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Abstract

Multimodal bidirectional retrieval is a very challeng-
ing task that consists of semantically aligning two distinct
modalities such as images and textual descriptions, allow-
ing the retrieval of content from one of the modalities given
the other. The goal is to find a common semantic space
for both modalities in order to discover the correspon-
dences between them. This paper provides a fast and ef-
fective attention-based architecture for learning represen-
tations for multimodal retrieval, namely SEAM. It is based
on a self-attention module that is designed to enhance rele-
vant textual information from word-embeddings while sup-
pressing irrelevant data. We design three incarnations of
SEAM, so we can properly assess the performance of the
self-attention module when operating over distinct repre-
sentations, namely: (i) the word-embeddings themselves;
(ii) features learned from convolutional layers in distinct
granularities; and (iii) features learned from gated recur-
rent units (GRUs). The output of the self-attention module
is projected over a shared multimodal space, so we can map
the semantic correspondence between images and descrip-
tions via a contrastive pairwise loss function that minimizes
order-violations. We analyze several architectural choices
for our approach, and we compare our best models with
the current state-of-the-art approaches in the largest and
most well-known multimodal retrieval dataset, namely Mi-
crosoft COCO. Results show that SEAM outperforms the
current state-of-the-art in most cases while being a much
faster approach for the task of multimodal retrieval.

1. Introduction
End-to-end fully-differentiable computational graphs (or

simply neural networks) are known to be the current state-

of-the-art approach for most applications that are based on

modes like image, video, audio, or text. Examples include

supervised image classification [20], object detection [12],

semantic segmentation [4], speech recognition [28], video

classification [27, 18], text classification [7, 25], text sum-

marization [29], protein function prediction [24], and image

captioning [22]. Borrowing concepts from neuroscience,

artificial neural networks comprise a mathematical frame-

work capable of assigning meaning to what is seen, heard,

or read, being known as an effective method for performing

representation learning over unstructured data [3].

One of the computer vision problems that has benefited

from the recent advances in neural networks research is the

so-called multimodal (bidirectional) retrieval, also regarded

as bidirectional content retrieval or image-text alignment.

In that scenario, the main target is to retrieve content from a

modality (e.g., image) given some input content from an-

other modality (e.g., textual description). Most state-of-

the-art results for bidirectional retrieval [21, 2, 6, 23] are

based on networks trained over word-embeddings [16], en-

coding the sentences with either Recurrent Neural Networks

(RNNs such as LSTMs [5] or GRUs [1]) or with hand-

crafted non-linear transformations such as Fisher vectors

[11]. Those strategies, while often showing good results,

are quite costly due to the amount of storage and mem-

ory for dealing with the word-embeddings, depending on

the size of the dictionary, in which often larger is better in

terms of predictive accuracy. A possible approach for re-

ducing the amount of memory is to perform character-level

convolutions [26] in order to avoid storing a dictionary of

word-embeddings. Despite being lighter in both parameters

and memory consumption, character-level convolutions are

not fast to train, since the character-based embeddings and

their complex relationships have to be learned from scratch.

For properly addressing the problems above-mentioned

with an interesting trade-off between memory consumption

and training speed, we propose a novel neural network ar-

chitecture, namely SEAM (Self-attentive Embeddings for

Aligning Modalities). It considers each input as a n × d
matrix, in which n is the temporal dimension (total num-

ber of words in the textual description, indicating the or-

dered flow of the words) and d is the word-embedding vec-

tor that densely projects the respective word onto a high-
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Figure 1. Self-Attention Mechanism

dimensional feature space. We employ a self-attention

mechanism so the network can automatically learn the im-

portance of the features from each word in each temporal

step. We design three incarnations of SEAM, so we can

properly assess the performance of the self-attention model

when operating over distinct representations, namely: (i)

the word-embeddings themselves, (SEAM-E); (ii) convolu-

tional features in distinct granularities (SEAM-C); and (iii)

features learned from Gated Recurrent Units (SEAM-G).

The output of the self-attention module is projected over

a shared multimodal space, so the architecture is capable

of mapping the semantic correspondence between images

and descriptions via a contrastive pairwise loss function that

minimizes order-violations. We compare our best models

with the current state-of-the-art approaches that employ ei-

ther RNNs and word-embeddings, or character-level convo-

lutions for image-text alignment. We make use of the largest

and most well-known multimodal retrieval dataset, namely

Microsoft COCO [13]. Results show that SEAM outper-

forms the current state-of-the-art in most cases while being

a much faster approach for the task of multimodal retrieval.

