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Abstract—The Charlson comorbidity index (CCI) is widely
used to predict mortality for patients who may have many
comorbid conditions. Such index is also used as an indicator
of the patients’ complexity inside a hospital. In this paper, we
evaluate a variety of feature extraction and regression methods
to predict the CCI from clinical notes. We used a tertiary
hospital dataset with 48 thousand hospitalizations featuring
the CCI annotated by physicians. In our experiments, Dense
Neural Networks with Word Embeddings proved to be the best
regression method, with a mean absolute error of 0.51.
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I. INTRODUCTION

Electronic Health Records (EHR) play an important role

in hospital environments bringing many benefits in terms of

patient safety, effectiveness and efficiency of care, patient

satisfaction, and care process [1]. Records of health care

practices in hospitals generate a rich and large amount

of patient information and an intrinsic relation between

symptoms, diseases, drug interaction, and diagnoses that

could be used for many purposes [2].

Machine learning techniques could predict existing mea-

sures in clinical research to tackle life expectation and

readmission rate [3], [4]. In addition, EHR information could

be used to identify the patients with higher risk of death

and focus attention on them. The Charlson comorbidity

index [5] is the most extensively studied way to measure

patient risk. This index evaluates 19 medical conditions, each

weighted between 1 and 6, based on the relative risk of their

association with 1-year mortality.

Comorbidities are coexisting diseases to a disease of

interest or an index disease, which may directly affect the

prognosis of the disease of interest, or indirectly influence

the choice of treatment. Comorbidity affects prognosis, ther-

apy, and outcome, and is associated with decreased health

outcomes. The Charlson comorbidity index (CCI) is the most

widely used comorbidity index [6], [7].

Usually, when the CCI is evaluated, comorbidities are

manually completed by the physician in available CCI

calculators or in the hospital system itself, when available.

Physicians spend time completing the evaluation, which

they could be using for patient care, as this information is

usually already available in clinical notes. Our work aims

to assist physicians in this task using machine learning

regression methods and feature extraction using natural

language processing (NLP). This technique could also be

applied at hospitals with electronic clinical notes but without

CCI specialists.

The main contributions of our work are the following:

• Description of text features that best predict the Charl-

son comorbidity index in clinical notes;

• Evaluation and comparison of prediction models with

the best performance in the CCI regression task.

The rest of this paper is organized as follows: Section II

presents previous works on predicting comorbidities through

clinical notes. Section III describes the dataset used and

the experiment setup, followed by the results in Section

IV. In addition, we perform a qualitative analysis of the

results in Section V. Finally, in Section VI we summarize

our contributions and present further research directions.

II. BACKGROUND

Comorbidities or International Classification of Diseases

(ICD) prediction is a common task that uses text infor-

mation from Electronic Health Records (EHR). Yousefi et

al. [8] modeled multiple comorbidities in diabetes using

dynamic Bayesian networks with latent variables. Stacki

et al. [9] derived correlations, evidence-based likelihood of

comorbidity manifestation in EHR. Some studies focus on

finding specific diseases in EHR, such as chronic obstructive

pulmonary disease and critical limb ischemia [10], [11].

A common approach to derive the Charlson comorbidity

index from clinical notes usually has two phases: first,

comorbidities or ICDs are extracted from text, and then

the results for each disease are summed using the Charl-

son scores to reach the CCI. The first work to use this

approach [12] extracted the ICD from clinical notes to derive

comorbidities from 3,662 notes of pneumonia patients. They

were able to find thirteen underreported comorbidities in the

administrative data. Also following this approach, Salmasian

et al. [13] identified the comorbidities and derived the CCI

in 100 admission notes with a 0.74 F1-Score. Both works
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used MedLEE commercial software [14] to extract the ICD

from clinical notes.

In another paper, Singh et al. [15] developed an algorithm

based on query rules to extract Charlson comorbidities from

EHR. Then, they compared two extraction strategies to

derive CCI scores: first, with the algorithm and, second,

by using ICD-9 codes. This approach was validated in 240

patients. Its sensitivity ranged from 91% to 100%.

Our approach tackles this problem from a different per-

spective. Instead of using a two-phase strategy, we predict

the CCI with just one phase, using regression machine learn-

ing techniques. In addition, there is no need for a specific

software to extract comorbidities in this approach. Here we

use natural language processing to extract information from

clinical notes as features for the regression methods.

