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Abstract

Preference models lie at the core of the formalization
for several related notions, such as non-monotonic rea-
soning, obligations, goals, beliefs, etc. Recently, the in-
terest in integrating dynamic operators in the logics of
belief, preference and obligation has gained momen-
tum. This integration sheds light on similarities among
several change operations traditionally studied indepen-
dently of each other. While a prolific approach, impor-
tant operations, such as the well-known contraction of
beliefs or derogation of norms studied in the AGM tra-
dition, have not received proper attention in this frame-
work. In this work, we study codifications of contrac-
tion operations, stemming from the work on iterated
belief change, in the logic of preferences, by means of
both semantically defined operations and their counter-
part in syntactical priority structures.

1 Introduction

Preference models lie at the core of the formalization of sev-
eral related notions, such as non-monotonic reasoning, obli-
gations, goals, beliefs, etc. Logics for these concepts are now
well-established in the literature. Particularly, dynamic pref-
erence logic introduced in (Girard 2008) has shown great
flexibility to easily encode these notions, as well as ac-
tions representing change policies in an agent’s mental state.
Therefore, this logic has the potential to become a common
framework to study several related notions in philosophy and
artificial intelligence.

Recently, while investigating the theory for extrinsic and
intrinsic preferences in the sense of (von Wright 1966), (Liu
2011) showed that agent’s preferences can be equivalently
represented by means of priorities, in the sense of justifica-
tions for preferences. The author argues that a theory that
embraces both perspectives in modelling preferences is of
both technical and philosophical interest, since it may rep-
resent both the agent explicit preferences and their justifica-
tion. Liu calls such a theory that embraces the ‘two levels’
of preferences, the two-level perspective on preferences.

We agree with Liu that the two-level perspective is an
advantageous approach, when compared to a reductionist

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

one, i.e. one that aims to reduce one notion to the other.
In this work, however, we are interested in a much more
pragmatical consequence on the connection between intrin-
sic and extrinsic preferences. By relating justification struc-
tures, usually described by syntactical constructions as pri-
ority bases, and possible worlds models, Liu’s two-level per-
spective provides an ideal framework for a computational
theory of preferences. In that theory, we can combine the
well studied model-theory by means of preference models
with the computation-friendly justification structures.

While changes in mental attitudes have been a well stud-
ied topic in the literature, e.g. (Alchourrón, Gärdenfors, and
Makinson 1985; Hansson 1995; Herzig et al. 2011), the in-
tegration of such operations within the logics of beliefs,
obligations, etc. is a somewhat recent development. To our
knowledge, the work of (Segerberg 1999) is the first to pro-
pose the integration of dynamic logic-like operations within
the logic of Beliefs and Knowledge to represent the doxastic
changes as studied in AGM tradition (Alchourrón, Gärden-
fors, and Makinson 1985).

This shift from extra-logical characterization of changes
in the agents attitudes to their integration within the repre-
sentation language has important consequences for the ex-
pressive power of the language. It allows, for example, the
study of dynamic phenomena not representable in axiomatic
approach of the AGM framework. This is the case, for ex-
ample, of the well-known Moore sentences in epistemology.

Recently, inspired by Van Benthem and the Dutch School
on the “dynamic turn” in logic (Van Benthem 1996), sev-
eral dynamic logics for information change and dynamics of
mental attitudes have been proposed (Van Benthem 2007;
Baltag and Smets 2008; Van Benthem, Girard, and Roy
2009; Liu 2011; Van Benthem, Pacuit, and Roy 2011). While
different change operations have been proposed in these
frameworks, these operations are mostly concerned with dif-
ferent policies to revise or update one’s mental state. Other
important operations such as contractions, however, have re-
ceived far less attention in this blooming literature.

It is unquestionable that revision and update policies are
at the core of both theoretic and operational concerns about
changes in mental attitudes. We believe, however, that the
retraction of information is also a central point in the study
of dynamics of mental attitudes, as corroborated by the re-
sults on the relation between the operations of contraction
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and revision (Alchourrón, Gärdenfors, and Makinson 1985).
In this work, we propose a semantic codification of con-

traction, in the framework of (Girard 2008) of a dynamic
logic of preferences and provide a syntactical counterpart
for contraction in the framework of priority graphs of (Liu
2011). We do this by introducing dynamic modalities in
the logic of (Girard 2008), representing three different con-
traction operations in the literature of Iterated Belief Revi-
sion (Ramachandran, Nayak, and Orgun 2012). Through the
study of contraction in this logic, we show that not all oper-
ations on preference models definable in Propositional Dy-
namic Logic (PDL) can be characterized by syntactic op-
erations on Liu’s priority graphs. This is a negative answer
to the question posed by (Liu 2011) corresponding the fea-
sibility of Liu’s two-level perspective for the dynamics of
preferences - a somewhat surprising result, considering other
important change operations proposed in the literature have
been proved to be syntactically representable in this frame-
work.

2 Related Work
The study of changes in mental attitudes has grown as in
important field in both philosophy and artificial intelligence
in the past decades. Perhaps, one of the most important
contributions in this area is the seminal paper (Alchour-
rón, Gärdenfors, and Makinson 1985) that introduced the
AGM paradigm for belief revision. The AGM initial work
focused on defining the requirements for rational changes
in the agents beliefs, which the authors claim to encode the
notion of minimality, based on three different belief altering
operations named expansion, contraction, and revision.

While a semantic characterization of AGM belief change
has been established by (Grove 1988), the AGM approach
and the vast literature based on it rely mainly on extralogical
characterization of change operations by means. The first at-
tempt to integrate belief change operation within a logic for
Belief and Knowledge that we are aware of is the work of
(Segerberg 1999). The author defines the dynamic doxastic
logic (DDL) as a doxastic logic augmented with modalities
representing the actions of revision and contraction in the
agents mental state, based on Grove’s semantics for these
operations. This is a significant change regarding the ex-
pressibility of the theory of belief change, allowing the codi-
fication of phenomena such as Moore Sentences which can-
not be expressed in the AGM framework. These new phe-
nomena have posed challenges to the area, such as defying
the consistency of some well-known AGM postulates (Al-
chourrón, Gärdenfors, and Makinson 1985) in this general
setting.

Inspired by the connection between belief revision poli-
cies and transformations in priority structures, presented by
(Rott 2009), Van Benthem embeds some belief change op-
erations in the setting of dynamic epistemic logic (Van Ben-
them 2007). (Baltag and Smets 2008) consolidates this con-
nection by providing a semantic codification of different
epistemic and doxastic attitudes, such as Safe Belief, Knowl-
edge, Conditional Belief, etc. and providing axiomatization
for both the static and dynamic parts of this language. Fi-
nally, (Baltag, Fiutek, and Smets 2014) shows that unlim-

ited DDL is expressively equivalent to dynamic epistemic
logic, and thus, just another formalism to express the same
phenomena.