This paper is organized as follows. Section 2 describes

in detail our proposed approach, whereas Sections 3 and 4

present the experimental analysis that was conducted for

validating our novel method. Section 5 discusses related

work in the area of multimodal retrieval. Finally, we end

this paper with our conclusions and suggestions for future

work in Section 6. Source code and pre-computed image

features are publicly available 1.

2. SEAM

In this paper we present SEAM (Self-attentive Embed-

dings for Aligning Modalities), an approach for solving

image-text retrieval tasks. SEAM relies on the self-attention

module proposed in [14], which analyzes different views

1https://github.com/jwehrmann/seam-retrieval

(or hops) to automatically infer the importance of features

through time. Our proposed architectures are simple, fast

and effective in learning image-text similarity from word-

embeddings and image features extracted from deep nets.

The first two incarnations of SEAM rely on using self-

attention and/or convolutions to extract relevant information

from the word-embeddings that represent a sentence. This

allows us not to use RNNs, increasing processing speed due

to paralellization advantages. In the last incarnation, we at-

tempt to increase the quality of our embedding results by

first running the word-embeddings through GRUs and then

processing that output with the self-attention mechanism.

Next, we detail the self-attention module and the three ver-

sions of the proposed approach, namely SEAM-[E,C,G].

2.1. Self-attention Module

The self-attention module is the core component within

all variations of SEAM. It is used to extract different com-

ponents of a sentence into multiple vector representations

while encouraging relevant information and suppressing ir-

relevant data. Self-attention can be interpreted as being

a two-layer neural network that ultimately learns weights

within [0, 1] for the features at each time-step (see Figure 1).

Let H ∈ R
n×z be a dense representation of the tex-

tual input, where n denotes the number of time-steps (e.g.,

words), and z the size of the feature vectors. Depending

on the incarnation, z can be equal to d (the dimension of

the word-embedding), or equal to the dimension resulting

from a convolutional layer, or equal to the dimension re-

sulting from the application of a recurrent neural network.

The first step of the attention module consists in applying a

transformation using a fully-connected layer to reduce the

dimensionality to p-dimensional feature vectors. Values are

processed by a tanh activation function (denoted by ζ), that

projects them into the [−1, 1] range, generating V ∈ R
n×p:

V = ζ(HW1) (1)
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Figure 2. SEAM-C

Following, we use an additional fully-connected layer

with h neurons, generating an output of size n×h. Softmax

is used to ensure that the weighted sum of all features in

each temporal step (represented by the columns of the ma-

trix) results in 1. The resulting weight map, denominated

annotation matrix, is denoted by A ∈ R
n×h. Therefore, A

can be seen as a matrix that carries the importance of each

time-step in h different viewpoints (or hops).

A = softmax(VW2) (2)

The next step is to use the annotation matrix A and the

original dense representation H to compute the weighted

feature map M ∈ R
z×h, which is given by M = HTA. Fi-

nally, we can reshape M using a flatten operation to trans-

form it into S, a vector embedding with size R
1×(z×h).

In order to prevent redundancy problems (i.e., similar

summation weights inside hops), the self-attention mecha-

nism introduces a penalization term, presented in Eq. 3, that

seeks to encourage diversity across time-steps. The practi-

cal effect is that the probability mass for each vector in the

annotation Softmax output will be focused on as few words

as possible.

P = ||(AAT − I)||2F (3)

The ||•||F term stands for the Frobenius norm of a ma-

trix. This penalization term is multiplied by a coefficient

λ within the interval [0, 1] and is minimized alongside the

retrieval loss function.

2.2. SEAM-E

Our first approach makes use of the self-attention mod-

ule directly over word-embedding representations. This as-

sumes that the word-embedding itself already contains all

information needed for interpreting the textual description.

Since the attention module already offers different view-

points for weighting words over time, we believe it to be

enough to aggregate the necessary temporal semantics for

the actual task of generating representative embeddings for

sentences. Even if the amount of temporal information is

constrained, this strategy is significantly faster and reduces

model complexity due to having less trainable parameters.

