Return-to-One Protocol for Reducing Static Power in

C-Elements of QDI Circuits Employing m-of-n Codes

Matheus T. Moreira, Ricardo A. Guazzelli, Ney L. V. Calazans

Faculty of Computer Science - Pontifical Catholic University of Rio Grande do Sul — PUCRS - Porto Alegre, Brazil
{matheus.moreira, ricardo.guazzelli} @acad.pucrs.br, ney.calazans@pucrs.br

Abstract—The scaling of microelectronic technologies brings
new challenges to the design of complex SoCs. For example,
fully synchronous SoCs may soon become unfeasible to build.
Asynchronous design techniques increasingly mingle within
SoC design procedures to achieve functional and efficient
systems, where synchronous modules are independently
designed and verified. This is followed by module integration
by means of asynchronous interfaces and communication
architectures, forming a globally asynchronous, locally
synchronous (GALS) system. Among multiple asynchronous
design styles, the quasi delay insensitive (QDI) stands out for
its robustness to delay variations. When coupled to delay
insensitive (DI) codes like m-of-n and to four-phase handshake
protocols, the QDI style produces the dominant asynchronous
template currently in use. This work presents a technique to
reduce the static power consumption of asynchronous QDI
circuits using any m-of-n code and a four-phase handshake
protocol, by proposing the utilization of a non-classical spacer
encoding, namely all-1s. The article shows that the use of the
traditional all-0s spacers may lead to static power
consumption figures that are in some cases more than twice
larger than the static power consumed by all-1s spacers in C-
elements, the most common device used in asynchronous
templates. Experiments demonstrate the new spacer reduces
static power consumption without increase in complexity.

Keywords-component; Asynchronous circuits, QDI, m-of-n
codes, delay-insensitive codes, four-phase protocols, C-elements

L INTRODUCTION

Asynchronous design techniques are becoming common
in very large scale integration (VLSI) circuits. These help
overcoming difficulties emerging in deep submicron (DSM)
CMOS technology nodes like 45, 28nm and below that lead
to over-constrained synchronous systems. In fact, according
to the ITRS in its 2009 edition [1], a key challenge in
modern IC design is the distribution of a single clock signal
throughout the chip to control the whole circuit. Therefore, a
shift on VLSI design paradigm seems inevitable.

Current technologies allow the implementation of
systems on a chip (SoCs), comprising a large amount of
intellectual property cores (IP cores) interconnected through
specialized communication architectures. Each of these IP
cores may employ particular standards and/or protocols and
present varying design constraints. Often, the requirements
for each IP core determine the use of specific
communication protocols and/or operating frequencies.
These requirements make the design of SoCs easier if
implemented with multiple frequency domains. However, to

978-1-4673-2608-7/12/$31.00 ©2012 IEEE

guarantee correct communication between distinct
frequency domains, asynchronous interfaces are mandatory.
SoCs that employ different frequency domains with
asynchronous interfaces to communicate at system level are
called globally asynchronous locally synchronous (GALS)
[2]. In addition to the use of point-to-point asynchronous
interfaces, current literature pledges the wuse of
systematically built SoC communication architectures,
giving rise to the well accepted concept of networks on chip
or NoCs [3]. Although NoCs can be built as synchronous
subsystems, its chip-wide nature and time locality (every
part of a NoC is typically active for low periods of time)
indicate that asynchronous implementations can be
advantageous in terms of performance and/or power, as
already showed in some recent works, like e.g. in [4].

The QDI design style is attractive for the design of
asynchronous circuits for many reasons, but especially for
enabling simple timing closure and analysis [5]. Designing
with QDI requires the use of delay insensitive (DI) codes
[6]. Albeit a wide variety of such codes exist, just a few are
practical in CMOS design [5]. Currently, the class of m-of-n
codes is used with predominance. Specific codes used very
often are the dual-rail (or 1-of-2 for each data bit) code and
the 1-of-4 code for each data bit. It is necessary to add a
selection of handshake protocol to an asynchronous design
style and a code, in order to obtain an asynchronous design
template. Such templates may substitute the synchronous
design template. The most popular asynchronous handshake
protocol is the 4-phase, due to its reduced design complexity
and robustness. Given an asynchronous design template as a
triple (style, code, handshaking protocol), it is possible to
define a set of basic handshake components to design
circuits with this template, just as RTL components
(registers, multiplexers, demultiplexers, decoders, arithmetic
operators, etc.) allow the design of circuits with the
synchronous design template. As RTL components are built
from logic gates, asynchronous templates also rely on logic
gates, which quite frequently need to be enhanced with two
other component types: metastability filters, to avoid or to
delimit the occurrence of synchronization failures, and C-
elements, that help dealing with independent events’
synchronization. While metastability filters appear only in
very specific places, C-elements are widespread in QDI
circuits, typically occupying more than 60% of the standard
cell area of modules [7]. A successful example of
asynchronous design is in networks-on-chip (NoC) based on
asynchronous routers. These were recently proposed to
support the design of GALS SoCs, as described in [8], [9],