Studying the logic of preferences, (Girard 2008) and
(Van Benthem 2009) generalize the results of (Baltag and
Smets 2008), presenting a logic for preferences and order,
which was used to encode several different notions, such as
Conditional Preferences, Beliefs, Obligations, Contrary-to-
Duty reasoning etc. These works extend the dynamic epis-
temic logic approach to investigate change in several other
mental attitudes defining changes in preference models by
means of propositional dynamic logic (PDL) programs. The
work of (Liu 2011), on the other hand, provides the connec-
tion between extrinsic and intrinsic preferences, in the sense
of (von Wright 1966), showing that syntactical representa-
tions of priorities are equivalent to the semantic encoding
of preferences of an agent by means of preference models.
The author further shows that several change operations over
possible-worlds models, as defined in the dynamic epistemic
logic tradition, can be equivalently represented as syntactic
transformations on these priority structures.

In this work, we extend the research in dynamic opera-
tors for logics of preferences and order by means of both
syntactic and semantic representations. Differently than the
related work, our analysis, however, will focus on the op-
eration of contraction, which has been largely neglected in
the area and was shown to provide problems in its cod-
ification - especially on a syntactical level (Girard 2008;
Liu 2011).

3 Preference Logic

Preference logic is a modal logic complete for the class of
transitive and reflexive frames. It has been applied to model
a plethora of phenomena in deontic logic (Van Benthem,
Grossi, and Liu 2014), logics of preference (Boutilier 1994b;
Lang, Van Der Torre, and Weydert 2003), logics of belief
(Boutilier 1994a; Baltag and Smets 2008), etc.

Dynamic preference logic, introduced in (Girard 2008;
Van Benthem, Girard, and Roy 2009), is the result of “dy-
namifying” preference logic, i.e. extending it with dynamic
modalities - usually represented by programs in proposi-
tional dynamic logic (PDL). This logic is interesting for its
expressibility, allowing the study of dynamic phenomena of
attitudes such as Beliefs, Obligations, Preferences etc. For
that, dynamic preference logic has the potential to become
a common framework to study different but correlated no-
tions in the areas of epistemology, deontic logic and agency
theory.

In this section, we will define the language of preference
logic and will further introduce different actions in the logic
to represent contraction operations, such as studied in Iter-
ated Belief Change literature (Ramachandran, Nayak, and
Orgun 2012).

Definition 1. Let P be a finite set of atomic variables. We de-
fine the language L≤(P) by the following grammar (where
p ∈ P):

ϕ ::= p | ¬ϕ | ϕ ∧ϕ | Aϕ | [≤]ϕ | [<]ϕ
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If the set P is clear, we will often refer to the language
L (P) simply as L .
Definition 2. A preference model is a tuple M = 〈W,≤,v〉
where W is a set of possible worlds, ≤ is a well-preorder
over W, i.e. a reflexive, transitive and well-founded1 relation
over W, and v a valuation function.

A preference model, informally, represents an ordering of
the possible states of affairs according to the preferences of
some agent, i.e. how such an agent would prefer the actual
world to be. As such, we say that a state of affairs w is at
least as preferred as w′ if w ≤ w′.

The interpretation of the formulas is defined as usual. We
will only present the interpretations for the modalities, since
the semantics of the propositional connectives is clear. The
A modality is an universal modality satisfied iff all worlds
in the model satisfy its argument. The [≤] modality is a box
modality on the accessibility order ≤. The [<] modality is
the strict variant of [≤]. They are interpreted as:

M,w � Aϕ iff ∀w′ ∈W.M,w′ � ϕ
M,w � [≤]ϕ iff ∀w′ ∈W.w′ ≤ w ⇒ M,w′ � ϕ
M,w � [<]ϕ iff ∀w′ ∈W.w′ < w ⇒ M,w′ � ϕ

As usual, given a model M and a formula ϕ , we will use
the notation �ϕ�M to denote the set of all the worlds in M sat-
isfying ϕ . When it is clear to which model we are referring
to, we will denote the same set by �ϕ�. Also, given a set of
worlds �ϕ� and a (pre-)order ≤, we will denote the minimal
elements of �ϕ�, according to ≤, by the notation Min≤�ϕ�.
This corresponds to the notion of ‘best worlds satisfying ϕ’
in the model.

An axiomatization for the logic is provided by the axiom
schemata depicted in Figure1 based on the work of (Van Ei-
jck 2008; Van Benthem, Girard, and Roy 2009; Liu 2011;
Girard and Rott 2014).

Notice that (Girard and Rott 2014) proposed a similar ax-
iomatization for a logic with modalities [≤], [<] and an addi-
tional epistemic modality [∼], were a ∼ b iff a ≤ b or b ≤ a.
The authors showed that some contraction operations can
only be consistently defined over well-founded models and
conjectured that the use of Löb Axiom in their axiomati-
zation would suffice to guarantee well-foundedness but no
completeness proof was presented.

In what follows, we give the completeness proof by show-
ing that any mono-modal model for which the accessibility
relation ≤ satisfies reflexivity and transitivity and its strict
part < satisfies Löb Axiom is well-founded. The proof is
fairly easy and we use an equivalent formulation of Löb Ax-
iom with possibilities instead of necessities:

L′ : 〈<〉ϕ → 〈<〉(ϕ ∧¬〈<〉ϕ)
Lemma 3. Let M = 〈W,≤,v〉 be a reflexive and transitive
model and ϕ ∈L≤(P), s.t. �ϕ�M �= /0. Then, for any w ∈W :
M,w � 〈<〉ϕ → 〈<〉(ϕ ∧¬〈<〉ϕ) iff Min≤�ϕ�M �= /0.

Proof. ⇒:
Since �ϕ� �= /0, take w ∈ �ϕ�. Either w is minimal and thus

1The relation ≤ is said well-founded if any non-empty subset
set of W has minimal elements.

Min≤�ϕ� �= /0 or M,w � 〈<〉ϕ . Since, by our hypothesis w
satisfies Löb Axiom for ϕ , then M,w � 〈<〉(ϕ ∧¬〈<〉ϕ),
thus there is a world w′ ∈ W s.t. w′ ∈ �ϕ� and w′ is mini-
mal in this set.
⇐:
Take some world w ∈ W . The interesting case here is when
M,w � 〈<〉ϕ holds, since Löb Axiom would hold vacuously
otherwise. Suppose M,w� 〈<〉ϕ , then there is some w′ ∈W ,
s.t. w′ < w and M,w′ � ϕ . Take w′′ ∈ Min≤�ϕ� �= /0. By min-
imality, w′′ ≤ w′ and M,w′′ � ϕ ∧¬〈<〉ϕ . By transitivity
w′′ < w, thus M,w � 〈<〉(ϕ ∧¬〈<〉ϕ).

