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Abstract—Ensemble learning is the machine learning paradigm
that aims at integrating several base learners into a single system
under the assumption that the collective consensus outperforms
a single strong learner, be it regarding effectiveness, efficiency, or
any other problem-specific metric. Ensemble learning comprises
three main phases: generation, selection, and integration, and
there are several possible (deterministic or stochastic) strategies
for executing one or more of those phases. In this paper, our
focus is on improving the predictive accuracy of the well-known
AdaBoost algorithm. By using its former voting weights as
starting point in a global search carried by an Estimation of
Distribution Algorithm, we are capable of improving AdaBoost
up to ≈ 11% regarding predictive accuracy in a thorough
experimental analysis with multiple public datasets.

I. INTRODUCTION

Ensemble learning – also known as mixture of experts,

consensus aggregation, combination of multiple classifiers,

classifier fusion, classifier ensembles, or multiple classifier

system [1], [2] – is the paradigm that seeks to integrate

several base learners into a single system, which in one or

more aspects will perform better than inducing a single strong

classifier or regressor. Base learners within ensembles cast

votes (for classification) or values (for regression) to predict

unknown instances, which will be later integrated into a single

prediction.

It has already been demonstrated that integrating a set

of surrogate models that approximate a given function is

computationally cheaper than to induce a single, stronger-

than-all regressor [3]. An ensemble of base classifiers that are

marginally better than random guessing, when integrated, can

be as accurate as a single strong classifier [4], [5]. The way

that an ensemble is induced may also yield base learners that

are specialized in certain regions of the input space [4].

Ensembles of base learners have been employed in a great

variety of application domains, including intrusion detec-

tion [2], [6], wind speed forecasting [7], [8], power grid

transformers fault prediction [9], [10], among others.

Ensemble learning comprises three stages, depicted in Fig-

ure 1: generation, selection, and integration. While selection is

an optional procedure, generation and integration are manda-

tory. The rationale behind the generation phase is to produce a

pool of base learners that have strong individual qualities (e.g.,

high accuracy when predicting a given class/input region).

Fig. 1. Ensemble learning induction pipeline.

From this initial pool, a set of base learners that have

good cooperation among themselves are selected, so that

using several models produce a better outcome than simply

using the most accurate base learner. However, several authors

argue that performing this selection step is irrelevant for

ensemble learning. Lacy et al. [11] affirm that simply selecting

the first Φ fittest models from a pool of base learners is

more effective than building an ensemble based on diversity

measures. They also sustain that their finding is consistent

with other studies that simply select the most accurate learners

instead of employing diversity measures [12], and that there is

little correlation between measures of ensemble diversity and

accuracy [13], [14].

Finally, in the integration phase, predictions from each base

learner are aggregated in order to provide final consensus for

unseen instances. It is possible to use simple solutions such

as standard majority voting (each model is equally important

when defining the final outcome), or to adjust the voting

weights. For instance, if one of the models is exceptionally

good at detecting the positive class, then its positive votes

should probably have greater importance (larger weights); if it

is no better than average in detecting the negative class, then its

negative votes should probably have their impact diminished.

The ensemble voting scheme for the task of data classification

is usually given by:

hB(X
(i)) = argmax

c∈C

(∑
b∈B

wb,c × [hb(X
(i)) = c]

)
(1)

where hB
(i) is the ensemble prediction for instance X(i) (i.e.,

the most voted class by the ensemble); wb,c is the voting
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weight for classifier b regarding class c; [hb(X
(i)) = c] is

the identity function that outputs 1 if classifier b predicts class

c for instance X(i) and 0 otherwise.

Since ensemble learning consists of several steps, it is

common to have multiple variables involved during its de-

velopment. There are, for example, different methodologies

regarding the composition of ensembles: base learners can

be from (1) different paradigms, e.g., mixing models such as

decision trees and neural networks; (2) same paradigm, e.g.,

all models are neural networks; and (3) present differences

within the same paradigm, e.g., mixing neural networks with

different activation functions and/or architectures.

Among the types of base learners that can be integrated

into an ensemble, decision trees are one of the most popular

models due to their robustness to noise, speed regarding both

training and prediction, and ability to deal with redundant

attributes [15]–[18]. There are exponentially many decision

trees that can be built from the same dataset, with different

levels of predictive quality and compactness. Indeed, inducing

decision trees is a combinatorial problem, with complexity NP-

hard for generating an optimal decision-tree, and NP-complete

for generating a minimal binary decision-tree [17], [18].