Mauricio Ayala Rincon
978-1-4673-2608-7/12/$31.00 ©2012 IEEE

Mauricio Ayala Rincon

[10] and [11]. Most of these employ an asynchronous
template based on a QDI style and some m-of-n code. As C-
elements are a big portion of the total router silicon area,
circuit quality directly relates to C-elements quality.

In this era of mobile, battery-based products, power
consumption is a major figure. In the past, ignoring static
power, due to its relative insignificance in face of the
magnitude of dynamic power consumption, was sound.
However, DSM nodes testify an exponential growth of static
power consumption [12] and as well as a change in the
static-dynamic power balance.

This work presents the results of a study that managed to
reduce static power consumption of C-elements by more
than 50% in asynchronous circuits employing an
asynchronous template based on QDI m-of-n codes and 4-
phase handshake protocol. Obtaining this reduction depends
on a slight change in the handshake protocol only.
Moreover, the change adds no design complexity and
implies no loss of performance.

The rest of this paper is organized in four sections.
Section II describes some basic concepts about
asynchronous circuits. Section III discusses related work
and presents the proposed technique to reduce static power
consumption. Section IV describes simulations that validate
the technique and discusses results. Finally, Section V
presents conclusions and direction for further work.

II. ASYNCHRONOUS CIRCUITS CONCEPTS

A digital circuit is synchronous if its structure implies
the use of a single clock signal controlling all circuit events.
Otherwise it is called non-synchronous. As a special case, a
digital circuit is asynchronous when no clock signal is used
to control any sequencing of events. These employ explicit
handshaking among their components to synchronize,
communicate and operate [13]. Characterizing an
asynchronous design requires the choice of: (i) a delay
model, (i) a code to represent information, (iif) a handshake
protocol, and (iv) a set of basic components. Each of these is
explored in the rest of this Section.

Asynchronous circuits can be classified according to
several criteria. One important criterion is based on the
delays of wires and gates. The most robust and restrictive
delay model is the DI model, which operates correctly
regardless of gate and wire delay values. Unfortunately, this
class is too restrictive. The addition of an assumption on
wire delays in some carefully selected forks enables to
define the QDI circuit class. Here, signal transitions occur at
the same time only at each end point of the mentioned forks,
which are called isochronic forks. Usually, the set of basic
components of an asynchronous design is created to
incorporate all isochronic forks needed to guarantee delay
insensitivity. Thus, design may ignore delays altogether.

There are different ways to encode information to
adequately support delay models that communicate through
handshake protocols. The use of regular binary encoding of
data implies the use of separate request-acknowledge
control signals. While this makes design straightforward for
those used to synchronous techniques, timing restrictions

between control and data signals need to be guaranteed at
every handshake point, making design of large circuits non-
scalable. As an alternative, DI encodings [6] are robust to
wire delay variations, because request signals are embedded
within data signals. An example is the class of m-of-n codes
[6]. Given n and m, with m<n, an m-of-n code consists in
the set of all n-bit code words with Hamming weight (i.e.
the number of bits in 1 in the code word) equal to m. For
example, the well-known one-hot codes are I-of-n codes.
The use of m-of-n codes coupled to a protocol that
establishes how valid codes succeed one another in a data
flow allows obtaining communication with absolute
insensitivity to delay variations in individual wires.

Handshake protocols can be either 2-phase or 4-phase
[13] both illustrated in Figure 1. Usually 2-phase protocols
operate faster, but require more hardware than 4-phase
protocols. The latter requires that after each data
transmission wires return to a fixed logic state, the so-called
spacer, which is not a valid code word in the used code.
While a 4-phase protocol increases the time to propagate
values, it reduces control complexity. This is the most
commonly used protocol.