Corollary 4. The logic depicted in Figure 1, together with
the rules of modus ponens and necessitation for all three
modalities, is sound and complete for the class frames with
a well-founded pre-order relation ≤.

K≤ : [≤](ϕ → ψ)→ ([≤]ϕ → [≤]ψ)
T≤ : [≤]ϕ → ϕ
4≤ : [≤]ϕ → [≤][≤]ϕ

K< : [<](ϕ → ψ)→ ([<]ϕ → [<]ψ)
W< : [<]([<]ϕ → ϕ)→ [<]ϕ
<≤1: [≤]ϕ → [<]ϕ
<≤2: [<]ϕ → [<][≤]ϕ
<≤3: [<]ϕ → [≤][<]ϕ

KA : A(ϕ → ψ)→ (Aϕ → Aψ)
TA : Aϕ → ϕ
4A : Aϕ → AAϕ
BA : ϕ → A¬A¬ϕ
A ≤: Aϕ → [≤]ϕ

Figure 1: Axiomatization of Preference Logic

Since the concept of best worlds satisfying a given for-
mula ϕ will be of great use in this work, we define a formula
encompassing this exact concept.

Definition 5. We define the formula μϕ ↔ ϕ ∧¬〈<〉ϕ , that
is satisfied by exactly the most preferred worlds satisfying ϕ ,
i.e. �μϕ�M = Min≤�ϕ�M.

Notice that, since our logic is complete for well-founded
preference models, the formula μϕ is unsatisfiable iff so is
ϕ . Now that the language and semantics of the logic have
been established, we proceed to extend it with dynamic oper-
ations for representing different contraction operators from
the literature.

4 Introducing Contraction in Preference

Logic

In this section, we will investigate the addition of different
contraction operations to preference logic by means of trans-
formations in the preference relation of a model. This opera-
tion will be further defined as a PDL program and, from that,
we provide an axiomatization for the resulting logic. We will
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investigate in this work three different contraction opera-
tions from the literature in Iterated Belief Contraction: Nat-
ural Contraction, Moderate Contraction and Lexicographic
Contraction. These operations are three of the best known
operators in the literature, as well as the ones satisfying some
important properties, such as the (generalized) Levi Iden-
tity and the Principled Factored Insertion (Ramachandran,
Nayak, and Orgun 2012).

Natural Contraction Natural contraction is a dual opera-
tion for the natural revision proposed by (Boutilier 1993),
a well-known iterated revision operation in the literature.
Given a plausibility relation ≤ over possible worlds, its nat-
ural contraction by a sentence ϕ , represented by ≤−

ϕ , is de-
fined in (Ramachandran, Nayak, and Orgun 2012) by the
following axioms:

NC1: If w1 ∈ Min≤W or w1 ∈ Min≤�¬ϕ�, then w1 ≤−
ϕ w2

for any w2 ∈W .
NC2: If w1,w2 �∈ Min≤W and w1,w2 �∈ Min≤�¬ϕ� then
w1 ≤−

ϕ w2 if and only if w1 ≤ w2.

NC1 says that the best worlds that do not satisfy ϕ are
promoted to the most plausible, i.e. best, worlds after the
contraction by ϕ and NC2 states that the plausibility of all
other worlds in the model is unaffected by natural contrac-
tion. We now define this operation as a transformation on
preference models. The following example shows how the
natural contraction changes a preference relation.
Example 6. Contracting the preference relation p ∧ q <
p∧¬q < ¬p∧q < ¬p∧¬q by the sentence p results in the
preference p∧q ∼¬p∧q < p∧¬q < ¬p∧¬q, where a ∼ b
stands for a ≤ b∧b ≤ a.
Definition 7. Let M = 〈W,≤,v〉 be a preference model and
ϕ a formula of L . We say the model M−N ϕ = 〈W,≤′,v〉 is
natural contraction of M by ϕ , where:

w ≤′ w′ iff

⎧⎨
⎩

w ∈ Min≤W or
w ∈ Min≤�¬ϕ�M or
w ≤ w′ and w �∈ Min≤�¬ϕ�M

It is clear that the class of reflexive, transitive and well-
founded frames is closed under the above transformation,
i.e. natural contraction preserves both preference models.
The reflexivity is derived by the fact that the order is pre-
served within the sets �ϕ�M and �¬ϕ�M . Transitivity follows
by the fact only the minimal worlds in �ϕ�M have their po-
sitions in the preference relation altered and they become
minimal. Well-foundedness follows from the fact that no in-
finite descending chain is created.

We can now introduce new modalities [−Nϕ] in the logic
representing the contraction of the model by ϕ .
Definition 8. Let M = 〈W,≤,v〉 be a preference model, w ∈
W and ϕ a formula of L

M,w � [−Nϕ]ψ iff M−N ϕ,w � ψ

In order to provide an axiomatization for preference logic
augmented with a natural contraction operation, we will en-
code the semantic transformation defined above in a PDL
program.

Natural contraction can be equivalently defined by the fol-
lowing PDL program:

≤:= (?μ�;≤)∪ (?μ¬ϕ;�)∪ (≤; ?¬μ¬ϕ) (1)

Fact 9. Let M = 〈W,≤,v〉 be a preference model. The re-
lation ≤−

ϕ is a natural contraction of ≤ by a propositional
sentence ϕ , i.e. satisfies axioms NC1 and NC2, iff ≤−

ϕ is the
result of computing the PDL program (1) over the relation
≤.

Proof. (⇒) : Take w,w′ ∈ W , s.t. w ≤−
ϕ w′. We have three

cases to consider: (i) w ∈ �μ�� (ii)w ∈ �μ¬ϕ� and (iii)
w,w′ �∈ �μ��∪ �μ¬ϕ�.

(i) Since w ∈ �μ�� implies that w ∈ Min≤W , then for any
w′, w ≤ w′. As such, by the term (?μ�;≤) of (1), we have
that 〈w,w′〉 is in the relation resulting of applying (1) to ≤.

(ii) By the term (?μ¬ϕ;�) of (1), we have that 〈w,w′〉 is
in the relation resulting of applying (1) to ≤.

(iii) By NC2, w ≤ w′. Thus, since w′ �∈ �¬ϕ�, by the term
(≤; ?¬μ¬ϕ), we have that 〈w,w′〉 is in the relation resulting
of applying (1) to ≤.

(⇐) : Similar to the case above. Take the relation ≤′ as the
result of applying (1) to ≤ and two worlds w,w′ s.t. w ≤′ w′.
The terms (?μ�;≤) and (?μ¬ϕ;�) imply NC1, while the
term (≤; ?¬μ¬ϕ) implies NC2.

From this PDL representation we can easily provide an
axiomatization for the logic extended with the [−N .] modal-
ity, by traditional reduction techniques for PDL. Particularly,
we will need the following result due to (Van Benthem and
Liu 2007).
Fact 10. Every relation-changing operation that is definable
in PDL without iteration has a complete set of reduction ax-
ioms in dynamic epistemic logic.