Representing text in features is a common issue to extract

information from clinical notes. Tang et al. [16] used word

representation techniques to perform biomedical named

entity recognition. The f-measure was improved by only

2% when features such as clustering-based, distributional,

and word embedding were individually added to the basic

features. Our work uses some of these techniques to extract

features from clinical notes, as we describe in the next

section.

III. MATERIALS AND METHODS

We design the experiments to evaluate several automated

approaches to predict the Charlson comorbidity index. In

the experiments, we extract features from clinical notes to

use as input for the regression algorithms. In this Section,

we cover the dataset used, the features extracted, and the

regression methods evaluated.

A. Data Source

We used a large cohort extracted from the administrative

hospitalization database from Hospital Nossa Senhora da

Conceição (HNSC). HNSC is part of the Brazilian public

healthcare system and provides tertiary care.

Table I
CLINICAL NOTE DATASET

Clinical Notes 1,551,907
Hospitalizations 48,907
Mean CCI 2.80
Mean number of Words 6,126

Table I shows the amount of data used in our experiments.

The data comprises 1.5 million clinical notes from 48.9

thousand hospitalization records annotated with the Charlson

comorbidity index between January 2012 and December

2017. Most patients have a low CCI, with 2.80 as the mean.

However, HNSC treats many cancer and AIDS cases with

higher CCI.

Ethical approval to use the hospital dataset in this research

was granted by the Research Ethics Committee of Conceição

Hospital Group under the number 71571717.7.0000.5530.

B. Charlson Comorbidity Index

The Charlson indices used for the machine learning train-

ing were obtained from the electronic system available at

the hospital, filled by the physicians according to Table II.

Table II
CHARLSON COMORBIDITY INDEX WEIGHTS FOR DISEASES

Comorbidity or Age Weight
< 50 years 0
50–59 years 1
60–69 years 2
70–79 years 3
� 80 years 4
Myocardial Infarction 1
Congestive heart failure 1
Peripheral vascular disease 1
Cerebrovascular Disorders 1
Dementia 1
Chronic pulmonary disease 1
Connective tissue disease 1
Ulcer disease 1
Mild liver disease 1
Diabetes without end organ damage 1
Hemiplegia 2
Moderate or severe renal disease 2
Diabetes with end organ damage 2
Malignant lymphoma 2
Leukemia 2
Any non-metastatic solid tumor 2
Moderate or severe liver disease 3
Acquired Immunodeficiency Syndrome (AIDS) 6
Metastatic solid tumor 6

At HNSC, only patients with more than two days of hospi-

talization were evaluated with the CCI. The patients’ age was

used in the weight system when the Charlson comorbidity

index was greater than or equal to 1. Patients who were

hospitalized only in the emergency or intensive care units

were not evaluated. Fig. 1 shows the CCI distribution in the

HNSC dataset from zero to 18.

There are several hospitalized patients with no severe co-

morbidities: the Charlson comorbidity index for 18 thousand

of them was zero. The CCI of most patients (30 thousand)

stood between 1 and 10. In our cohort study, in only 700

patients the CCI was higher than 10 units.

C. Feature Extraction

In this study, we included four types of natural language

processing features: two sets of simple TF-IDF features (Un-

igram and Multigram), a topic representation (LDA), and a

set of semantic representation of words (Word Embeddings).

Unigram: Here, at first we stemmed the words in the

corpus using the RSLP Stemmer algorithm [17]. Then, we

calculated the term frequency-inverse document frequency

(TF-IDF) of each unigram. At the TF-IDF training step, stop

7



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

5

10

15

20
·103

F
re

q
u
en

cy
(1

0
3
)

Figure 1. CCI Distribution at HNSC, where the x axis corresponds to the
total amount of patients and the y axis represents the Charlson comorbidity
index

words were removed, and each word value was normalized

with L1 normalization. We limited this features to the 5,000

most representative unigrams.
Multigram: In this approach, we performed the same

steps described above but also added bigrams and trigrams

with the 5,000 most representative grams.
Latent Dirichlet Allocation: LDA [18] is a generative

statistical model that relates each word in a document to a

topic, where a topic is a distribution over the set of distinct

vocabularies that were found in all documents. Therefore,

the content of a topic can be interpreted by verifying the

highest probability words in the vocabularies corresponding

to the topic. As each word in a document is assigned to a

topic, each document could be viewed as a mixture of many

topics used to generate that document. LDA was processed

with 100 topics, using 10,000 TF-IDF multigram features

for these experiments.
Word Embeddings: Word vectors are a way of mapping

words in a numerical space. A latent syntactic/semantic

vector for each word is induced from a large unlabeled

corpus. We used 21 million sentences from HNSC medical

records with Word2Vec [19]. The model was trained with

50 dimensions per word and 100 minimum word count.