One approach to achieve delay insensitivity consists in
representing each data bit in a circuit by a pair of wires, in
what is called dual-rail (DR) encoding (i.e. each bit is
represented by a /-of-2 code). Let d.t (data true or /) and d.f
(data false or 0) be the names of two wires representing a
single data bit. One example of 2-phase handshake using a
1-bit dual-rail encoding appears in Figure 1(a). Here, a
transition in wire d.f signals a logical 0 value, which is
recognized by a transition in the signal acknowledge (ack).
A transition in d.¢ signals a logical 1 value, which is again
acknowledged by a transition in ack. Other 2-phase protocol
implementations exist [13]. Note the protocol requires that
d.t and d.f never transition at the same time, and that a
subsequent transition in a wire can only occur after a
transition in the ack signal. Also, in this 2-phase protocol,
the data encoding varies in time. Transitions on specific
wires represent data, in a clearly glitch-sensitive scheme.
This requires careful logic design and because of this may
incur in significant hardware overhead.

Figure 1. Examples of 2-phase (a) and 4-phase (b) handshake protocols.

Figure 1(b) shows an example 4-phase protocol using
dual-rail encoding. Logical levels in wires uniquely identify
data bit values. A widely adopted subclass of m-of-n codes
is dual-rail (DR). Each dual-rail code is in fact a proper
subset of some m-of-2m code. This code uses two wires to
represent each bit of an m-bit code word. Again, let d.7 and
d.f'be the names of two wires representing one bit of some
DR code. Valid bit values are always valid code words of
the 1-of-2 code (“01” for bit 0 and “10” for 1). However,
after a value is acknowledged, all wires must return to a

predefined value, here the all-Os spacer. The spacer itself is
an invalid DR code word. This protocol is denominated
return to zero or RTZ. In Figure 1(b), the first
communicated data value is a logical 0, encoded by d.t=0
and d.f=1. After the value is acknowledged by a low-to-high
transition in the ack signal, a spacer is issued, in this case
d.t=0 and d.f=0. Next, the ack signal switches to O,
signaling reception of the spacer, and a new transmission
may occur. Any 4-phase protocol requires spacers when
using m-of-n codes. Figure 2 shows the RTZ conventions.

Value d.t d.f
Spacer 0 0
Logical 0 0 1
LocI;icaI 1 1 0
() (b)

Figure 2. Example of (a) 4-phase DR encoding and (b) values transition.

Asynchronous design templates can greatly benefit from
the availability of basic components other than ordinary
logic gates and flip-flops available in current standard cell
libraries. These include e.g. special registers, event fork,
join and merge devices, as well as metastability filters.
Although most of these may be built from logic gates, this is
inefficient. A fundamental device that enables to build
several such elements more effectively is the C-element.
The importance of C-elements is the fact that they may help
in the synchronization of independent events. Figure 3(a)
depicts the truth table and Figure 3(b) shows a transition
diagram for an ordinary 2-input C-element. Its output
switches only when all inputs have the same logical value.
When inputs A and B are equal, output Q assumes this same
value. However, when inputs are different, the output keeps
the previous logic value. The asynchronous state transition
diagram of Figure 3(b) for the C-element has vertices
containing values of inputs and output in the order ABQ;.

A|B|Q
0/0]0
0] 1]Q
1 0 |Qiq
111 1
(a) (®)

Figure 3. Simple 2-input C-element specification: (a) truth table, and (b)
asynchronous state transition diagram.

III. THE RETURN-TO-ONE PROTOCOL

A. C-elements in QDI asynchronous templates

The quality of circuits built using asynchronous
templates depends greatly on the quality of the C-elements
provided to implement it. For simplicity sake and without
loss of generality with regard to any other m-of-n code, this
paper assumes the use of DR codes. In QDI asynchronous
DR circuits based on 4-phase handshake (QD4), registers
are based on C-elements [14] [15], as Figure 4 shows.

RST REQ
Qo_t
DO_t ﬁ@;
Qo_f
DO_f —(@;
Qn-1_t
Dn-1_t —(@;
Qn-1_f
Dn-1_f —(;6);

Figure 4. Example of a C-element based DR register.