There is also no consensus on whether it is better to

use greedy, local optimization strategies (e.g., boosting [19],

bagging [20], and stacking [21]), or population-based, global

optimization approaches (e.g., evolutionary algorithms) to ex-

ecute those steps. Among the later, Estimation of Distribution

Algorithms stand out due to their innate characteristics. The

main difference between EDAs (first proposed by Larrañaga

and Lozano [22]) and genetic algorithms (GAs) [23], is

that GAs perform an implicit propagation of characteristics

throughout evolution (i.e., by carrying-on high-quality individ-

uals from one generation to another), whereas EDAs perform

it explicitly, by encoding those characteristics in a probabilistic

graphical model [24]. This feature is important, since EDAs

can start from a previous high-quality point in the fitness

landscape. EDAs were successfully employed for decision-

tree induction [18], amino-acid alphabet reduction for protein

structure prediction [25], data clustering [26]–[28], military

antenna design [29], just to name a few.

Seeking to use the best practices from classic ensemble-

learning algorithms, while also performing a robust global

optimization, in this work we propose to integrate several

decision trees for classification from a prior AdaBoost ex-

ecution into one ensemble. After running AdaBoost for B
iterations, we use its base classifiers as the initial population

of the proposed, namely EEL – Estimation of Distribution

Algorithms for Ensemble Learning. We then perform the

population-based global optimization procedure of EDAs to

find the best set of voting weights for each base classifier,

using former AdaBoost weights as starting point in the fitness

landscape. We test the proposed strategy in 15 UCI datasets,

improving AdaBoost performance up to ≈ 11%.

The rest of this paper is organized as follows. Section II

briefly explains AdaBoost and presents the proposed EEL

algorithm in details. Section III depicts the experimental setup

used in our tests, while Section IV discusses the obtained

results. We present related work in Section V, and end the

paper with our conclusions and future work directions in

Section VI.

II. PROPOSED METHOD: EEL

EEL (Estimation of Distribution Algorithms for Ensemble

Learning) is composed by two steps: generation of base clas-

sifiers, and subsequent integration. It uses AdaBoost, which

is a popular boosting algorithm proposed by Freund and

Schapire [4], for performing the generation of a pool of

decision trees. After this initial step, it further improves its

voting weights by making use of an Estimation of Distribu-

tion Algorithm. We use all trees from the generation phase,

bypassing the optional selection step in ensemble learning.

AdaBoost relies on the technique of iteratively improving

the performance of a weak learner [30]. For doing so it uses

two types of weights: a set of instance weights and a set of

voting weights. An instance weight denotes the importance

of correctly classifying that instance in a given iteration of the

algorithm. A voting weight, in turn, represents the strength of

the claim of a base classifier in the final ensemble prediction.

AdaBoost starts by receiving a set of predictive attributes X
with Y class labels, y ∈ Y = {−1,+1}. In the first iteration,

it gives the same importance (i.e., weight) to every instance

in the training set, D1(i) = 1/N , i = 1, . . . , N (where

N is the number of instances). It then induces a classifier

model on the training data (say, a decision tree). Next it

assigns a voting weight to the classifier based on its error

rate, εb = Pi∼Db
[hb(xi) �= yi], and increases the importance

of incorrectly predicted instances. The generated decision tree

is then stored in the ensemble as the b-th classifier. For the

b+1-th classifier, it will sample from a new distribution Db+1

of training data based on the updated instance weights. This

process is repeated for B iterations, resulting in an ensemble

of B classifiers.

The voting weight of the b-th classifier is given by:

wb =
1

2
ln
(1− εb

εb

)
(2)

and then the weight of the i-th instance is adjusted by:

Db+1(i) =
Db(i) exp(−wbyihb(X

(i)))

Zb
(3)

where Zg =
∑N

i=1 Db+1(i), and therefore can only be ob-

tained after calculating all the N new instance weights. After

the B iterations are completed, the prediction of unknown

instances is given by:

hb(X) = sign

(
B∑

b=1

wbhb(X
(i))

)
(4)

As it is expected, classifiers with greater voting weights will

have a greater impact on the prediction of unseen instances.

