
the semantics of the image (i.e., putting appropriate clothing).
Formally, we translate an image x from the sensitive content
domain X to an image y of the non-sensitive content domain
Y where sensitive parts are covered preserving the semantics
of the source domain. Note that the data needed for this task
are images from domains X and Y, which are easy to acquire
and no special annotation is required.

A recurrent issue in image-to-image approaches is that it is
necessary to have aligned pairs of samples {x;,y;} to train
models that map from domain X to domain Y. Our method is
based on state-of-the-art image-to-image translation techniques
that allow us to learn a model that maps from an unsafe
image domain (nude women) to a safe image domain (women
wearing bikinis) using unpaired training samples, avoiding the
need (and the cost) of obtaining aligned pairs of samples.
We show several impressive results regarding the automatic
generation of bikinis in images of nude women, proving that
it is possible to perform seamless nudity censorship with small
effort of data collection and annotation.

II. BACKGROUND

In this section, we briefly review the state-of-the-art in
adversarial training via Generative Adversarial Networks
(GANSs) as well as the most important image-to-image trans-
lation approaches to date.

A. Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [11] is a frame-
work for estimating generative models via an adversarial
training process. It consists of two models that are based
on neural networks: a generator, G, and a discriminator, D.
The discriminator attempts to distinguish between real images
sampled from the training data (X ~ pga,) and synthetic
images generated by the generator model (X ~ pg). The
generator, on the other hand, tries to produce realistic-looking

samples to fool the discriminator. Formally, G and D are set
to play the following minimax game:

minmax V(D, G) = Exupy,ollog D(x)] +
Eyep. (s log(1 — D(G(2)))],

where z is a low-dimensional latent vector drawn from a
simpler known distribution (such as uniform or Gaussian) and
is fed as input noise to G. After training the models, the
generator network is capable of producing a wide variety of
images, depending on the values of the latent vector z.

Ideally, since we are optimizing the mapping between latent
space and complex images, small modifications in z should
map to small modifications in image space. Thus, this latent
space representation can often be used to traverse the natural
image manifold. This is useful, for instance, to create natural
interpolation between results, or even performing image edit-
ing tasks [12]. One should not expect, though, the latent space
to be semantically organized, i.e., the particular dimensions of
z may not correspond to semantically-coherent attributes (even
though approaches such as InfoGAN [13] attempt to perform
this mapping).

The traditional GANs framework is unconditioned, which
means that there is no control over the modality of the data
being generated. It is possible, however, to create Conditional
Generative Adversarial Networks (CGANs) [14] by feeding
the models with additional information c, such as class labels
or data from other modalities. For doing so, we modify the
original GANs value function (Equation 1) to:

(D

ménmgx V(D,G) = Excllog D(x,c)] +
IEz,c[lOg(l - D(G(Z7 C)’ C))]’

where X ~ pdata, € ~ Pdaas and z ~ p,. Architecture-wise,
the conditional information can be added to the models in
numerous ways, the most common being a simple concate-
nation between z and c for the generator, and a concatena-
tion operation on the feature map axis of the input for the
discriminator. Simply adding conditional input to the models
does not necessarily entail any changes to the adversarial

2)
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loss; however, several studies [13], [15], [16] have modified
training procedures to take advantage of this extra input. GANs
have already been conditioned on data with several different
modalities, such as class labels [14], attribute vectors [17],
text [18], images [19], and videos [20]. It has been shown [21]
that models typically benefit from using a conditional input;
one possible explanation being that this helps the model to
better navigate the space of possible outputs.

One of the main drawbacks of GANs is that the training
process is very sensitive to the choice of hyperparameters.
Several recent studies propose constraints and improvements
to the framework to improve training stability and synthesis
results [15], [22]-[25]. GANs have shown remarkable results
for tasks such as image synthesis [26], [27], image super-
resolution [28], image inpainting [29], image editing [30], text-
to-image synthesis [18], image-to-image translation [19], [31],
and many more.

B. Image-to-image Translation

Many problems in computer graphics and computer vision
can be reduced to performing image-to-image translation,
which is the task of transforming an image x from domain
X to an image y in a different domain Y. Some concrete
examples of such tasks are: (i) image colorization; (ii) edge
detection; (iii) generating photographs from sketches; and
(iv) image prediction from a normal map. Initially, solutions
to such tasks relied on hand-crafted mapping functions, but a
recent trend is to create methods using automatically-learned
features, which are commonly extracted via Convolutional
Neural Networks (CNNs) [32], [33].