The RST signal ensures that all outputs are initiated at a
well defined logical value, typically the spacer, often
represented by the all-Os value. Then, available data,
represented in wires Di ¢t and Di f, for 0<i<n-1, is only
propagated to the outputs Qi ¢ and Qi fafter the REQ signal
is issued. For instance, assume that the depicted register has
a spacer in its output. According to Figure 2(a), all output
signals are at logical 0. Now, imagine that a valid data bit i
appears at the inputs. If it is a logical 0, the Di f wire is at
logical 1, which propagates as soon as the REQ signal is set
to logical 1. However if the data bit is a logical 1, Di ¢ is the
wire that will switch to logical 1 and its value is propagated
once REQ assumes a logical 1 value.

To implement Boolean functions without losing the
delay insensitivity property, different component schemes
can be employed for asynchronous circuits in general and
specifically for QD4 circuits. One of the most used, due to
its simplicity, is the delay insensitive minterm synthesis
(DIMS) [13]. In this approach, all minterms of the input
variables are generated by C-elements and are then
combined to perform a given function, similar to two-level
logic implementations used e.g. in PLAs. For example,
Figure 5 presents a QD4 DIMS half adder schematic.

Af MO0
C
B_f
Af c MO1
Bt S_t
At c M10
B_f

At M11
B_t
Figure 5. Example of DIMS half adder.

All minterms are generated by the C-elements and the
outputs are computed through OR gates. S f must be at
logical 1, identifying a logical 0 value in the sum, only when
both inputs A and B have the same value, which mean that
either MOO or M11 will be at logical 1. When inputs have
different values, identifying a logical 1 value in the sum, S t

will be at logical 1. The carry signal is computed in a similar
way. Although DIMS implies a large amount of hardware to
compute each minterm, it is widely used. In DIMS, C-
elements do play a major role in circuit logic.

B. Problem Statement and Proposed Technique

During the development of ASCEnD [16], a standard
cell library for asynchronous circuits in 65nm CMOS
technology, the static power consumption of three different
implementations of a 2-input C-element was characterized
for each combination of input values. The implementations
were Martin’s, proposed in [14], Sutherland’s, proposed in
[17] and the van Berkel C-element, proposed in [18]. For all
these components, the static power consumption for a
logical 0 in the output was at least 70% larger than the one
measured when the output was fixed at logical 1. In view of
this observation, it is expected that an asynchronous circuit
in idle state, i.e. with all C-elements with a spacer in its
outputs, may have the static power consumption of all C-
elements reduced significantly if the spacer is encoded by
all wires at logical 1, instead of all wires at logical 0. The
modification does not imply in increased design complexity
nor reduces circuit performance’.

! C_t
4‘—J !

Af MO0
C
B_f
Af MO1
‘ C
B_t
At M10
B_f
At M11
C
B_f

C_f

Figure 6. Example of a modified DIMS half adder.

For example, the register showed in Figure 4 can be
easily modified to accept the all-1s spacer, if its RST signal
sets the output to logical 1 and the REQ signal is active low.
Moreover, the DIMS half adder showed in Figure 5 can also
be easily modified by swapping the true and false wires of
the carry and sum bits and replacing the OR gates by ANDs,
as Figure 6 illustrates. A spacer composed by the all-1s
encoding represents the proposed Return-to-One (RTO)
protocol. Due to the fact that asynchronous circuits are only
active when and where required, when the circuit is active,
some blocks are computing and some blocks are quiescent.
This means that even when the circuit is operating, a portion
of its C-elements will have spacers on their outputs. Thus,
the use of RTO reduces not only the power consumed by the
circuit in idle state, but also while the circuit operates.

C. Related Work

As far as the authors could verify, there is no work in the
literature making use of a different value of spacer to lower

! Note that as usual, the ASCEnD library was designed to provide
symmetric excursion between 0 to 1 and 1 to 0 transitions in all of its cells,
to provide predictable performance figures.

power consumption of (asynchronous) circuits. However,
the authors found three works where the all-1s spacer is
used to achieve robust cryptographic hardware.