However, AdaBoost does not take into account that some

classifiers may perform differently among classes (i.e., that
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a classifier performs better at detecting the positive class than

the negative class, or vice-versa). It is possible to induce a set

of voting weights, with one weight per classifier per class, to

overcome that limitation. For that we employ an EDA, since

its capability of starting a search procedure from a previous

high-quality region in the fitness landscape meets our needs.

We start the EDA optimization step by initializing a prob-

abilistic graphical model (GM). The GM is a matrix of size

C × B, where B is the number of decision trees and C the

number of classes. Each cell in this matrix is a gaussian with

mean x̄ and standard deviation σ, as depicted in Figure 2.

Fig. 2. Initial probabilistic graphical model used in the EDA optimization
step, with 5 base classifiers and 3 classes. Each cell comprises the mean of a
gaussian distribution for that voting weight. Initial values come from former
AdaBoost weights. Note that there is no restriction for a single decision tree
to sum its votes to 1. Also note that since we use one weight per classifier
per class, we broadcast weights in the first generation of EEL.

EEL makes use of an univariate EDA, which means its GM

assumes that there is no correlation between the voting weights

of two base classifiers. Due to the nature of the problem, in

which we have several classifiers casting votes that are further

integrated, we are aware that this is a naı̈ve assumption, but in

practice univariate EDAs can provide sufficiently high-quality

solutions, while also being computationally efficient [24].

From this initial GM we sample S solutions. A solution

is a matrix B × C representing the whole ensemble voting

weights. Note that each classifier within the ensemble never

changes its predictions with regard to the training set; the aim

of our method is to change the whole ensemble prediction

by adjusting the voting weights of each classifier, wb,c∀b ∈
[1, B], c ∈ [1, C].

A. Fitness Computation

We calculate the fitness of individuals (i.e., ensembles with

assigned voting weights) as follows. Each individual outputs

a C × N matrix, where N is the number of instances in the

training set and C the number of classes. The highest score

in each column denotes the prediction for that instance. We

sum the scores of the incorrectly predicted instances and use

that as the individual’s fitness. Hence, the objective of the

EDA is to decrease the median fitness throughout evolution,

thus decreasing the level of certainty in incorrect predictions.

Figure 3 depicts the fitness calculation for a single individual.

Fig. 3. Ensemble scores for instances in a given training set, along with the
truth labels (Y ). Each row denotes a class, and each column an instance.
Grey cells indicate the prediction of the ensemble for that instance, with bold
values denoting incorrect predictions. Fitness for the depicted individual is
given by 25.65 + 15.12 + 28.53 = 69.3.

B. Updating the Probabilistic Graphical Model

After computing the fitness of the entire population, we

separate the individuals into two subsets. The first subset

comprises all individuals that surpass the median fitness of

the current population (elite), whereas the second comprises

individuals with fitness below or equal the median. The former

will update the probabilistic graphical model (GM), and will

be preserved for the following generation, as depicted in

Figure 4. The rest of the population will be sampled from

the updated GM.

The GM comprises Gaussian distributions that are updated

by computing the mean cell value among the elite. The

standard deviation is stored into another variable, which is

initially set to σ (hyper-parameter), and is iteratively decreased

by a factor of τ (another hyper-parameter) at every generation,

as recommended by [24].

EEL repeats the process of sampling, calculating fitness,

and updating the GM until a sufficient number of generations

have been achieved, or the median fitness has not improved

over δ for Δ generations. Once the evolutionary procedure

halts, we use the fittest individual from the last generation as

the ensemble to be used in practice for unseen data.

C. Hyper-parameters and Pseudocode

The proposed algorithm has the following parameters:

• B = the number of decision trees in the ensemble;

• G = maximum number of generations;

• δ = minimum decrease in median fitness allowed;

• Δ = maximum number of generations to be executed

when there are decrements smaller than δ in the median

fitness;

• x̄ = initial mean for Gaussians within GM;

• σ = initial standard deviation for Gaussians within GM;
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Fig. 4. Each cell of the GM is a Gaussian distribution whose mean is updated
according to the mean values of the elite.

• τ = decay rate for σ;

• X = predictive attributes of the training set;

• Y = class labels of the training set.