The extracted vector of the attention mechanism (1×d.h) is

projected to match the dimensions of the image embedding

representation via a linear layer with 1024 neurons.

Figure 3. SEAM-E

2.3. SEAM-C

Our second approach is a somewhat modified ver-

sion of the architectures introduced in [9]. In summary,

SEAM-C applies convolutional layers directly over word-

embeddings and then processes each individual result with

the self-attention module to generate the final embedding

(see Figure 2). Since the convolutional layers have distinct

filter sizes fs, this allows us to learn multiple n-gram-like

features (specifically, bigrams and trigrams).

SEAM-C employs two convolutional layers with fil-

ter sizes fs ∈ {2, 3} on a zero-padded input matrix H .

The padding is particularly important so that we can gen-

erate feature maps with matching dimensions, which will

in turn be processed by the self-attention module individu-

ally. Let ψ(H) = C be the computation of a convolutional

layer applied over the input H with a resulting dimension

R
n×f , where f represents the number of filters. We apply

the self-attention scheme individually for each C, obtaining

R
n×(d·h) feature matrices. Unlike [9], we also process the

input matrixH with self-attention, which allows us to select

relevant information not only from temporal data, but also

from individual words. The final embedding is the concate-

nation of the results of applying the self-attention mecha-

nism to the convolutional features and the original matrix,

which is a vector with dimensions 1× 3(d · h).

2.4. SEAM-G

Our third method uses a gated recurrent unit network

(GRU) and processes the result with the self-attention

1873



Figure 4. SEAM-G

mechanism (see Figure 4). The GRU provides k-long out-

put vectors (considering k neurons in the hidden layer) for

each of the n word-vectors given as inputs. Each output

contains information on all previous inputs. GRUs (or simi-

lar RNNs) are particularly well-suited for this scenario since

they are capable, together with the self-attention module, to

weigh different text snippets and to infer which snippets are

more relevant to the image-text alignment process.

Let hi be the i-th hidden layer activations for a n-sized

sentence. G ∈ R
n×k represents the concatenation of [h0,

h1, ..., hn] through time. G is then used as input in the self-

attention mechanism to compute the ultimate feature vector

representation, as shown in Figure 4.

2.5. Overall Architecture

We approximate two encoding functions, ft(t) and fi(i),
whose goals are to project both description t and image i
into the same embedding space. In such a space, correlated

image-text pairs should be close to each other, and the dis-

tance of non-correlated pairs should necessarily be larger

than the correlated ones.

For the image encoding function fi(i), we extract im-

age features from the global-pooling layer of a VGG-19 (or

Inception-ResNet-C [IRC]) [19, 20] pre-trained in the Im-

ageNet dataset [17]. Each image i is then represented by

4096 (1536)-dimensional vectors, extracted using the 10-

crop strategy. Let C(i) be features extracted from image i
by the convolutional neural network; images are projected

onto theRd
+ embedding-space based on a linear mapping:

fi(i) = |Wi · C(i)| (4)

where Wi ∈ Rd×4096(1536) is a learned weight matrix and

d is the number of dimensions of the embedding space.

For embedding text, we use the proposed attention-based

approach ft(·) with the three main variations previously

discussed. Our models provide a 1024-long vector rep-

resentation that carries the textual semantic information,

which is the result of linearly projecting the output of the

self-attention module onto Rd
+ by using a learned Wt ∈

Rd×1024 weight matrix.

2.6. Loss function

Let ft(t) = T represent the text embedding vector and

fi(i) = I be the image embedding vector. To obtain the

similarity between T and I, we first scale both to have unit

norm, so that the inner product of both results in the co-

sine distance. However, instead of directly optimizing the

cosine distance, as in [10], we follow the adaptations pro-

posed by [21] and instead learn order-embeddings by op-

timizing the alignment of text and images while preserv-

ing the order relationships among the visual-semantic hier-

archy, given that asymmetric distances are naturally more

well-suited for image-sentence alignment. This translates

to applying the following order-violation penalty for an or-

dered pair: S(t, i) = −||max{0, I − T }||2. These order

violation penalties are used as a similarity distance and op-

timized by the following contrastive pairwise ranking loss:

Lc =
∑

T

∑

k

max{0, α− S(T , I) + S(T , Ik)}

+
∑

I

∑

k

max{0, α− S(I, T ) + S(I, Tk)} (5)

where Tk and Ik are the sentence and image contrastive

examples (i.e., uncorrelated). This loss function encourages

the similarity S(t, i) for proper image-text pairs to be larger

than the contrastive pairs by a margin of at least α. Since we

are using self-attention in SEAM, we include its penalization

term, described in Sec. 2.1, which is given by Eq. 3. Our

final loss function, therefore, is given by Lf = Lc + λP .