In [19], the authors propose a dual-spacer protocol,
where each data value is between two different spacers: the
classic all-Os spacer and an all-1s spacer. According to [19],
the single spacer scheme proved to fall short in balancing
the switching activity between rails, which leads to a
cryptographic core vulnerable to side-channel analyses, like
power and electromagnetic attacks. Results showed high
robustness to these attacks can be obtained by using the
dual-spacer scheme. The drawback is the increased
overhead in area and power consumption. In [20], a similar
work was conducted. Authors present results measured in a
prototype AES cryptographic core designed with standard
EDA tools, which employ the same dual-spacer technique.
Results show that the technique provides high robustness to
attacks and a high cost in circuit area. Similarly, in [21]
authors use the all-1s encoding to represent an alarm state to
obtain a balanced implementation.

IV. EXPERIMENTS AND DISCUSSION

An analysis of the electrical characterization of three
implementations of C-elements conducted during the design
of the ASCEnD library revealed that when all inputs are at
logical 0, static power dissipation was at least 70% larger
than when they were at logical 1. Moreover, in some cases it
was 100% as large. Table I shows the static power of C-
elements measured by electrical simulation for a 65nm
CMOS process in typical fabrication corner (25°C, 1V) for
two different scenarios: inputs at logical 0 and at logical 1.

TABLE L STATIC POWER CONSUMPTION IN C-ELEMENTS WHEN INPUTS

ARE AT THE SAME LOGICAL LEVEL.

Static Power (nW)

C-element | Logical 0 |Logical 1 Savings

Sutherland| 61.703 30.894 50%
Martin 66.858 39.107 42%

van Berkel | 57.926 28.425 51%

In this experiment, the three employed C-elements had the
same driving strength. As apparent from the results, a spacer
signaled by all-Os presents, in the worst case, an overhead of
over 100% in static power consumption when compared to a
spacer signaled by all-1s.

As explained before, most methods for implementing
Boolean functions in QDI asynchronous circuits rely on C-
elements. Registers, in turn, need C-elements with a control
signal that guarantees that their output will have a fixed and
predefined value in the initial state, usually the spacer value.
The structure of the evaluated C-elements or any other C-
element variation can usually be divided into the blocks (0),
(1) and (2), as displayed in Figure 7. Block (0) is the
inverted logic function, block (1) is the output inverter and
block (2) is the state keeper. Block (1) is responsible for
driving (charging/discharging) the output load, while block
(0) is responsible for setting the value of the internal node,
which feeds the output inverter. Block (2) implements the
memory mechanism that holds previous values.

Figure 7. CMOS schematic of the employed C-elements: (a)
Sutherland’s, (b) Martin’s and (c) van Berkel’s.

To generate the initial state for an RTZ protocol-based
circuit, a resettable C-element is employed. This component
can be easily built by adding an NMOS and a PMOS
transistor in a typical C-element. Connecting external
PMOS and NMOS transistors as Figure 8(a) shows to
blocks (0) and (2), a resettable C-element is obtained.

and settable C-elements were simulated for both RTO and
RTZ protocols. As the chart shows, in fact, a resettable C-
element is in most cases more efficient in terms of static
power consumption than a settable C-element for the RTZ
protocol. The settable C-clement, in turn, consumes less
static power than its resettable counterpart for the RTO
protocol. Furthermore, a resettable C-element in RTZ
protocol consumes at least 50% more static power than a
settable C-element in an RTO protocol. These results are
summarized in Table II. As Table II also shows, employing
settable C-elements for an RTO protocol leads to at least
35% of savings in static power consumption, when
compared to a resettable C-element for an RTZ protocol.
Moreover, in the best cases savings may reach nearly 50%.
Because in m-of-n codes-based circuits registers are
basically composed by C-elements, and this static power
reduction can lead to substantial savings in the register
power consumption.
TABLE II. A STATIC POWER CONSUMPTION COMPARISON FOR

RESETTABLE (RST) C-ELEMENTS IN RTZ PROTOCOLS AND SETTABLE
(SET) C-ELEMENTS IN RTO PROTOCOLS.

A c-ttoment Static Power (nW) Savinas
B— giock() AT ¢ Element C-element type |RST/RTZ | SET/RTO g
Bloc&k(z) BT Biock() Sutherland’s 60.101 31.260 48%
B,o‘:k(z) Martin’s 71.975 46.637 35%
SET van Berkel's 66.603 35.466 47%

RSTi
(a)

Figure 8. Initialization schemes for C-elements: (a) resettable C-element;
(b) settable C-element.