The reduction axioms are obtained by rewriting a formula
[−Nϕ][≤]ψ as to push the dynamic modality, i.e. [−Nϕ], by
exploring the program structure. Let, thus the operation σ be
defined by a PDL program π(R) using only tests, i.e. ?ϕ pro-
grams, composition, union and the relation R, the following
equivalence is valid.

[σ ][R]ϕ ↔ [π(R)][σ ]ϕ

In the following, we use this equivalence to provide the re-
duction axioms for the preference logic augmented with nat-
ural contraction.
Proposition 11. Preference logic with natural contraction
is (soundly and completely) axiomatized by the axioms be-
low added to the axioms provided in Figure 1 for preference
logic and the rules of modus ponens and necessitation for
all modalities.

1. � [−Nϕ]p ↔ p
2. � [−Nϕ]¬ψ ↔ ¬[−Nϕ]ψ
3. � [−Nϕ](ξ ∧ψ)↔ [−Nϕ]ξ ∧ [−Nϕ]ψ
4. � [−Nϕ]Aψ ↔ A[−Nϕ]ψ
5. � [−Nϕ][≤]ψ ↔ (μ�→ [≤][−Nϕ]ψ)∧

(μ¬ϕ → A([−Nϕ]ψ))∧
[≤](¬μ¬ϕ → [−Nϕ]ψ)
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6. � [−Nϕ][<]ψ ↔ (μ�→ [<][−Nϕ]ψ)∧
(μ¬ϕ → A([−Nϕ]ψ))∧
[<](¬μ¬ϕ → [−Nϕ]ψ)

Sketch of the Proof. Axioms 1-4 are the usual PDL non-
modal formulas. Axioms 5 and 6 above represent the de-
scription of the change in accessibility relations ≤ and <
after the application of the PDL program described in (1).
Thus, in Axiom 5, we have that

[−Nϕ][≤]ψ ↔ [(?μ�;≤)∪ (?μ¬ϕ;�)∪ (≤; ?¬μ¬ϕ)][−Nϕ]ψ

and, through application of usual PDL axioms [π ∪σ ]ϕ ↔
[π]ϕ ∧ [σ ]ϕ , [π;σ ]ϕ ↔ [π][σ ]ϕ and [?ϕ]ψ ↔ ϕ → ψ , we
obtain the described equivalence.

Moderate Contraction As done for natural contraction,
we will extend the language of preference logic to include
a new modality [−Mϕ] representing the operation of con-
tracting a formula ϕ of the model by means of moderate
contraction.

Moderate contraction of a plausibility relation ≤ over pos-
sible worlds by a sentence ϕ , represented by ≤−

ϕ , is defined
in (Ramachandran, Nayak, and Orgun 2012) by the follow-
ing axioms:

MC1: If w1 � ϕ and w2 � ϕ then w1 ≤−
ϕ w2 if and only if

w1 ≤ w2.
MC2: If w1 �¬ϕ and w2 �¬ϕ then w1 ≤−

ϕ w2 if and only
if w1 ≤ w2.
MC3: If w2 � ϕ , w1 �∈ Min≤W and w1 � ¬ϕ then w1 <

−
ϕ

w2.
MC4: If w1 ∈Min≤W or w1 ∈Min≤�¬ϕ� then w1 ≤−

ϕ w2,
for any w2.

MC1 and MC2 require that within the sets �ϕ� and �¬ϕ�
the order is preserved; MC3 requires that the worlds not sat-
isfying ϕ are more plausible than any world satisfying ϕ that
is not minimal in the original plausibility relation. Finally
MC4 says that after the contraction the minimal elements
of the resulting plausibility relation are exactly the original
minimal elements plus the minimal elements in �¬ϕ�. As
before we define moderate contraction as a transformation
on models. The following example illustrates how moderate
contraction changes a preference relation.
Example 12. Contracting the preference relation p∧ q <
p∧¬q < ¬p∧q < ¬p∧¬q by the sentence p results in the
preference p∧q ∼ ¬p∧q < ¬p∧¬q < p∧¬q.
Definition 13. Let M = 〈W,≤,v〉 be a preference model and
ϕ a formula of L . We say the model M−M ϕ = 〈W,≤′,v〉 is
the moderate contraction of M by ϕ , where:

w ≤′ w′ iff

⎧⎪⎪⎨
⎪⎪⎩

w ≤ w′ and w,w′ ∈ �ϕ�M or w,w′ ∈ �¬ϕ�M or
w ∈ �¬ϕ�M ,w′ ∈ �ϕ�M and w′ �∈ Min≤W or
w ∈ Min≤W or
w ∈ Min≤�¬ϕ�M

As before, it is easy to see that the above transformation
preserves preference models.

We can now introduce in the language of preference logic,
the modality [−Mϕ], as done for natural contraction.

Definition 14. Let M = 〈W,≤,v〉 be a preference model,
w ∈W and ϕ a formula of L

M,w � [−Mϕ]ψ iff M−M ϕ,w � ψ

As before, we encode this transformation in a PDL pro-
gram in order to provide an axiomatization for the aug-
mented logic.

This operation can be equivalently represented by the fol-
lowing PDL program:

≤:=≤ϕ ∪(?¬ϕ;�; ?ϕ ∧¬μ�)∪ (?μ�;≤)∪ (?μ¬ϕ;�)(2)

where
≤ϕ= (?ϕ;≤; ?ϕ)∪ (?¬ϕ;≤; ?¬ϕ)

Fact 15. Let M = 〈W,≤,v〉 be a preference model. The re-
lation ≤−

ϕ is a natural contraction of ≤ by a propositional
sentence ϕ , i.e. satisfies axioms MC1, MC2, MC3 and MC4,
iff ≤−

ϕ is the result of computing the PDL program (2) over
the relation ≤.

The above program states that the preference order ≤ after
the contraction is composed of the pairs 〈w,w′〉 s.t. w,w′ ∈
�ϕ� or w,w′ ∈ �¬ϕ� and w ≤ w′, or w ∈ �¬ϕ� and w′ ∈ �ϕ ∧
¬μ��, i.e. w′ is a non-minimal world satisfying ϕ , or w ∈
�?μ�� and w≤w′, or w∈ �?μ¬ϕ�, i.e. w is a minimal world
in �¬ϕ�.

As for the case of Natural Contraction (see Proposi-
tion 11), with the above PDL program, we can obtain an
axiomatization for the preference logic augmented with a
moderate contraction modality. For space concerns, we will
omit the resulting axiomatization, pointing out that only ax-
ioms 5 and 6 are changed - as before, they can be obtained
by the PDL reduction [R := de f (R)][R]ϕ ↔ [de f (R)][R :=
de f (R)]ϕ , where R is either the relation ≤ or <, and de f (R)
the PDL program (2).