3. Experimental Setup
3.1. Dataset

For analyzing the performance of our proposed ap-

proach, we make use of the Microsoft COCO dataset [13].

It contains over 100,000 images with at least 5 descriptions

per image. We have used the same data splits from [8]:

113,287 images for training, 5,000 images for validation,

and 5,000 images for testing.

MS COCO has been extensively employed in the recent

years for image-text retrieval challenges. Note that, for the

5k images in the test set, there are three distinct evaluation
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protocols employed by the research community, because the

test images were further divided into 5 folds of 1k images

each. Some studies present results on the entire test set of

5k images, a protocol we refer to as COCO-5k; and others

present results only for a subset of 1k images, which we

refer to as COCO-1k.

3.2. Hyper-Parameters and Training Details

We choose hyper-parameters via non-exhaustive random

search based on the results over the validation data. We em-

ploy Adam for optimization, given its capacity in adjusting

per-weight learning rates during training. We use Adam’s

default initial learning rate of 1 × 10−3. In addition, we

found it was beneficial to reduce the learning rate by 10×
in the 15th epoch. Inspired by [21], we use a batch size of

128 (127 contrastive examples) and margin α = 0.05. Nei-

ther weight decay nor dropout were used, since we believe

the loss function itself is enough to regularize the model by

including several contrastive examples which naturally in-

jects some amount of noise during training.

For all versions of SEAM, both embedding size d and

the intermediate dimension of the self-attention module p
are set to 300. For SEAM-E, we vary the number of hops

h ∈ {10, 15, 20, 30}. For SEAM-C, f = 100 for both con-

volutional layers. There are three attention modules whose

outputs are concatenated, hence we vary the number of hops

h ∈ {5, 7, 10, 15, 20} for each module. Recall that z can be

either 100 — when the input to the attention module is the

output of a convolution — or 300 for the attention over the

word-embeddings. For SEAM-G, we vary the number of

neurons of the GRU in {256, 512, 1024}, and fix the num-

ber of hops h = 30.

3.3. Evaluation Measures

For evaluating the results, we use the same measures as

those in [21]: R@K (reads “Recall at K”) is the percent-

age of queries in which the ground-truth term is one of the

first K retrieved results. The higher its value, the better. We

also show the results of Med r and Mean r, which repre-

sent respectively the median and mean of the ground-truth

ranking. Since they are ranking-based measures, the smaller

their values the better.

4. Experimental Analysis

In this section, we provide a thorough analysis of the

performance of our proposed approach. First, we analyze

the impact of different architectural choices for SEAM by

looking exclusively to results on validation data. Then, we

compare our best approach with the state-of-the-art in bidi-

rectional retrieval (results over the test set).

4.1. Impact of the Self-Attention Coefficient λ

Table 1 shows the impact of the attention coefficient on

the results over validation data. Such value is responsible

for improving the diversity in the self-attention mechanism.

We vary λ ∈ {0, 0.25, 0.50, 0.75, 1} for both SEAM-E and

SEAM-C. Note that there is no single value for λ that pro-

vides the best results for all evaluation measures. Interme-

diate values like 0.5 and 0.75 seem to be a solid choice,

though λ = 0 is also a reasonable option. A large penaliza-

tion such as λ = 1 does not yield good results, mostly due

to the fact that λ may constraint the training process, since

it can force the optimization to focus more on diversity over

the alignment quality.

Table 1. Impact of the attention coefficient λ. Bidirectional results

on COCO validation set (1000k images). Bold values indicate the

best results per method.