The pseudocode for the training and prediction phases are

shown in Figures 5 and 6, respectively.

1: function TRAIN(B, G, δ, Δ, x̄, σ, X, Y )
2: run AdaBoost with X and Y
3: use AdaBoost base classifiers for initializing the EDA
4: initialize the GM using x̄ and σ
5: g ← 0
6: while g < G and GM has not yet converged do
7: sample population S from GM
8: assess the population fitness, as shown in Figure 3
9: if the median fitness improves < δ for Δ generations then

10: Early stop

11: use the individuals with fitness > median to update GM
12: resample individuals replacing those with fitness ≤ median
13: σ ← σ − τ
14: g ← g + 1

15: return best individual from last generation

Fig. 5. EEL pseudocode for the training phase.

D. Complexity Analysis

The complexity of inducing a decision tree is

O(λMN logN), with λ being the number of nodes, M
the number of attributes and N the number of instances in

the training set. AdaBoost runs this process for B iterations,

thus O(BλMN logN).
Generating the matrix of predictions (of size B × N ) has

complexity O(BHN), with B being the number of base

1: function PREDICT(X)
2: H ← 0N
3: for i ∈ [1, N ] do
4: η ← 0C
5: for b ∈ [1, B] do
6: ηhb(X

(i)) ← ηhb(X
(i)) + wb,c

7: Hi ← argmax(η)

8: return H

Fig. 6. EEL pseudocode for the prediction phase.

classifiers, H the height of the current decision tree and N
the number of training instances. This matrix does not change

overtime, and will later be used to perform the predictions.

For each solution in the EDA, sampling new weights from

the probabilistic graphical model has complexity of O(BC),
with B being the number of base classifiers and C the number

of weights per classifier. This is done for S − Φ individuals

(i.e., those that have to be replaced for the following genera-

tion). The whole ensemble prediction procedure, including the

sum of votes of incorrect instances, has complexity of O(BN),
since it requires only looking up the prediction table for each

classifier and for each training instance (as shown in line 6 of

Figure 6). Updating the probabilistic graphical model based

on the Φ fittest individuals has complexity of O(ΦBC).
Since the EDA evolves S solutions and repeats its process

for G generations, the complexity of the EDA optimization

procedure is O((BHN)+G×((S−Φ)(BC+BN)+ΦBC))
(with Φ being zero in the first generation). With the former

AdaBoost complexity and after some simplification we have:

O((BN(H +λM logN))+ (G((S−Φ)(B(N +C(1+Φ))))
(5)

E. Source code

We make the source code for our algorithm publicly avail-

able at http://github.com/henryzord/eel. The source code is

written in Python 2.7.13. A list of third-party packages is

listed within the link. Note that our approach makes use

of scikit-learn’s AdaBoost implementation [31], [32]1 with

default parameters, except for the number of decision trees

(set to B) and boosting strategy (set to ’SAMME’).

III. EXPERIMENTAL SETUP

Once all aspects of EEL are covered, it is necessary to

assert its quality in providing better solutions than its baseline,

AdaBoost. In this section we present the experimentation

protocol used in our tests.

A. Baseline Algorithms

We compare our proposed algorithm with the original

implementation of AdaBoost, as well as other two possible

variations. Comparing to AdaBoost is intuitive, since our

algorithm further optimizes its ensemble learning procedure

1http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
AdaBoostClassifier.html
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TABLE I
ACCURACY IN THE TEST SET FOR EACH ONE OF THE ALGORITHMS, IN THE EXPERIMENTED DATASETS. BOLD VALUES DENOTE THE BEST ALGORITHM

FOR THAT DATASET, WHEREAS A BOLD AND UNDERLINED RESULT INDICATES A TIE IN FIRST PLACE.