Lexicographic Contraction Lexicographic contraction
was introduced by (Nayak et al. 2006), as a product of the
generalization of the well-known Harper identity (Alchour-
rón, Gärdenfors, and Makinson 1985). Despite the desirable
properties it satisfies, such as the already mentioned gen-
eralized Harper and Levi identities and Principled Factored
Insertion (Ramachandran, Nayak, and Orgun 2012), this op-
eration presents difficulties in characterization as will be ev-
ident in Proposition 23 below. This is because the operation
is defined by means of complete chains of worlds in a model
- which encodes a great deal of information about the pref-
erence relation.

Lexicographic contraction of a plausibility relation ≤
over possible worlds by a sentence ϕ , represented by ≤−

ϕ ,
is defined in (Ramachandran, Nayak, and Orgun 2012) by
the following axioms:

LC1: If w1 � ϕ and w2 � ϕ then w1 ≤−
ϕ w2 if and only if

w1 ≤ w2.
LC2: If w1 � ¬ϕ and w2 � ¬ϕ then w1 ≤−

ϕ w2 if and only
if w1 ≤ w2.

LC3: Let ξ be a member of {ϕ,¬ϕ} and ξ the other.
If w1 � ξ and w2 � ξ , then w1 ≤−

ϕ w2 iff the length of a
complete chain of worlds in �ξ � which ends in w1 is less
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than or equal to the length of a complete chain of worlds
in �ξ � which ends in w2.

As for the axioms MC1 and MC2, the axioms LC1 and
LC2 require order preservation in �ϕ� and �¬ϕ�. LC3 re-
quires that the plausibility relation will be computed by lex-
icographically unifying the equivalence classes in �ϕ� and
�¬ϕ�, regarding the plausibility relation ≤.

Example 16. Contracting the preference relation p∧ q <
p∧¬q < ¬p∧q < ¬p∧¬q by the sentence p results in the
preference p∧q ∼ ¬p∧q < p∧¬q ∼ ¬p∧¬q.

Notice that to specify lexicographic contraction we need
a way to represent that there is a chain of worlds in �ϕ� of
length i ending in w. We will define a formula dgϕ(i) below
to represent this notion.

Definition 17. Let M = 〈W,≤,v〉 be a preference model and
ϕ a formula of L . We define the formula dgϕ(i) as

dgϕ(i) =

⎧⎨
⎩

ϕ ∧¬〈<〉ϕ if i = 0
ϕ ∧〈<〉ϕ if i = 1
ϕ ∧〈<〉dgϕ(i−1) if i ≥ 2

It is easy to see that dgϕ(i) encodes the notion of existence
of a chain of worlds ending in w.

Lemma 18. Let M = 〈W,≤,v〉 be a preference model and
ϕ a formula of L and w ∈W. M,w � dgϕ(i), i > 0 iff there
is a chain of worlds of w1,w2 · · · ,wi such that, w j ∈ �ϕ�, for
all j, and wi = w.

The lemma can be proved by a simple induction on the
parameter i, noticing that < is a transitive relation.

Particularly, if ϕ = � this formula encodes the notion of
the degree of a world - similar to that of (Spohn 1988)2.

With that, we can define lexicographic contraction as a
model transformation.

Definition 19. Let M = 〈W,≤,v〉 be a preference model and
ϕ a formula of L . We say the model M−L ϕ = 〈W,≤′,v〉 is
the lexicographic contraction of M by ϕ , where:

w ≤′ w′ iff

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w ≤ w′ if w,w′ ∈ �ϕ�

or w,w′ �∈ �ϕ�

w ∈ �dgϕ (i)� ⇒ w′ ∈ �dg¬ϕ (i)� if M,w � ϕ and
for all i ≤ |W | M,w �� ϕ
w ∈ �dg¬ϕ (i)� ⇒ w ∈ �dgϕ (i)� if M,w � ¬ϕ and
for all i ≤ |W | M,w � ϕ

By similar arguments as for natural and moderate contrac-
tion, it is not difficult to see that lexicographic contraction
preserves preference models. Then, we can now include the
operation as a modality in the language of preference logic.

Definition 20. Let M = 〈W,≤,v〉 be a preference model,
w ∈W, and ϕ a formula of L

M,w � [−Lϕ]ψ iff M−ϕ,w � ψ
2Notice that only the maximal i s.t. a world satisfies M,w �

dg�(i) can be thought as the degree of world w as in the framework
of Spohn’s OCFs, since by transitivity M,w � dg�( j) for all 1 ≤
j ≤ i.

It is not difficult to see that our preference logic satis-
fies the Finite Model Property, since ≤ is S4, < is KW and
< ⊆ ≤. It is also well known that for S4, any formula ϕ
has a bound on the maximal size of a model that can refute
ϕ . This bound, ρ(ϕ), is dependent on the size of formula ϕ:
ρ(ϕ) = 2|ϕ| (Halpern and Moses 1992). We will use this fact
to provide the following PDL codification of Lexicographic
Contraction:

≤:= (?ϕ;≤; ?ϕ)∪ (?¬ϕ;≤; ?¬ϕ)∪
ρ(ϕ∧ψ)⋃

i=1

ρ(ϕ∧ψ)⋃
j=i

(
((?ϕ;<; ?ϕ)i;�;(?¬ϕ;<; ?¬ϕ) j)∪

((?¬ϕ;<; ?¬ϕ)i;�;(?ϕ;<; ?ϕ) j)
)

(3)

Notice that the use of the converse relation < equivalent
to > in the formula above does not require greater express-
ibility of the logic, since it has been shown that this oper-
ator can be eliminated in PDL (De Giacomo 1996). Also,
while lexicographic contraction does not explicitly requires
well-foundedness of the model to be well defined, the Finite
Model Property of S4 is necessary for the PDL codification.
This is not a severe restriction regarding the logic, since the
presented axiomatization for the static logic is complete for
both well-founded pre-orders and finite pre-orders (Black-
burn, van Benthem, and Wolter 2006).

While the inclusion of the inverse relation < adds no ex-
pressibility to the logic and can be eliminated, the inclusion
of an inverse modality [>] greatly simplifies the axiomati-
zation of Lexicographic Contraction. This is due to the fact
that a simple expression can encode the meaning of the term
(?¬ϕ;<; ?¬ϕ)i in the PDL expression above, much like the
expression dgϕ(i) defined before. We will, then, include a
modality [>] and define the inverse degree of a world.

Definition 21. Let M = 〈W,≤,v〉 be a preference model and
ϕ a formula of L . We define the formula dg>ϕ (i) as

dg>ϕ (i) =

⎧⎨
⎩

ϕ ∧¬〈>〉ϕ if i = 0
ϕ ∧〈>〉ϕ if i = 1
ϕ ∧〈>〉dg>ϕ (i−1) if i ≥ 2

As before, this encoding is a correct description of de-
scending chains in preference models.