Image to text Text to image
Method λ R@1 R@10 Mean r R@1 R@10 Mean r

SEAM-E 0.00 53.30 92.00 4.40 41.80 87.80 7.20
SEAM-E 0.25 51.40 91.80 4.40 41.10 88.00 6.80
SEAM-E 0.50 51.60 92.30 4.50 41.20 88.30 6.40
SEAM-E 0.75 50.90 91.40 4.40 42.00 88.00 6.40
SEAM-E 1.00 52.70 91.70 4.50 41.00 88.20 6.80

SEAM-C 0.00 52.90 92.40 4.00 42.20 89.20 6.30
SEAM-C 0.25 54.30 92.20 4.20 42.20 88.80 6.70
SEAM-C 0.50 55.30 90.80 4.20 42.60 89.10 6.50
SEAM-C 0.75 53.50 92.70 4.30 42.90 88.60 6.60
SEAM-C 1.00 50.70 90.80 4.50 39.30 88.80 5.80

4.2. Impact of h

Next we analyze the impact of the number of hops in the

attention module. We show in Table 2 the performance of

both SEAM-E and SEAM-C with different h values.

Table 2. Impact of h. Bidirectional results on COCO-1k test set.

Bold values indicate the current state-of-the-art results. Under-

lined values outperform the best published results.

Image to text Text to image
Method #Params R@1 Mean r R@1 Mean r

SEAM-E (h=10) 6,574,024 52.90 4.50 41.80 6.50
SEAM-E (h=15) 8,111,524 50.50 4.60 41.60 6.90
SEAM-E (h=20) 9,649,024 52.30 4.80 42.20 7.00
SEAM-E (h=30) 12,724,024 53.30 4.40 41.80 7.20

SEAM-C (h=5) 6,273,724 54.60 4.00 42.00 6.50
SEAM-C (h=7) 7,299,524 52.40 4.30 42.50 6.10
SEAM-C (h=10) 8,838,224 52.90 4.00 42.20 6.30
SEAM-C (h=15) 11,402,724 53.50 4.10 42.60 6.70
SEAM-C (h=20) 13,967,224 53.30 4.00 42.30 6.10

Recall that the hops h represent different viewpoints as

you weigh the words throughout the sentence. Results show

that the performance of SEAM-E for the image-to-text task

improves with a larger number of hops (h = 30), though

there is no clear pattern in the text-to-image task. For

SEAM-C, a small number of hops suffice for the image-to-

text task, and once again there does not seem to exist a clear
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Table 3. Bidirectional results on COCO-1k test set. Bold values indicate the current state-of-the-art results. Underlined values outperform

the best published results.

Image to text Text to image
Method ConvNet R@1 R@5 R@10 Med r Mean r R@1 R@5 R@10 Med r Mean r

UVS [10] VGG-19 43.40 - 85.80 2.00 - 31.00 - 79.90 3.00 -
Embedding Network [23] VGG-19 50.40 79.30 89.40 - - 39.80 75.30 86.80 2.00 -
sm-LSTM [6] VGG-19 52.40 81.70 90.80 1.00 - 38.60 73.40 84.60 2.00 -
2WayNet [2] VGG-19 55.80 - 75.20 - - 39.70 - 63.30 - -

Order [21] [Ours] VGG-19 49.30 78.50 89.40 2.00 5.60 39.50 75.00 86.20 2.00 7.50

SEAM-E VGG-19 52.70 83.20 91.20 1.00 4.40 41.40 76.00 86.80 2.00 7.20
SEAM-E(λ = 0.5) VGG-19 50.60 82.80 91.50 1.00 4.50 41.70 76.20 87.40 2.00 7.20
SEAM-C VGG-19 51.80 81.70 91.00 1.00 4.70 41.50 76.70 88.00 2.00 6.90
SEAM-C(λ = 0.5) VGG-19 54.30 82.70 91.90 1.00 4.80 41.80 76.70 87.80 2.00 7.20
SEAM-G (512) VGG-19 52.10 83.10 91.00 1.00 4.60 41.80 76.80 87.60 2.00 7.00

Order [21][Ours] IRv2 50.10 84.50 92.80 1.00 4.30 40.00 76.30 88.20 2.00 6.70

SEAM-E IRv2 54.20 85.60 92.70 1.00 3.60 43.30 78.80 90.00 2.00 6.70
SEAM-E(λ = 0.5) IRv2 55.20 84.70 93.90 1.00 3.50 43.90 79.40 89.50 2.00 7.10
SEAM-C IRv2 54.50 85.40 93.70 1.00 3.70 43.70 79.60 89.60 2.00 6.60
SEAM-C(λ = 0.5) IRv2 55.40 86.40 94.40 1.00 3.60 43.80 79.80 90.10 2.00 6.90
SEAM-G (512) IRv2 53.60 85.60 93.20 1.00 3.70 44.60 79.80 90.30 2.00 6.50