To generate a logical 1 in the C-element output as initial
state, for RTO, a settable C-element is required. This can be
obtained by connecting PMOS and NMOS transistors with
blocks (0) and (2) as Figure 8(b) depicts.

A comparison of the effects of the RTZ and RTO
protocols in the power consumption of resettable and
settable C-elements was performed, by simulating these
components in the same 65nm CMOS technology used in
the previous evaluation, for a typical fabrication process at
25°C and 1V. Results appear in Figure 9, where resettable

120

A 50% reduction in the static power consumption may
represent a large economy in total power consumption,
particularly in current technology nodes, where static power
can be constraining [21]. For instance, in the case study
presented in [7], C-elements consumed over 60% of the
total area of a DR asynchronous cryptographic RSA core.
Moreover, the static power consumption of the circuit
reached 30% of the total power consumption. In this
context, reducing the static power consumption would have
a substantial impact in the total power consumption of the
circuit. Furthermore, given the proportion of the total area
required by C-elements, if the proposed RTO protocol was
applied, the static power at the core level could be
significantly reduced. In this way, total power consumption
of the integrated circuit (IC) would also be reduced.

107.68 i
_ mRST SET ’ 106,58 L02.02
g 1l
_:_1(0 35.57
s 0 74.50
a5 a6.60
£ 60.10
= "
§ 60 “Eak 46.63
(o] 35.46
5 0 - 3120
3
a 20 - —_—
&
ﬁ D T T T T
Suth. RTZ Suth. RTO IMartin RTZ Martin RTC Berk. FTZ Bark. PTO

Figure 9. Static power consumption for three implementations of a C-element with set and reset control signals for RTO and RTZ protocols. Suth. stands
for Sutherland’s and Berk. for van Berkel’s. RST stands for resettable and SET for settable C-elements.

Finally, as explained before, in the proposed RTO
protocol no complexity is added to circuit design and there
are no losses in performance in terms of speed. More
importantly, dynamic power consumption is not increased
either. This is because there is no change in the transitions
for valid signals. In both protocols, RTZ and RTO, valid
data is issued by two events: a high-to-low and a low-to-
high transition in the output. The order of these events
depend on the protocol but do not change the total dynamic
power consumed or the total propagation delay of each valid
signal communication. For instance, in the RTZ protocol,
valid data is issued by a low-to-high transition in the output
of e.g. a register. Once it is acknowledged, follows a high-
to-low transition in the same output of the register, to
indicate the spacer. In the RTO protocol, communication
happens the other way. Valid data is issued by a high-to-low
transition. Once acknowledged, valid data is followed by a
low-to-high transition in the same wire to represent the
spacer. Therefore, valid code words in m-of-n codes that
employ the RTO protocol are issued with high-to-low
transitions.

V. CONCLUSIONS

This work proposed a method able to reduce static
power of C-Elements by more than 50%. This represents
solid power savings in current technologies, where static
power consumption takes an increasing portion of total
power consumption. Besides, in asynchronous circuits,
where even when the circuit is operating some parts of it are
quiescent, static power consumption represents a large
portion of the overall power.

All presented results were obtained through electrical
simulations of previously designed C-elements in a 65nm
CMOS technology validated after physical layout
extraction. C-elements are basic blocks in asynchronous
circuit design and represent up to 60% of the total area
required by standard cells in a complex module. In more
advanced nodes like 45nm and 28nm, power savings in
asynchronous modules are expected to be larger.

Future work includes detailed analysis of complex
asynchronous integrated circuits that employ the proposed
technique, in order to measure its efficiency at system level.
Moreover, different benchmark circuits that employ these
components will be evaluated, to identify where they are
more critical and how to achieve greater total power
reductions using the RTO protocol. Another future work is
associating RTO with other m-of-n codes and evaluating the
resulting implementations.

ACKNOWLEDGMENTS

This work 1is partially supported by the CAPES-
PROSUP and FAPERGS (under grants 11/0455-5 and
11/1445-0). Ney Calazans acknowledges CNPq support
under grant 310864/2011-9. Authors acknowledge support
granted to the INCT-SEC (National Institute of Science and
Technology — Critical Embedded Systems — Brazil), process
no. 573963/2008-8.