Lemma 22. Let M = 〈W,≤,v〉 be a preference model and
ϕ a formula of L and w ∈W. M,w � dg>ϕ (i), i > 0 iff there
is a chain of worlds of w1,w2 · · · ,wi such that, w j ∈ �ϕ� for
all j and w1 = w.

With that, we provide the axiomatization for preference
logic with Lexicographic Contraction.
Proposition 23. Preference logic with lexicographic con-
traction is (soundly and completely) axiomatized by the ax-
ioms below added to the axioms provided in Figure 1 for
preference logic and the rules of modus ponens and necessi-
tation for all modalities.
1. � [>](ϕ → ψ) → ([>]ϕ → [>]ψ)

2. � ϕ → [>]〈<〉ϕ
3. � ϕ → [<]〈>〉ϕ
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4. � [−Lϕ]p ↔ p
5. � [−Lϕ]¬ψ ↔ ¬[−Lϕ]ψ
6. � [−Lϕ](ξ ∧ψ) ↔ [−Lϕ]ξ ∧ [−Lϕ]ψ
7. � [−Lϕ]Aψ ↔ A[−Lϕ]ψ
8. � [−Lϕ][≤]ψ ↔

(ϕ → [≤](ϕ → [−Lϕ]ψ))∧
(¬ϕ → [≤](¬ϕ → [−Lϕ]ψ))∧∧ρ(ϕ∧ψ)

i=1
∧ρ(ϕ∧ψ)

j=i dg>ϕ (i)→ A(dg¬ϕ ( j)→ [−Lϕ]ψ)∧
∧ρ(ϕ∧ψ)

i=1
∧ρ(ϕ∧ψ)

j=i dg>¬ϕ(i) → A(dgϕ ( j)→ [−Lϕ]ψ)

9. � [−Lϕ][<]ψ ↔
(ϕ → [<](ϕ → [−Lϕ]ψ))∧
(¬ϕ → [<](¬ϕ → [−Lϕ]ψ))∧∧ρ(ϕ∧ψ)

i=1
∧ρ(ϕ∧ψ)

j=i dg>ϕ (i)→ A(dg¬ϕ ( j)→ [−Lϕ]ψ)∧
∧ρ(ϕ∧ψ)

i=1 ∨ρ(ϕ∧ψ)
j=i dg>¬ϕ(i) → A(dgϕ ( j)→ [−Lϕ]ψ)

Sketch of the proof. Since we included the modality [>] in
the logic, the axiomatization of preference logic had to be
extended with axioms 1-3, corresponding to the K axiom for
the modality [>] and the axioms expressing that the modal-
ities [>] and [<] are the converse of one another, respec-
tively. As before, the axioms 4-6 are the usual axioms for
PDL programs over propositional formulas and axiom 7 for
the universal modality. Axioms 10 and 11 are the reduc-
tions obtained by the PDL program in (3), using the formu-
las dgϕ(i) and dg>ϕ (i) to encode the programs (?ϕ;<; ?ϕ)i

and (?ϕ;>; ?ϕ)i, respectively. As Lemmas 18 and 22 show,
this is a valid encoding, since the terms (?ϕ;<; ?ϕ)i and
(?ϕ;>; ?ϕ)i encode the existence of ascending and descend-
ing chains reaching a given world.

Now that we have a semantic encoding of the selected
contraction operations, we turn to the search a suitable syn-
tactical codification for them. For this enterprise, we will use
the framework of priority graphs of (Liu 2011), which is a
syntactical representation of preferences expressibly equiva-
lent to preference models, concerning the logic presented in
Section 3. We will investigate syntactical transformations in
these structures aiming to characterise the previously stud-
ied contraction operations.

5 Changing preferences by shifting priorities
An interesting connection has been proposed by (Liu 2011)
between preference models and the finite syntactic-based
representations of priorities. The author uses the notion of
a priority graph as a syntactic representation of preferences
and connects its static and dynamic properties with that of
the semantic models discussed earlier.
Definition 24. (Van Benthem, Grossi, and Liu 2014) Let
L (P) be the propositional language constructed over the
set of propositional letters P, as usual. A P-graph is a tuple
G = 〈Φ,≺〉 where Φ ⊂L (P), is a finite set of propositional
sentences and ≺ is a strict partial order on Φ.

P-graphs encode an order relation between propositional
sentences. Unsurprisingly, given a valuation function of
propositions over a set of possible worlds, such an order-
ing can be lifted to an order over worlds. In fact, there are
many ways of establishing such an ordering over worlds.

Definition 25. (Liu 2011) Let G = 〈Φ,≺〉 be a P-graph,
W be a non-empty set of states or possible worlds, and v :
P → 2W be a valuation function. The betternenss relation
≤G⊆W ×W is defined as follows: w ≤G w′iff

∀ϕ ∈Φ : (w′ �ϕ ⇒w�ϕ)∨(∃ψ <ϕ : (w�ψ and w′ ��ψ))

Fact 26. (Van Benthem, Grossi, and Liu 2014) Let G =
〈Φ,≺〉 be a P-graph, W a non-empty set of states or pos-
sible worlds, and v : P → 2W a valuation function. The rela-
tion ≤G , as defined above, is a pre-order whose strict part
is well-founded.

From the above definitions and fact, it is easy to see that
from a priority graph we can construct a preference model
for the logic L≤(P) over the propositional names of P.
Definition 27. Let G = 〈Φ,≺〉 a P-graph and M = 〈W,≤,v〉
a preference model. We say M is induced by G iff ≤ = ≤G .

The induction of preference models from priority struc-
tures raises the question about the relations between these
two structures. (Liu 2011) shows that any model with a re-
flexive and transitive accessibility relation has an equivalent
priority graph.
Theorem 28. (Liu 2011) Let M = 〈W,R,v〉 a mono-modal
model. The following two statements are equivalent:

1. The relation R is reflexive and transitive;
2. There is a priority graph G =(Φ,≺) s.t. ∀w,w′ ∈W. wRw′

iff w ≤G w′.
While a positive result relating preference models and pri-

ority graphs, Theorem 28 also delineates the limits of such a
connection. Notice that for a (mono-modal) model M, it is a
necessary condition for its accessibility relation R to be re-
flexive and transitive, i.e. R is a pre-order. This is only true,
however, for the reasoning over static preferences, i.e. if we
do not allow changes in preferences.

As it is well known from belief revision literature, e.g.
(Hansson 1992), the dynamics of syntactic representations
and of semantic modellings can differ vastly. It is also the
case that many different model transformations can be de-
fined, e.g. using PDL programs, that do not preserve either
reflexivity or transitivity. A question that remains is if any
PDL definable operation that maintains pre-orders is syntac-
tically definable by an operation in P-graphs. We argue that
this is not the case, analysing the operation of natural con-
traction.