Table 4. Bidirectional results on COCO-5cv test set. Bold values indicate the current state-of-the-art results.
Image to text Text to image

Method ConvNet R@1 R@5 R@10 Med r Mean r R@1 R@5 R@10 Med r Mean r

Order [21] VGG-19 46.70 - 88.90 2.00 - 37.90 - 85.90 2.00 -
OECC [26] VGG-19 47.20 78.60 88.90 2.00 5.60 37.50 74.60 87.00 2.00 7.30
Order [Ours] VGG-19 47.20 82.40 91.60 2.00 4.40 37.90 74.70 87.00 2.00 7.30

SEAM-E VGG-19 51.20 81.40 90.50 1.20 5.00 39.70 75.30 86.70 2.00 7.60
SEAM-E(λ = 0.5) VGG-19 49.40 80.70 90.30 1.80 5.10 39.70 75.30 87.00 2.00 7.40
SEAM-C VGG-19 50.00 81.10 90.60 1.60 5.10 40.20 75.60 87.10 2.00 7.20
SEAM-C(λ = 0.5) VGG-19 50.70 81.40 90.90 1.40 4.90 40.30 75.70 87.40 2.00 7.40
SEAM-G (512) VGG-19 50.90 81.80 90.50 1.40 4.90 40.20 75.70 87.20 2.00 7.40

Order [Ours] IRv2 48.30 82.20 91.20 1.80 4.50 37.90 74.40 86.90 2.00 7.20
OECC [26] IRv2 49.50 81.70 91.30 1.60 4.50 40.40 77.40 88.60 2.00 6.80

SEAM-E IRv2 51.80 83.90 92.00 1.40 4.30 42.00 77.20 88.40 2.00 7.40
SEAM-E(λ = 0.5) IRv2 51.90 83.20 92.20 1.20 4.00 41.60 77.30 88.00 2.00 7.40
SEAM-C IRv2 52.90 83.50 92.60 1.00 4.30 42.30 77.90 88.40 2.00 7.70
SEAM-C(λ = 0.5) IRv2 52.80 83.50 92.60 1.20 4.10 41.90 77.50 88.50 2.00 7.70
SEAM-G (512) IRv2 52.10 84.00 92.50 1.20 4.10 41.90 78.20 89.10 2.00 7.10

pattern in the text-to-image task. We believe that the convo-

lutional layers already introduce different viewpoints with

the number of filters, f , so increasing those values does not

seem to help. Note that a large number of hops directly af-

fects the amount of trainable parameters, increasing mem-

ory consumption and processing time. Therefore, for lighter

models one should consider using h ∈ {5, 10} that perform

quite similar than the heavier models.

4.3. SEAM vs. State-of-the-art

For comparing our models with the state-of-the-art, we

selected the models from each SEAM variation that pre-

sented the best performance on validation data. We com-

pare to the state-of-the-art approaches for multimodal re-

trieval, namely UVS [10], DVSA [8], FV [11], Order-

Embeddings (OE) [21], Embedding Network [23], sm-

LSTM [6], 2WayNet [2], and OECC [26]. To provide a fair

comparison, we replicated the Order-Embedding [21] and

the Character-level Convolutions with Order Embeddings

(OECC) [26] results using their own source code.

Table 3 presents the comparison over the COCO-1k test

set. We show results of our approach and OE [21] by using

two distinct convolutional networks (VGG and IRv2). In

general, our methods outperform all baselines in both image

retrieval and text retrieval tasks. For all evaluation metrics,

the three proposed methods present superior performance

both for VGG-19 image features and IRv2. The only excep-

tion is for R@1 in the image-to-text task, where 2WayNet

outperforms all methods. However, note that 2WayNet is

only slightly better than SEAM − C(λ = 0.5), and it per-

forms poorly regarding R@10. In addition, all proposed

methods easily outperform it in the text-to-image task. Our

methods are about 15× faster than the RNN-based methods

(see 4.4). In test time, they are much faster than 2WayNet,

while presenting one order of magnitude fewer parameters.