Dataset AdaBoost AdaBoost-ones AdaBoost-normal EEL (ours)

diabetes 0.755 ± 0.000 0.727 ± 0.000 0.716 ± 0.013 0.756 ± 0.004
ecoli 0.705 ± 0.000 0.720 ± 0.000 0.661 ± 0.089 0.818 ± 0.003
glass 0.579 ± 0.000 0.561 ± 0.000 0.487 ± 0.034 0.598 ± 0.004
hayes roth 0.594 ± 0.000 0.600 ± 0.000 0.598 ± 0.003 0.598 ± 0.003
ionosphere 0.917 ± 0.000 0.926 ± 0.000 0.920 ± 0.004 0.917 ± 0.006
iris 0.933 ± 0.000 0.940 ± 0.000 0.933 ± 0.004 0.933 ± 0.000
KDD synth control 0.745 ± 0.000 0.733 ± 0.000 0.717 ± 0.016 0.784 ± 0.003
liver disorders 0.725 ± 0.000 0.635 ± 0.000 0.654 ± 0.019 0.730 ± 0.006
segment 0.818 ± 0.000 0.777 ± 0.000 0.691 ± 0.065 0.866 ± 0.000
semeion 0.964 ± 0.000 0.967 ± 0.000 0.954 ± 0.007 0.966 ± 0.001
sonar 0.815 ± 0.002 0.797 ± 0.007 0.797 ± 0.014 0.809 ± 0.017
vehicle 0.621 ± 0.000 0.603 ± 0.000 0.589 ± 0.012 0.664 ± 0.009
wine 0.944 ± 0.000 0.961 ± 0.000 0.950 ± 0.004 0.953 ± 0.006
winequality red 0.548 ± 0.000 0.477 ± 0.000 0.441 ± 0.018 0.566 ± 0.003
winequality white 0.473 ± 0.000 0.415 ± 0.000 0.408 ± 0.032 0.494 ± 0.001

Wins 1 5 0 9

by expanding the set of voting weights available for prediction

– that is, using multiple weights per classifier, as opposed

to AdaBoost single-weight strategy. The other two baseline

algorithms are simpler modifications of AdaBoost. In the first

version, AdaBoost-ones, we set all voting weights to one (i.e.,

every classifier has the same importance). This strategy may

reduce AdaBoost’s tendency to overfit, since it originally gives

more importance to classifiers that can properly predict the

class of outliers. The second modification, AdaBoost-normal,

samples the voting weights from a normal distribution with

x̄ = 1 and σ = 0.25. This version serves as a ”null hypoth-

esis” (or random classifier) regarding the weight optimization

strategy: if this variation performs reasonably well in most

datasets, then it would indicate that voting weights may have

no significant impact in instance prediction and thus be safely

discarded. All algorithms are tested with B = 50 decision

trees in their ensemble. The hyper-parameters for EEL are

described in Table II, and no efforts were made to optimize

those values.

TABLE II
HYPER-PARAMETERS USED BY EEL.

Parameter Description Value

B Number of decision trees 50
G Number of generations 50
S Number of individuals 100
δ Fitness threshold 0.01
Δ Generation threshold 5
x̄ Mean of Gaussian AdaBoost weights
σ Standard deviation of Gaussian 0.25
τ Standard deviation decrease 0.005

B. Datasets

We evaluate EEL and the baselines in 15 UCI Datasets [33]

presented in Table III. All datasets present only numeric

attributes and no missing data. The restriction on numeric

attributes is due to the implementation of decision trees we are

using, which is from Python’s scikit-learn package, though it is

not a conceptual limitation of our method per se. We perform

a three-fold cross validation, with 2/3 being used as training

set and 1/3 as test set, for each test. We execute all algorithms

10 times for evaluating their stability on each fold.

TABLE III
UCI DATASETS USED IN OUR EXPERIMENTS.

Dataset Instances Attributes
Min
class

Max
class

classes

diabetes 768 8 268 500 2
ecoli 336 7 2 143 8
glass 214 9 9 76 6
hayes roth 160 4 31 65 3
ionosphere 351 33 126 225 2
iris 150 4 50 50 3
KDD synth control 600 60 100 100 6
liver disorders 345 6 145 200 2
segment 2310 18 330 330 7
semeion 1593 265 158 1435 2
sonar 208 60 97 111 2
vehicle 846 18 199 218 4
wine 178 13 48 71 3
winequality red 1599 11 10 681 6
winequality white 4898 11 5 2198 7

IV. EXPERIMENTAL RESULTS

We begin the experimental analysis by comparing AdaBoost

with its variations, AdaBoost-ones and AdaBoost-normal.