A syntactical codification of natural contraction has been
given by (Rott 2009). It amounts to change the prioritized

belief base
−→
h to

−−→
h<ϕ ≺−−−−−−→

h≥ϕ ∨¬ϕ3. This definition could be
easily generalized for P-graphs. We claim, however, that this
codification is not right, using the following example.

Example 29. Taking the base
−→
h = p ≺ q ≺ r and its model

M = 〈2{p,q,r},≤,v〉 an induced model in the sense of Defi-
nition 27, with w ∈ v(u) iff u ∈ w for u ∈ {p,q,r}. Applying
syntactic operation of Rott to contract q, the result would

3Notice that Rott’s belief bases are totally ordered P-graphs−→
h = 〈Φ,<〉, −−→h<ϕ = 〈{ψ ∈ h|∧{α ∈ h | α < ψ} �� ϕ} and <〉,
h∨α = 〈{ψ ∨α|ψ ∈ h},<〉.

161



be the base
−→
h′ = p∨¬q ≺ q∨¬q ≺ r ∨¬q ≺ p in which

the worlds p∧¬q∧ r and p∧¬q∧¬r are in the same pref-
erence cluster. Natural contraction, however, would require
by order preservation in �¬q� (Ramachandran, Nayak, and
Orgun 2012) that p∧¬q∧ r ≺ p∧¬q∧¬r.

In fact, any such syntactical characterization will be
flawed by the simple fact that the minimal elements of �¬ϕ�
will be dependent of the model to be transformed.

Fact 30. Let G = 〈Φ,≺〉 a P-graph and ϕ a propositional
formula. There is no propositional formula μϕ s.t. for every
model M = 〈W,≤G ,v〉 induced by G and all w ∈W, w � μϕ
iff w ∈ Min≤G

�ϕ�.

Sketch of the proof. It is easy to see that the above fact holds
by observing that giving a model M having a chain of at least
two worlds satisfying ϕ , we can construct a submodel M′ -
which is also a model induced by G - by removing all the
minimal ϕ elements of M. Supposing there is a propositional
formula μϕ encoding the notion of ‘minimal element satis-
fying ϕ’, it is clear that the minimal elements satisfying ϕ
in M′ cannot satisfy μϕ - since μϕ is propositional formula
and M′ is submodel of M. It is also clear that M′ has min-
imal elements satisfying ϕ , since M has a chain of at least
two worlds satisfying ϕ . But this is a contradiction to the
hypothesis that μϕ encodes the notion of ‘minimal element
satisfying ϕ’, thus we conclude it cannot exist a proposi-
tional formula encoding minimality.

The fact and example above indicate that Natural contrac-
tion is inherently model-dependent and cannot be charac-
terised by means of priority graphs.

Theorem 31. Let G = 〈Φ,≺〉 be a P-Graph and ϕ a propo-
sitional formula. There is no P-graph G ′ = 〈Φ′,≺′〉 that for
any two preference models M1 and M2 induced by G , both
M1−N ϕ and M2−N ϕ are preference models induced by G ′,
if there is a chain of at least two worlds in M1 satisfying ϕ .

Proof. Let M1 be a preference model induced by G . Since
M1 = 〈W1,≤1,v1〉 is a preference model and �ϕ�M1 �= /0,
then there is minimal element in �ϕ�M1 . Lets call such el-
ement w1 ∈ Min≤1�ϕ�M1 . We can construct M2 = 〈W2 =
W1 \ �ϕ�M1 ,≤2,v2〉 s.t. ≤2 and v2 are the restriction of ≤1
and v1 to W2, respectively.

Now, suppose there is a P-graph G ′ = 〈Φ′,≺′〉, s.t. M1−N
ϕ = 〈W1,≤N ,v〉 is a preference model induced by G ′. By
the definition of natural contraction, we have that M1 −N ϕ
is exactly like M1, except that Min≤NW1 = Min≤1W1 ∪
Min≤1�ϕ�M1 . By definition of an induced preference model,
it means that for every formula ξ ∈Φ′ and any world w∈W1,
M1,w � ξ iff M1,w1 � ξ .

Let’s then look at the case of w2 ∈ Min≤2�ϕ�M2 . We know
that w2 exists since M2 was created by removing the minimal
elements of �ϕ�M1 from the set W1 and, by hypothesis, �ϕ�M1
has a chain of at least two elements, thus not all elements of
�ϕ�M1 are minimal. Now, if M2 is induced by G ′, we have
that for every formula ξ ∈Φ′ and any world w∈W1, M1,w �
ξ iff M1,w2 � ξ . In particular, for every formula ξ ∈ Φ′,
M1,w1 � ξ iff M1,w2 � ξ . From this, we can affirm that w2
is a minimal element in M1 −N ϕ , and thus from M1, which

is a contradiction to the hypothesis that w1 <1 w2. So M2
cannot be induced by G ′.

The theorem above is a definitive answer to the question
posed by Liu (Liu 2011) about whether any PDL-definable
transformation preserving preference models can be char-
acterised by means of syntactic transformations in priority
graphs. The root of the problem here lies in the fact that pri-
ority graphs are defined over propositional formulas only,
and the notion of ‘minimal element’ is necessarily modal
- as substantiated by Fact 30. Notice however that allowing
modal formulas in priority graphs incurs in invalidating The-
orem 28 since it allows for the construction of inconsistent
graphs (Liu 2011).

A codification for moderate contraction has also been pro-
vided by (Rott 2009) and a similar result can be achieved for
the impossibility of syntactic representation.

A codification for lexicographic contraction has not been
yet proposed and, in fact, not an easy one to provide. Since
lexicographic contraction rearranges the preference order in
a model in such a way that the orders the sets �ϕ� and �¬ϕ�
are preserved and the change in the ‘degree’ of a world, char-
acterized by dg�(i), in the resulting model is dependent only
on its position within either �ϕ� or �¬ϕ�, this operation can
be syntactically characterized. To do that, however, we will
need a further result about priority graphs.
Lemma 32. (Liu 2011) Each priority graph has an equiva-
lent graph whose propositions form a partition of the logical
space.

The above result means that any priority graph can be
rewritten to an equivalent one in such a way that any world
in a model satisfies exactly one of such nodes. To describe
the transformation in the priority graph, we will need some
auxiliary constructions to auxiliate the description of the full
transformation.

The first one we present is the support of ϕ in a graph G .
Definition 33. Let G = 〈Φ,≺〉 be a P-Graph and ϕ a propo-
sitional formula. We define the support of ϕ in G as the
graph Gϕ = 〈Φϕ ,≺ϕ〉 where: Φϕ = {ξ ∧ϕ ∈ Φ | ξ �� ¬ϕ}
and ξ ∧ϕ ≺ϕ ξ ′ ∧ϕ iff ξ ≺ ξ ′.