This training resulted in 63 thousand word vectors used as

a semantic model in the neural network below.

D. Regression Algorithms

There is a variety of methods that could address the prob-

lem of predicting a real value to a document based on its text

features [20]. The list below describes the methods we chose

in our experiments. The choice took into account algorithms

that handle high dimensional data and run parallel jobs.

In all cases, we made a good faith effort to maximize

the performance of all methods. In our experiments, we

used Scikit-Learn machine learning implementations [21]

and Keras for deep learning algorithms [22].

Random Forest: This is a meta estimator that fits a

number of classifying decision trees to various sub-samples

of the dataset and uses averaging to improve the predictive

accuracy and control overfitting [23].

K-Neighbors: It implements learning based on the k
nearest neighbors of each query point, where k is an integer

value specified by the user [24]. Here we set k = 5.

Linear Support Vector Regression: Linear SVR imple-

mented using liblinear, providing more flexibility in the

choice of loss functions and penalties and being better scaled

to large numbers of samples [25].

Neural Networks: Deep learning algorithms are exten-

sively used in biomedical language processing tasks [26].

Neural network algorithms are often associated with word

vector representation. In our experiments, we evaluated two

types of neural networks commonly used for text processing:

Dense and Convolutional neural networks. Every network

starts with a embedding input layer for n-gram values and

word vector representation when using word embedding

features. The embedding layers are then concatenated and

fed into a neural network. We briefly describe the neural

network used below:

• Dense NN: a densely-connected layer with 128 neurons

and relu activation, using adam as optimizer and

mean squared error as loss function;

• Convolutional NN: a convolutional layer

with 128 neurons and relu activation, using

stochastic gradient descent as optimizer and

mean absolute error as loss function, and 5 as the

length of the convolution window;

All networks were trained over 20 epochs and a batch size

of 100. The output layer is a single dense neuron with relu
activation.

E. Evaluation

For each regression algorithm, we ran a cross validation

with ten stratified folds. The folds were made by preserving

the proportion of samples for each Charlson comorbidity

index. For every iteration, nine folds were used in the

training stage and one fold was used for model evaluation.

The mean for all validations was used as the algorithm score.

We chose the mean absolute error as the main metric to

evaluate the quality of the models.

We use a statistical accuracy metrics, Mean Absolute

Error (MAE), to report prediction experiments for it is most

commonly used and easy to understand. Less error means

that, in average, the algorithm predicted index is closer to

the expert actual index

F. Baseline

The baseline is a dummy algorithm that uses the mean

of the Charlson index for all instances as the value of all
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predictions. The mean of the Charlson index in our dataset

is 2.80, which generates a mean absolute error of 2.42, as

presented in Table III.

IV. RESULTS

We ran all methods against n-grams and LDA, but only

the Neural Networks allow the use of word embeddings.

The machine learning methods have no ability to process

word vector as a feature of the instances. Table III shows

the overall results of our experiments.

Table III
MEAN ABSOLUTE ERROR FOR EACH METHOD VS FEATURE

Unigram ↓ MultiGram LDA W.Emb. ↓
Dense NN 1.32 1.49 2.42 0.51
Random Forest 1.41 1.48 2.42 -
K-Neighbors 1.74 2.04 2.66 -
Linear SVR 1.72 2.15 2.40 -
Convolutional NN 2.41 2.43 2.41 1.36
Baseline 2.42 2.42 2.42 2.42

The best deep learning method, Dense Neural Network

(DNN) achieved a mean absolute error of 0.51 using word

embedding features. The deep learning methods had a poor

performance using n-gram features. Besides the result, DNN

requires some overhead: word embeddings need a vast

amount of text to train the word vector representation, and

the training time of DNN is exponential, higher than the

machine learning methods.

As the best classical machine learning algorithm was

Random Forest (RF), an ensemble of decision trees with a

mean absolute error of 1.41 using unigram features. Random

Forest is a good alternative for CCI regression when there is

less amount of text to train. The LDA topics approach also

got worse results in our experiments for all methods.