Formally, given a labeled dataset of paired images
{x;,yi},, paired image-to-image translation can be treated
as a supervised learning problem where a model learns the
mapping fy : X — y by minimizing a loss function, which
is sometimes formulated around a per-pixel classification
or regression task [32]-[35]. However, minimizing element-
wise distances, (e.g., L1 and L2) tends to produce blurry
results [29], [33], [36] and still requires the loss function to be
tuned for the task at hand. A more recent trend is to leverage
adversarial learning for image-to-image translation [37]-[40].
One extremely successful example is “pix2pix” [19], which
provides a data-agnostic framework for paired image-to-image
translation based on CGANs. The original framework pro-
duces images with a resolution of 256 x 256, but a recent
study [41] has improved on the architecture of pix2pix to
support generating high-resolution (4096 x 2048) images.

We are continuously experiencing an increase in dataset
sizes and diversity. However, it is still uncommon to find
datasets containing large quantities of paired image samples
{x,y} to support image-to-image translation tasks. Although
paired images can be easily collected for some tasks, such as
image colorization, it can be extremely difficult and expensive
to obtain paired data for tasks where the desired output is
highly complex or not even well defined, like artistic styliza-
tion or object transfiguration. For this reason, researchers have
developed many approaches [42]-[44] for unpaired image-to-

image translation, where the goal is to learn mapping functions
to somehow relate separate domains X and Y, given training
samples {x;};*, where x; € X and {y;}}Z, where y; € Y.
One of the most recent approaches, called cycleGAN [31],
adapts the pix2pix framework to the unpaired setting, achieving
good results in tasks such as style transfer, object transfigura-
tion, season transfer, and photo enhancement.

III. PROPOSED APPROACH

We propose an image-to-image translation approach based
on adversarial training that implicitly locates sensitive regions
in images that contain nudity and covers them whilst preserv-
ing the semantics of the image, i.e., automatically generating
clothing to cover the nudity. We translate an image x from the
sensitive content domain X (pool of images containing nude
women) to an image y of the non-sensitive content domain Y
(pool of images containing women in bikinis) where sensitive
parts are covered by bikinis though preserving the semantics of
the original image. The data needed for this task are images
from domains X and Y, which are easy to acquire and no
special annotation is required, as presented in Section III-A.

Our proposed approach follows the architecture presented
in Figure 2. We draw inspiration from [31], where paired
data is not required for performing image-to-image trans-
lation. The key idea is to perform adversarial training to
learn realistic mappings between domains. Specifically, the
framework consists of two mapping generators, G : X — Y
and F' : Y — X, and two discriminators, Dx and Dy . Dx
distinguishes between real images {x} and translated images
{F(y)} = {%}, while Dy discriminates between real images
{y} and translated images {G(x)} = {§}. The loss function
optimized by our approach is presented in Section III-B,
whereas the network architectures for the generators and
discriminators are described in Section III-C.

‘ real/fake ‘ ‘ real/fake ‘

Fig. 2. Proposed image-to-image translation approach for seamless censoring
of nudity content via adversarial training.
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A. Dataset

Previous studies on adult content detection conducted ex-
periments either by using pre-established datasets [45]-[48]
of images and videos containing adult and regular content, or
by creating a custom dataset that better suits their needs by
scraping the Internet. Since the task that the existing datasets
aim to support is binary classification of content, some images
and videos are totally unrelated to adult content (e.g., cartoons,
videos of animals, landscapes), which do not help us with
the task of translating between domains in a constrained,
seamless fashion. Given that the contents of existing datasets
are suboptimal for our image-to-image model, we opted for
collecting our own dataset from scratch.

We scraped images from the Internet for both domains:
nude women and women wearing bikinis. We filtered results,
keeping only images where a single person appears. The
dataset was further split into training and test sets. For women
wearing bikinis (X)), the final image count was 1, 044 training
images and 117 test images; for nude women (Y'), the final
image count was 921 for training and 103 for test. We make

the dataset public for research purposes®.

B. Loss Function

The natural choice for adversarial loss is the classic GANs
loss (Equation 1). However, we adopt the LSGANs [49] loss
as it has shown to be stable and produce good results. The
adversarial loss of G and Dy is given by:

Laa(G, Dy, X,Y) = Ey~pdm(y)[(DY(Y> - 1)2} +
s mpaas () [Py (G (%))?].

The loss for the mapping function for F' : ¥ — X is
similarly given by Lag (F, Dx,Y, X). In theory, this adver-
sarial loss can be used to force the generators to produce
realistic-looking samples, but it does not introduce enough
constraints to guarantee similarity between images across
domains. Hence, to force similarity between translations and
reduce the search space for mapping functions, we explore the
property that a translation should be “cycle-consistent” [31].
Mathematically, cycle consistency implies that G and F' should
be inverses of each other and both mappings should be bijec-
tions, which implies that an image translation cycle should
recreate the original image. A forward cycle consistency is
expressed as x — G(x) — F(G(x)) =~ x and a backward
cycle consistency corresponds toy — F(y) = G(F(y)) = y.
This is used to formulate a cycle-consistency loss:

3)

Leye(G F) = Exppao [I1F(G(x)) —x[l1] +
Eypuan) [IG(F(Y)) = yl1]-

Combining the adversarial losses and the cycle-consistency
loss, we can formulate the full objective, where A.y. controls
the relative importance between objectives:

“4)

3Link omitted due to double-blind review.

