PARITY CHECK FOR M-OF-N DELAY
INSENSITIVE CODES

Julian Pontes'?, Ney Calazans', Pascal Vivet?

Faculty of Informatics - FACIN, - PUCRS!
Porto Alegre, RS, Brazil
ney.calazans@pucrs.br

Abstract—The advance in deep submicron technologies brings
new constraints to circuit design such as variability and
sensitivity to soft errors. Asynchronous networks on chip can
help coping with some of these constraints due to the timing
robustness of design paradigms such as the quasi delay
insensitive one. A relevant problem of current fully asynchronous
networks on chip is the lack of mechanisms to provide error
detection and correction in asynchronous data communication.
This work proposes a parity scheme applicable to m-of-n delay
insensitive codes, which is capable to correct errors caused by
single event effects in delay insensitive communication
architectures. The proposed mechanism was evaluated in a 65nm
technology where it is able to correct 98% of the errors caused by
single event effects with a low overhead in terms of area, power
and performance.

Index Terms—soft error, single event effects, GALS, delay
insensitive codes, network on chip, error correction.

1. INTRODUCTION AND RELATED WORK

Synchronous circuits work at a frequency defined
according to worst case timing assumptions, plus some extra
timing margin to compensate effects such as clock skew and
jitter, environmental effects and variability. Due to such
aspects, the aggressive scaling of a unique clock to increasingly
higher frequencies is no longer feasible in advanced deep
submicron technologies [10].

The clock distribution restriction has led to the
popularization of the Globally Asynchronous Locally
Synchronous (GALS) paradigm, which allows the construction
of complex systems on chip (SoCs) with local synchronous
islands interconnected by asynchronous communication
mechanisms [6]. Networks on chip (NoCs) are a trend in the
design of such components, since they facilitate the scalability
and exploration of parallelism, when compared to bus based
communication architectures. Additionally, asynchronous
NoCs have recently shown their benefits when compared to
their synchronous counterparts to build future many-core
architectures, in terms of both performance and power [7].

One of the next challenges for such asynchronous
communication architectures is reliability, in the form of
robustness to single event effects (SEEs). SEEs occur when
particles hit the silicon, generating electrons-hole pairs [11]. If
the victim node is in reversed bias, the electrical field of this
node can collect the generated charge and create a bit flip.

978-1-4799-0664-2/13/$31.00 (©2013 IEEE

CEA-LETI?
Grenoble, France
{julian.hilgembergpontes, pascal.vivet} @cea.f

Technology downscaling continuously increases the logic
sensitivity of silicon devices to such effects [I1].
Asynchronous circuits have shown better response under SEEs
than their synchronous counterparts [4] [16].Contrary to what
happens in synchronous circuits, delay variations induced by
radiation usually have no impact on asynchronous quasi-delay
insensitive (QDI) circuits. However, bit flips may corrupt data
transmissions and stall the circuit with no recovery solution.

In synchronous NoC implementations, data protection can
employ retransmission schemes applicable between routers and
end-to-end (between senders and receivers) [8] [12]. Another
way to prevent data errors in NoC links is using Forward Error
Correction (FEC) as proposed e.g. in [17] and [8]. Yu and
Ampadu [20] present router-to-router and end-to-end data
correction techniques. However, due to the migration from
fully synchronous to GALS circuits, asynchronous NoCs are
becoming a wusual communication architecture choice.
Asynchronous implementations are able to deliver high
throughput with less dynamic power consumption. Moreover,
immunity to delay variations in NoCs that employ DI Codes
make then a good option for advanced node technologies.
However, the asynchronous NoC implementation can be very
sensitive to bit flips caused by soft errors and there are just a
few works that treat error correction in DI encoding.