A. N-Gram Vocabulary Size

An interesting evaluation for n-gram features is to mea-

sure the decrease of the CCI error compared to the number

of n-gram features. In Fig. 2, we show the performance of

Random Forest algorithms related to the types of n-grams

(unigram, bigram, trigram, and multigram) and vocabulary

size.

Fig. 2 shows the Random Forest performance for each

size of the n-gram vocabulary. When using Unigram, the

error difference does not change much after 3.5 thousand

words. It is important to evaluate this characteristic to avoid

feature overhead.

V. DISCUSSION

Results of this study point to the validity and feasibility

of the regression method for identifying the Charlson co-

morbidity index (CCI) in clinical notes. We were able to

calculate the CCI with minimal error using natural language

processing (NLP) features, without the need for specialized
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Figure 2. Random Forest Results using N-Gram Features

software to process the texts. As a Charlson comorbidity

index prediction, this method can potentially allow auto-

mated predictions of patients’ outcomes including disability,

mortality, length of stay, and readmission [27].

Figure 3. Dense Neural Network Prediction versus CCI Values Defined
by Specialists.

Fig. 3 shows the prediction distribution for CCI using

Dense Neural Network. Charlson indices higher than 14

were discarded in the figure due to low data density. The

chart shows that the error of this method usually stood below

the reference standard. The blue circles at zero prediction

values and Charlson values 1, 2, 3, 4, and 6 are an effect of

the relu activation function in the Dense Neural Network.

Fig. 4 shows the mean absolute errors for each Charlson

comorbidity index. The amount of data shown in Fig. 1

is inversely proportional to the mean error. Imbalanced

class distribution of a dataset is a serious difficulty for

most learning algorithms that assume a relatively balanced

distribution [28].

A. Relevant Words

Table IV highlights the most prominent words for the

Charlson comorbidity index in clinical notes extracted from
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Figure 4. Mean Absolute Error for Each Charlson Comorbidity Index

the Random Forest model. These words are the most heavily

weighted words, indicating higher CCI values for these

patients.

Table IV
TOP 15 MOST RELEVANT WORDS

Word Description
Oncology Department where treat tumor patients
Immunodeficiency Acquired Immunodeficiency Syndrome (AIDS)
Staging Metastatic or non-metastatic solid tumor
DM Diabetes
AIDS Acquired Immunodeficiency Syndrome (AIDS)
CD4 Immune cell surface, related to AIDS
CRF Chronic Renal Failure
Cirrhosis Moderate or severe liver disease
Diabetes Diabetes
Palliative Palliative care
SAH Systemic Arterial Hypertension
Neoplasm Metastatic or non-metastatic solid tumor
Malignant Metastatic or non-metastatic solid tumor
Stroke Cerebrovascular Disorders
COPD Chronic Obstructive Pulmonary Disease

As expected, the most relevant words are terms related to

AIDS (CD4, AIDS, Immunodeficiency) and metastatic tu-

mors (Oncology, Staging, Neoplasm, Malignant). The terms

”DM” and ”Diabetes” show a common disease in hospital

patients, which is a risk factor for several other diseases,

such as cardiovascular and cerebrovascular diseases. Car-

diovascular disease is the main cause of death and disability

among patients with diabetes mellitus [29]. Patients in

palliative care are patients who have terminal diseases, with

poor prognosis. All terms are related to poor prognosis,

representing an increase in the Charlson comorbidity index.

VI. CONCLUSION

We were able to derive Charlson comorbidity index auto-

matically from clinical notes using regression methods and

textual features with minimal error. This approach could be

replicated at other hospitals with the same type of labeled

dataset. It is language independent, with no need for licensed

software. The Dense Neural Network with Word Embedding

outperforms the other methods, but Random Forest with

Unigrams could also be a suitable alternative in datasets

with lower clinical note density (no enough text to train

word vectors). The Portuguese pre-trained word vectors for

clinical notes and all experiments are reported at the project’s

GitHub page1 for more details. The main advantages of

our method are: assisting healthcare professionals in CCI

assignment and using an automated method to derive CCI

at hospitals and clinics with electronic health records but no

CCI specialists.

Further work could investigate other feature extraction

methods as well as other neural network configurations

that improve CCI derivation. Character-level and sentence-

level models had good performance in Convolutional and

Recurrent neural networks for natural language processing.

Another experiment should concern on the independence

or dependence of the proposed model from the underlying

dataset. Also, the same approach could be evaluated to

extract ICD and SNOMED codes from clinical notes.
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