AdaBoost-normal outperforms the default AdaBoost in 3
datasets, while presenting the same performance in 1 dataset

and being outperformed in the remaining 11, as presented in

Table I. As expected, AdaBoost-normal is one of the weakest

algorithms, and we are capable of rejecting the hypothesis that

random assignments of weights for the base classifiers do not

significantly affect the classification outcome.

The second variation, AdaBoost-ones, outperforms the orig-

inal version in 6 datasets, losing in the remaining 9. These

results indicate that there are cases in which AdaBoost indeed

suffers from overfitting, which is probably the scenario in

which the hard examples are actually noisy data, though in the

majority of the cases it is beneficial to learn how to classify

hard examples.
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Finally, we evaluate how well the proposed algorithm, EEL,

performs when compared to the original AdaBoost version.

It outperforms AdaBoost in 12 out of 15 datasets, being

equally good in other 2, which means there is only one case

in which EEL harms the original performance of AdaBoost

(sonar dataset). EEL is also the algorithm with overall best

results, with 9 undisputed wins. Hence, a careful optimization

procedure on AdaBoost voting weights is indeed beneficial for

the vast majority of the cases. By using its former weights as

starting point in our evolutionary EDA search procedure, it is

possible to improve predictive performance up to 11%, as it

was the case of the ecoli dataset.

To assess the statistical significance of our results, we

conducted a pairwise Wilcoxon test [34]. The null hypothesis

states that the medians of the differences between the pair of

algorithms do not differ. We run this test with a significance

level of 5%, which is a standard value considering the fact

that Wilcoxon’s is quite conservative for indicating significant

differences. The results are presented in Table IV.

TABLE IV
RESULTS OF THE WILCOXON PAIRWISE TEST REGARDING PREDICTIVE

ACCURACY. UNDERLINED VALUES INDICATE A REFUSAL OF THE NULL

HYPOTHESIS. CHECKS�INDICATE A SUPERIORITY OF THE ROW

ALGORITHM OVER THE COLUMN ONE.

AdaBoost AdaBoost-Ones AdaBoost-Normal EEL

AdaBoost � �

AdaBoost-ones �

AdaBoost-normal

EEL � � �

In Figure 7 we depict the mean of the Gaussian distributions

throughout EEL’s process, in a given run on the ecoli dataset.

In the first generation (i.e., lowermost line), weights come

from a previous AdaBoost execution. Recall that AdaBoost

uses one weight per classifier (that is, it yields B = 50 weights

at the end of its execution), whereas EEL uses one weight per
classifier per class (i.e., it must start with B × C = 50 × 7
weights, with B as the number of base classifiers and C the

number of classes). Due to that fact, we broadcast AdaBoost

weights into the first Gaussians of the GM (initial population),

as explained in Figure 2. With that in mind, note that EEL

adapts to the classifiers strengths and weaknesses in certain

classes, as demonstrated by the smaller line trends in Figure 7.

By looking at the standard deviation of EEL in Table I,

one can verify that the proposed algorithm is very stable. This

may indicate that using the scores of incorrect predictions as

fitness function provides a smooth fitness landscape, with few

local minima. To better visualize that fact, we present the

known fitness landscape in Figure 8. The horizontal axis is

the mean of the first W/2 weights, and the vertical axis the

mean of the last W/2 weights. By doing this we increase the

chances for more than one individual occupying the same spot

in the landscape. For this we calculate the mean fitness for all

individuals occupying the same spot. Please note that this is an

oversimplification of the landscape to fit in a 2D projection.

With this in mind, one can verify that it appears to exist a

Fig. 7. Probabilistic graphical model evolution on the ecoli dataset. Vertical
axis denotes the generations whereas the horizontal axis denotes the 50 ×
7 = 350 weights for that particular dataset. Brighter colors indicate more
importance (heavier weights) in a given region. Note that EEL penalizes for
incorrect predictions per class, as opposed to AdaBoost that penalizes the
entire classifier.

region in the left-down portion of the landscape with better

combination of weights. Indeed, we verified in our experiments

that EEL starts with a population in the top-right corner that

migrates to the bottom-left as the evolution progresses.

Fig. 8. Fitness landscape of EEL. Darker spots indicate valleys (better
regions), whereas brighter spots indicate peaks.