REFERENCES

[1] International Technology Roadmap for Semiconductors. “Design
Section”, 2009, available at http://www.itrs.net.

[2] D. Chapiro. “Globally Asynchronous Locally Synchronous
Systems”. PhD Thesis, Stanford University, 1984, 134p.

[3] A. Agarwal, C. Iskander, and R, Shankar. “Survey of network on
chip (NoC) architectures & contributions”. Journal of Engineering,
Computing & Architecture, vol. 3(1), 2009, 15p.

[4] L Miro-Panades, F. Clermidy, P. Vivet, and A. Greiner. “Physical
implementation of the DSPIN network-on-chip in the FAUST
architecture”. In: NOCS’08, 2008, pp. 139-148.

[5] W. J. Bainbridge, W. B. Toms, D. A. Edwards, and S. B. Furber.
“Delay-insensitive, point-to-point interconnect using m-of-n codes”.
In: ASYNC'03, 2003, pp. 132- 140.

[6] T. Verhoeff. Delay-insensitive codes- an overview. Distributed
Computing, vol. 3(1), 1988, pp. 1-8.

[7] M. T. Moreira, B. S. Oliveira, J. J. H. Pontes, F. G. Moraes, and N.
L. V. Calazans. “Impact of C-elements in asynchronous circuits”. In:
ISQED"12, 2012, pp. 438-444.

[8] R. Dobkin, R. Ginosar, and A. Kolodny. “QNoC asynchronous
router”. Integration the VLSI Journal. Vol. 42(2), 2009, pp. 103-115.

[9]1 E. Beigné, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin. “An
asynchronous NoC architecture providing low latency service and its
multi-level design framework”. In: ASYNC'05. 2005, pp. 54-63.

[10] S. Hollis and S. Moore. “RasP: an area-efficient, on-chip network”.
In: ICCD’06, 2006, pp. 63-69.

[11] J. J. H. Pontes, M. T. Moreira, F. G. Moraes, and N. L. V. Calazans.
“Hermes-AA: a 65nm asynchronous NoC router with adaptive
routing”. In: SOCC’10, 2010, pp. 493-498.

[12] B. Deepaksubramanyan and A. Nuifiez. “Analysis of subthreshold
leakage reduction in CMOS digital circuits”. In: NVSD’07, 2007.

[13] J. Sparse and S. B. Furber. “Principles of asynchronous circuit
design — a systems perspective”. Kluwer Academic Publishers,
Boston, 2001, 360 p.

[14] A. J. Martin. “Formal program transformations for VLSI circuit
synthesis”. In: Formal Development of Programs and Proofs, E. W.
Dijkstra, Editor, Addison-Wesley, 1989, pp. 59-80.

[15] E. Yahya and M. Renaudin. “QDI latches characteristics and
asynchronous linear-pipeline performance analysis”. TIMA
Technical Report TR 06/06-03, 2006, 11 p.

[16] M. T. Moreira, B. S. Oliveira, J. J. H. Pontes, F. G. Moraes, and N.
L. V. Calazans. “Adapting a C-element Design Flow for Low
Power”. In: ICECS'11, 2011, pp. 45-48.

[17] L Sutherland. “Micropipelines”. Communications of the ACM. Vol.
32, 1992, pp. 720-738.

[18] K. van Berkel. “Beware the isochronic fork”. Integration, the VLSI
Journal, vol. 13(2), 1992, pp. 103-128.

[19] W. Cilio, M. Linder, C. Porter, J. Di, S. Smith, and D. Thompson.
“Side-channel attack mitigation using dual-spacer dual-rail delay-
insensitive logic (D3L)”. In: SoutheastCon’10, 2010, pp. 471-474.

[20] J. Murphy and A. Yakovlev. “An alternating spacer AES crypto-
processor”. In: ISSCC’06, 2006, pp. 126-129.

[21] S. Moore, R. Anderson, R. Mullins, G. Taylor, J. J. A. Fournier.
“Balanced self-checking asynchronous logic for smart card
applications”. Microproc. and Microsys., vol. 27, 2003, pp. 421-430.

[22] N. Ekekwe. “Power dissipation and interconnect noise challenges in
nanometer CMOS technologies”. IEEE Potentials, vol. 29(3), 2010,
pp. 26-31.