Notice that the support of ϕ in a graph G contains all in-
formation about the chains of worlds satisfying ϕ for mod-
els induced by G . In other words, the support of ϕ in G is
a complete description of the order in �ϕ�, for any model M
induced by G . This is what we show in the following result
- which can be easily proved by an induction on n.
Lemma 34. Let G = 〈Φ,≺〉 be a P-Graph whose proposi-
tions form a partition of the logical space, M = 〈W,≤,v〉 a
model induced by G and ϕ a propositional formula. For any
w ∈ W, it holds that M,w � dgϕ(n) iff there is a sequence
ξ1, . . . ,ξn+1 ∈ Gϕ s.t. ξi < ξi+1 and M,w � ξn+1.

The second definition we will need is that of depth of a
formula in the graph.
Definition 35. Let G = 〈Φ,≺〉 be a P-Graph and ξ ∈ Φ
a propositional formula. We define the depth of ξ in G , de-
noted by dG (ξ )= k, as the size of the longest chain ξ1, . . . ,ξk
in G s.t. ξ1 is minimal in G and ξk = ξ .
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With that we define the ranked disjunction of two graphs
G and G ′.
Definition 36. Let G = 〈Φ,≺〉, G ′ = 〈Φ′,≺′〉 be a P-
Graphs. The disjunction of G and G ′ is the P-Graph G ∨
G ′ = 〈Φ∨Φ′,≺ ∨≺′〉 where:

Φ∨Φ′ = {ξ ∨ξ ′ | ξ ∈ Φ and ξ ′ ∈ Φ′}
and

≺ ∨≺′ = {〈ξ1 ∨ξ ′
1,ξ2 ∨ξ ′

2〉 ∈ Φ∨Φ′ |
dG (ξ1)+dG ′(ξ ′

1)< dG (ξ2)+dG ′(ξ ′
2)}

We will construct the lexicographic contraction of a graph
G by a formula ϕ by conflating the order in the supports of
the formulas ϕ and ¬ϕ and preserving the status of the ele-
ments of the graph that neither support nor contradict ϕ . To
do this, first we create a partially ordered (p.o.) set which
corresponds to an intermediate graph in which the order re-
lation is not strict, as in a P-Graph, and later we cluster the
nodes in a same equivalence class to form a strict ordered
graph, which will be the resulting P-graph.
Definition 37. Let G = 〈Φ,≺〉 be a P-Graph whose propo-
sitions form a partition of the logical space and ϕ a proposi-
tional formula. The symmetric contraction of G by ϕ , is the
p.o set (G⊥ϕ) = 〈Φ⊥ϕ,�′〉 where:

Φ⊥ϕ = Φϕ ∨Φ¬ϕ

ξ1 �⊥ϕ ξ2 iff ξ1(≺ϕ ∨ ≺¬ϕ )ξ2 or
dGϕ (ξϕ1 )+dG¬ϕ (ξ¬ϕ1 ) = dGϕ (ξϕ2 )+dG¬ϕ (ξ¬ϕ2 )

with ξi = ξϕi ∨ξ¬ϕi .
Finally, we construct the P-graph corresponding to the

lexicographic contraction of a propositional formula ϕ from
the graph G by joining all equivalent nodes in the symmet-
ric contraction defined above, by means of disjunction. To
make the definition more readable, we will use the notation
[ϕ]� = {ξ ∈ Φ | ξ � ϕ and ϕ � ξ} to denote the equiva-
lence class of ϕ in the p.o. set 〈Φ,�〉.
Definition 38. Let G = 〈Φ,≺〉 be a P-Graph whose propo-
sitions form a partition of the logical space and ϕ a propo-
sitional formula. We define the lexicographic contraction of
ϕ from G as the P-Graph G −L ϕ = 〈Φ′,≺′〉 s.t.

Φ′ = {
∨
[ξ ]�⊥ϕ | ξ ∈ Φ⊥ϕ}

∨
[ξ ]�⊥ϕ ≺′ ∨[ψ]�⊥ϕ iff ξ �⊥ϕ ψ and ψ ��⊥ϕ ξ
To make it more concrete, we present the following ex-

ample.
Example 39. Lets take the graph G constituted by two
nodes A ≺ B. A model induced by such a graph is the model
containing four worlds A∧B<A∧¬B<¬A∧B<¬A∧¬B.
The lexicographic contraction of such model by the for-
mula B, as defined in Section 4, would result in the model
A∧B ≡ A∧¬B < ¬A∧B ≡ ¬A∧¬B. The computation of
lexicographic contraction defined of B from the graph G
above is depicted in the Figure 24, where (a) represents
graph G ; (b) the transformation of graph G into an equiv-
alent graph G ′ partitioning the logical space; (c) the sym-
metric contraction of G ′ by formula B, and, (d) the resulting
graph after lexicographic contraction.

Figure 2: Contracting graph G by formula B from Exam-
ple 39

We can prove harmony between the semantically defined
lexicographic contraction on preference models and syntac-
tic transformation in priority graphs. Due to space limitation
we will not show the proof here, but the intuition behind it is
that the support of ϕ in a graph G will represent the chains in
�ϕ� in the induced model. Similarly for the support of ¬ϕ .
Taking the disjunction of both subgraphs, we conflate the
chains in a way that if a world belongs in a chain of size i in
either �ϕ� or �¬ϕ�, it will be preferred to any world belong-
ing in a chain of size j > i in either �ϕ� or �¬ϕ�, as required
by the definition of lexicographic contraction.

Proposition 40. Let G = 〈Φ,≺〉 be a P-Graph whose
propositions form a partition of the logical space, M =
〈W,≤,v〉 a model induced by G and ϕ a propositional for-
mula. The model M−L ϕ is induced by the graph G −L ϕ .

6 Conclusion

This work has explored some codifications of iterated
contraction operators in the dynamic preference logic of
(Van Benthem, Girard, and Roy 2009) using the syntatic
representation of preference models by meas of Liu’s prior-
ity structures (Liu 2011). We provided a proof of complete-
ness for well-founded preference models, semantic codifi-
cations of contraction operations by transformation of pref-
erence models and investigated the harmony cases between
these semantic transformations and syntactic manipulations
on priority graphs.

While important cases of harmony between semantic op-
erations in preference models and syntactic manipulations
of priority graphs have been presented in the literature, we
show that this is not the case for all PDL-definable opera-
tions that preserve pre-orders. We believe this is a very inter-
esting result of our study, since this has been an open ques-
tion posed in (Liu 2011). It remains to answer, however, if
PDL programs in which the test operation ?ϕ can only be
defined if ϕ is a propositional formula can always be repre-
sented by transformations of priority graphs. The intuition
we obtain from the syntactic codification of lexicographic
contraction is that this is indeed true.

4In the figure, an arrow starting in node a and ending in node b
represents the relation a ≺ b of the graph.
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Our work can, thus, be seen as a step in the direc-
tion of reducing the “semantical gap” in agent program-
ming languages, by providing the syntactic characterization
and proof of harmony for an important instance of a well-
behaved operation: lexicographic contraction.
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