The same behavior is observed in Table 4, where the com-

parison is over the COCO-5cv data. Finally, we noticed

that the use of a better feature representation (IRv2) highly

benefits SEAM, while for OE it is quite modest and even

marginal in some evaluation metrics.
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Figure 5. R@1 per hours of training. Note that all methods were executed for the exact same amount of epochs.

4.4. Execution Time

All experiments were executed in a server with four

NVIDIA GTX 1080ti GPUs, Intel(R) Core(TM) i7-5930K

CPU @ 3.50GHz, CUDA 8, CUDNN 5.1, and 128GB

RAM. For providing a fair time comparison, we imple-

mented all methods described in this section using the Py-

Torch framework. Even though SEAM-E could be highly-

optimized (as in [7]) for achieving a much faster perfor-

mance, we used the default PyTorch implementation for al-

lowing direct comparison.

Figure 6. Time (in seconds) taken to perform a forward pass of a

100-instance batch with descriptions of varying sizes.

Figure 5 depicts values of R@1 for both image-to-text

(a) and text-to-image (b) tasks across hours of training.

Note that the fastest methods, namely SEAM-[E,C], reach

convergence roughly in two hours, which is about 3× faster

than SEAM-G (our GRU-based approach, which requires

training time similar to OE [21]). They are also the best

trade-off in performance (SEAM-C is, in fact, the best per-

forming method in terms of R@1). OECC is also much

faster than SEAM-G and OE, but it is outperformed by all

methods in terms of R@1.

Figure 6 shows the time (in seconds) required for en-

coding textual instances with increasing sizes. We evalu-

ate the impact of the sentences length by varying the num-

ber of words ∈ {25, 50, 75, ..., 475, 500}. We report the

average values of 10 runs of 100-instance batches. Note

that SEAM-E is capable of encoding a batch with 500-word

descriptions in approximately 1 second, whereas OE [21]

takes 16× more time to encode similar sentences.

5. Related Work
Karpathy and Fei-Fei [8] propose an architecture that

makes use of features from detection-based systems, align-

ing image regions with a proper sentence fragment. Ma et

al. [15] propose a multimodal ConvNet for aligning image

and text by jointly convolving word-embeddings and image

features. The learned similarity score predicts whether a

pair is correlated or not.

Vendrov et al. [21] propose sentence order-embeddings,

which aim to preserve the partial order structure of a visual-

semantic hierarchy. It allows learning ordered representa-

tion by applying order-penalties, and they show that asym-

metric measures are better suited for image-sentence re-

trieval tasks. Their architecture is virtually the same of the

one introduced in [10], only modifying the loss function to

consider the order violations.

Wang et al. [23] introduce a two-branch neural network

for learning a multimodal embedding space. They en-

code text based on 300-d word-embeddings, where they

apply ICA and construct a codebook with 30 centers us-

ing first and second-order information, resulting in a 18k-

dimensional representation. Next, they apply PCA to re-

duce the representation to 6k dimensions in order to reduce

memory requirements and training time.

Huang et al. [6] propose a selective multimodal

LSTM (sm-LSTM). They introduce a multimodal context-

modulated attention scheme at each time-step, which is ca-

pable of focusing on a text-image pair by predicting pair-

wise instance-aware saliency maps. Sentences are pro-

cessed by a bidirectional LSTM that runs over word-

embeddings. Image features are selected by using a strat-

egy of instance candidates, which extracts local information

from a 512× 14× 14 tensor.

In [2], the authors introduce a 2-Way-Network for map-
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ping a modality into another. They concatenate the Fisher

Vector encoding (GMM) and the Fisher Vector extracted

formword2vec vectors of the HGLMM distribution, result-

ing in a 36k-dimensional vector per sentence.

6. Conclusions
We presented a fast and effective architecture for bidirec-

tional multimodal retrieval capable of learning self-attentive

textual embeddings, namely SEAM. Even though it is con-

ceptually a much simpler architecture than those found

in related work, our approach achieves state-of-the-art re-

sults in both text-to-image and image-to-text tasks consid-

ering the most well-known retrieval dataset, namely MS

COCO [13], while being orders of magnitude faster. As

future work, we intend to make use of the attention module

for retrieving the image features as well.
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