‘C(Ga Fa DXaDY) :EAdV(GaDYaXa Y) +
EAdV(FaDXaKX) + (5)
)\cycﬁcyc(G>F)'

C. Network Architecture

We test two popular architectures for the generators and a
standard architecture for the discriminators.

N-Layers Discriminator. We use a simple discriminator
architecture with a growing number of convolutional filters
towards the end. The discriminators use Leaky ReLU as
activation function and apply instance normalization [50] after
every convolutional layer, except the first and the last.

9-Blocks ResNet Generator. We experiment with the 9-
Blocks ResNet generator inspired by [51]. This architecture
consists of an autoencoder that applies residual connections
between bottleneck layers. Additionally, it applies ReLU as
activation and instance normalization after the convolutions.

U-Net 256 Generator. We also experiment with a popular
architecture for the generator. The U-Net [52] consists of
an autoencoder with residual connections between layers that
operate at the same spatial dimensions. Our implementation
also applies instance normalization, Leaky ReLU activation for
the encoder, and ReLLU for the decoder. The U-Net has shown
good results for image segmentation as well as for image-to-
image translation tasks.

IV. EXPERIMENTS

We train models that operate at the resolution of 256 x 256
pixels. The generators and discriminators are trained using
simultaneous gradient descent, where at each training step
we update the weights of Dy, Dx, G, and F, respectively.
We use Adam optimizer with a learning rate of 2 x 1074,
B1 = 0.5 and By = 0.99 for all networks. The weight for
the cycle consistency term Mgy is set to 10. We train the
networks for 400 epochs using batches of size 1. We decay
the learning rate linearly as training progresses. Aditionally,
we translate images every 100 seconds for visual inspection
reasons. Training took 2 days on a single NVIDIA® 1080 Ti
GPU employing the PyTorch framework.

A. Results on the Original Dataset

Figure 3 depicts results achieved by using the original
dataset for training our networks. Note that the ResNet gen-
erator (second row) consistently produced better results when
compared to the U-Net approach (third row). Even though
the latter learned to remove some sensitive parts (e.g., the
nipples were often erased), it presented difficulties in properly
positioning the bikini and often distorted the original image.
On the other hand, the ResNet generator have shown better
quality in both generating good-looking bikinis and covering
explicit body parts.

When training our models, we have noticed that the back-
grounds seem to have significant influence in the speed of
the learning process as well as in the quality of the results.
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Fig. 3. Results after training on the original dataset. Top row: real images (manually censored for protecting the reader). Middle row: results using 9-Blocks
ResNet generator. Bottom row: results using a U-Net 256 generator (blurring applied to unsatisfactory results).

Hence, we have modified our original dataset by removing the
background of each image, as detailed next.

B. Results after Removing Backgrounds

A problem we observed during training is that the net-
works tried to understand the relationship between the image
background and the task of censoring nude body parts on
the women present in the foreground, even though such a
relation does not exist in real life. As a countermeasure, we
decided to perform experiments using a clean version of the
dataset that comprises only pictures of people in front of a
white background. Theoretically, by using “background-free”
images, the networks can properly focus on learning the task
at hand, rather than approximating irrelevant noisy background
variations between images.

We built such a dataset version by segmenting the people
in all images with the aid of Mask R-CNN [53], the state-
of-the-art approach for semantic and instance segmentation.
In a nutshell, Mask R-CNN’s basic structure is quite similar
to Faster R-CNN, the difference being that it predicts binary
masks for each Rol (Region of Interest) to allow pixel-level
segmentation. In most cases, this background removal strategy
successfully removed the backgrounds of the images in our

dataset. However, we noticed some error cases in which Mask
R-CNN was unable to find any person, or performed incor-
rect segmentation. Given that such miss-segmented instances
introduce a controlled amount of noise for both image classes,
we decided to keep those imperfect images in this dataset.

Figure 4 shows images generated by our approach trained
over the no-background version of the dataset. Note that these
results are arguably more consistent than those provided by
models trained with the original dataset in Figure 3. Once
again, one can observe that the ResNet-based model outper-
formed U-Net one, by generating images with the sensitive
parts properly covered with real-looking bikinis. In addition,
it introduced much less distortion than its competitor.