Regarding the training set, the evolutionary algorithm is

capable of improving accuracy, precision, recall, and F1 score

throughout evolution, while decreasing the score of incorrect

predictions, as shown in Figure 9. This once again suggests

that the choice for the fitness function is suitable for this task.
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TABLE V
SUMMARY OF RELATED WORK.

PSO + EDA [35] BAIS [36] NEVE; NEVE++ [37], [38] EEL

Application microarray data general data streams general

Type classification classification classification classification

Base Learner Neural Networks Neural Networks Neural Networks Decision Trees

Fitness error rate (selection)
p-disagreement and accuracy
(generation); accuracy (selection)

error rate (generation); error rate (integration) error rate (integration)

Fig. 9. Training accuracy, precision, recall, and F1 measure throughout the
evolutionary process. Bolder lines indicate the mean values and shaded colors
denote the standard deviations.

V. RELATED WORK

Estimation of Distribution Algorithms for ensemble learning

are not very common. To the best of our knowledge, there are

four related studies in that theme. Interestingly, all of these

papers employ neural networks as base learners [35]–[38], as

opposed to our use of decision trees.

Chen and Zhao [35] propose a hybrid solution for ensemble

learning. As mentioned before, ensemble learning comprises

three steps (generation, selection and integration), which may

be explored in different manners: using traditional methods for

one or more steps (such as AdaBoost for generation and inte-

gration), or breaking the pipeline and employing evolutionary

algorithms in one or more of these steps. Chen and Zhao [35]

explore the second strategy by using a Particle Swarm Op-

timization (PSO) algorithm for generating a pool of neural

networks, and then selecting a subset of highly cooperative and

accurate classifiers. Their solution is employed for microarray

data classification, an application domain where data usually

have several attributes but few instances.

Castro and Von Zuben [36] also separete the ensemble

learning pipeline, employing the same evolutionary algorithm

(namely an Artificial Immune System (AIS) with an embedded

EDA) in two steps, i.e., the AIS first generates a pool of base

learners (by modifying neural network activation functions) to

only then select the most apt to compose the final ensemble.

The generation AIS uses two objectives for generating neural

networks: (1) pairwise disagreement measure, which measures

how similar the predictions of two classifiers are and gives

higher scores to different predictions, and (2) training accu-

racy. The selection AIS uses validation accuracy as fitness.

Finally, Escovedo et al. [37], [38] propose a quantum-

inspired evolutionary algorithm (QIEA) for evolving ensem-

bles of neural networks for adaptive learning. The authors

employ QIEA for both optimizing neural network weights

and biases, and later defining a voting weight for each neural

network in the ensemble by using the error rate as fitness.

In Table V we present an overview of the related work. Note

that none of the related work attempt to improve a particular

ensemble learner such as AdaBoost, which is our goal in this

paper.

VI. CONCLUSION AND FUTURE WORK

Designing ensembles systems is not a trivial task: there are

several ways of either generating, selecting, or integrating base

learners. It seems reasonable to employ global optimization

strategies to implement one or more of those steps, such as

evolutionary algorithms. For instance, Estimation of Distribu-

tion Algorithms (EDAs) are notably interesting for this task

due to their explicit search operators, as opposed to genetic

algorithms. This not only makes the evolutionary process

transparent, but also allows EDAs start its search procedure

from a previous high-quality spot in the fitness landscape.

With that in mind, in this work we propose EEL: Estima-

tion of Distribution Algorithms for Ensemble Learning. EEL

resumes the optimization pipeline started by AdaBoost. It uses

AdaBoost previous base classifiers and finds a new set of

weights for those classifiers by conducting a population-based,

global search procedure with the aim of minimizing the error

rate of ensemble predictions.

By using multiple weights, one weight per classifier per
class, as opposed to AdaBoost, which uses a single weight

per classifier, we are capable of enhancing AdaBoost in 12
cases, and producing the best results in 14 out of 15 datasets.

As future work, we would like to investigate whether a

Pareto approach for decreasing error rate and maximizing

2018 IEEE Congress on Evolutionary Computation (CEC)



accuracy can yield even better results than simply using a

single-objective EDA. We also intend to consider a multi-

variate probabilistic graphical model, which may improve the

quality of the produced ensembles. In addition, we would

like to investigate whether Random Forests benefits from a

voting weight optimization procedure, since it assigns the same

importance to all of its base classifiers.
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