C. Byproduct Results

The task we propose to address in this paper is to develop
a data-oriented approach for censoring sensitive regions in
images. We opted for using an unpaired image-to-image
approach since creating a dataset of annotated image pairs
of women wearing bikinis (X) and nude women (Y) that was
large enough to train our models would be insurmountable
work. Fortunately, as we have shown in Section IV-A, this
approach was capable of producing impressive results as it
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Fig. 4. Results after training on the no-background dataset. Top row: real images (manually censored for protecting the reader). Middle row: results using
9-Blocks ResNet generator. Bottom row: results using a U-Net 256 generator (blurring applied to unsatisfactory results).

stands. However, note that — as depicted in Figure 2 — we
train two distinct generators: (i) F' : Y +— X, which maps from
nude women to women wearing bikinis; and (ii)) G : X — Y,
which translates from women wearing bikinis to nude women.
Even though G is part of the architecture, the task performed
by the model is not in the scope of this work. Nevertheless,
we present results obtained when using generator G in Fig-
ure 5, showing that the generator learned to perform its task
successfully.

D. Robustness Analysis

Unlike previous studies in adult content detection, our
image-to-image approach is not concerned with detecting and
classifying content as sensitive material or not. However, the
task we aim to solve requires, even if implicitly, for our
model to be capable of discerning between these two types of
content, considering that domains X and Y contain different
sample distributions. If our model cannot implicitly capture
the difference between domains, this would mean that our
generators, G and F, would not be capable of translating
samples for their respective domains, and our discriminators,
Dx and Dy, would not be able to discern between real
and fake images. Therefore, to test the robustness of our

Fig. 5. Results of generator G that maps women in bikini to nude women.
Left: real images. Right: results using 9-Blocks ResNet generator.
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model in the task at hand (applying appropriate clothing to
women), we present generator I’ with samples of women
already wearing bikinis. We expect the model to perceive that
the type of content already matches the output domain and
perform no modification whatsoever. As presented in Figure 6,
our model passes the proposed robustness check, since it does
not significantly modify the original images.

Fig. 6. Robustness analysis. Left: real images. Right: images with minimal
modifications created by generator F'.

V. RELATED WORK

In this section, we discuss related work that provide datasets
and methods for identifying/classifying adult content in both
images and videos. Note that no work so far attempts at
automatically censoring nude content. They simply indicate
whether an image/frame or video contain adult content.

Avila et al. [47] introduced one of the first datasets for
adult content detection, namely NPDI. Such dataset comprises
nearly 80 hours from 802 videos downloaded from the internet.
NPDI is divided into two disjoint classes: adult and non-adult
videos. The non-adult class is further sub-divided in 200 easy-
to-classify videos and 200 hard-to-classify videos. The latter
includes videos with scenes of people in beaches, wrestling,
and swimming. A novel dataset for adult content classification,
namely DataSex, was introduced by Simdes et al. [48]. The
authors provide the largest dataset for binary classification of
pornographic images. It comprises a collection of ~ 300,000
images that are equally distributed in adult and benign classes.
They also already provide splits for training and validation
purposes. DataSex was built by crawling around 300,000
publicly available images from adult websites. Simdes et
al. [48] report classification results of ~ 95% accuracy in
DataSex’s test set by fine-tuning a pre-trained GoogleNet.

The work described in [5] is the first to use deep neu-
ral networks for pornography classification in videos. That
work proposes a method that requires fine-tuning two distinct
ConvNets, namely AlexNet [54] and GoogLeNet [55]. Next,
the pre-trained models are fine-tuned in each fold of the
NPDI dataset. Note that such an approach requires training
10 distinct models: one model per training fold (5) and per
network (2). In order to avoid overfitting, the authors apply
strong dropout rates and data augmentation with randomly
selected image crops in the training phase.

Recently, Wehrmann et al. [7] presented ACORDE (Adult
Content Recognition with Deep Neural Networks), which is
a method that uses a convolutional architecture as a feature
extractor and a Long Short-Term Memory network (LSTM)
[56] to perform video classification. ACORDE extracts feature
vectors from the keyframes of NPDI to construct video seman-
tic descriptors that feed an LSTM responsible for analyzing
the video. The entire pipeline works in an end-to-end fashion,
eliminating the fine-tuning phase and the ConvNet re-training.
ACORDE establishes itself as the current state-of-the-art for
adult video detection in NPDI.

VI. CONCLUSION

We proposed in this paper an image-to-image translation
approach based on adversarial training that implicitly locates
sensitive regions in images that contain nudity and covers them
whilst preserving the semantics of the image. We translate an
image x from the sensitive content domain X (nude women) to
an image y of the non-sensitive content domain Y (women in
bikinis), where the sensitive parts are automatically covered by
bikinis. Our approach does not require paired training samples
and produces impressive highly-realistic results, paving the
way for solving the novel task of seamless nudity censorship.
For future work, we intend to analyze the impact of different
architectural choices and loss functions on the generated im-
ages, and also to embed our approach in a browser application
to protect audiences from accessing undesired content.
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