The work of Agyekum and Nowick [1] proposes an
unordered DI code enabling two-bit error detection and one-bit
error correction capabilities. However, this code is difficult to
implement in a fully QDI way, which makes it hard to use in
fully asynchronous NoCs. Bainbridge and Salisbury [3] present
a set of techniques to apply to QDI Networks on chip links,
particularly for links based on m-of-n encoding, to reduce
glitch sensitivity. But these techniques are limited to filtering
some glitches at the NoC link wires. None of them is adequate
for soft errors and none offers data error correction. Pontes et
al. [15] proposed the Temporal Redundancy Delay Insensitive
Code (TRDIC) Code. This code is obtained by converting a 1-
of-n code to a 2-of-n+1 code, by using the extra valid
codewords of the new code to add temporal redundancy.
TRDIC has the ability to filter, detect and correct errors caused
by glitches in asynchronous data transmission. However,
TRDIC requires around 180% of area overhead, due to the
complexity of completion detectors for 2-of-n codes.

The most common DI code used in asynchronous NoCs is
1-of-n [2] [5]. A problem with NoCs that use this kind of code

157

is the absence of a data error correction scheme applicable to
them. Since each m-of-n codeword usually carries more than
one bit information, an error in the m-of-n codeword can affect
several bits. Thus, traditional correction techniques can be less
efficient in asynchronous NoCs. This work proposes a new
error correction/detection scheme based on parity computation.
It is applicable to asynchronous NoCs in GALS SoCs as that
described in [7]. The proposed scheme can be applied to any
m-of-n code with low area overhead. Here, the NoC-based
communication in presence of single event effects is evaluated,
but the proposed error correction scheme can also be used for
intra/extra chip point to point, bus-based communication to
solve soft errors from radiation and crosstalk.

The rest of this document is organized in four sections.
Section II approaches the problem of soft errors in delay
insensitive (DI) data communication, with focus on m-of-n
codes. Section III proposes the parity scheme for m-of-n DI
encoding. Section IV presents and discusses the conducted
experiments and obtained results of the NoC soft error
evaluation. Finally, Section V presents some conclusions and
directions for future work.

II. SOFT ERRORS IN M-OF-N DI CODES

A. Introduction to QDI Data Transmission

The most common way to encode data in digital domains is
using regular binary codes where each logical bit value is
associated to a voltage level. However, more sophisticated
codes can be used to meet data transmission constraints such as
clock recovering, energy consumption and error correction and
detection.

In asynchronous circuits, the target characteristic of codes
is often to guarantee delay insensitivity during data
transmission. Data transmission can be achieved in a delay
insensitive way when the code is unordered. A code is said
unordered when a codeword that is part of this code is not
covered by any other codeword in the same code [19].
According to [1], a codeword X=x;x;...x, covers another
codeword Y=y;y;...y, if and only if, for each bit position i, if y;
= [thenx; = 1.

M-of-n codes are a subclass of unordered codes. In these,
each codeword takes exactly n wires. A valid m-of-n codeword
has m of these wires equal to /. Table 1 shows an example, the
1-of-4 code, represented by all of its valid codewords (except
for the first line of the Table, which contains an invalid
codeword). In this code, four wires are used to encode two bits
of information. In each valid codeword exactly one of the four
wires is 1. M-of-n codes, as all unordered codes, have the
inherent ability to detect the so-called unidirectional errors
[19]. This property can be explored in communications systems
where retransmission is an option. However, for
communication systems where data correction is required, this
class of codes requests for even more redundancy. As a result,
the final code can present a very low code density. The
proposed code can solve this problem at very low cost in area
and code density, as demonstrated here.

Table 1 — The 1-0f-4 code. The spacer is not a valid codeword.

Value A3 A2 A1 A0

Spacer 0 0 0 0
“00” 0 0 0 1
“01” 0 0 1 0
“10” 0 1 0 0
“11” 1 0 0 0

A DI communication is coordinated by a handshake
protocol [18]. Here, only the 4-phase handshake protocol is
considered, but the proposed error correction scheme is
extendable to 2-phase DI data transmission as well. To perform
a DI data transfer using a 4-phase protocol, it is necessary the
definition of a special codeword to represent the absence of
data, which is called Spacer in Table 1. A spacer here is
encoded with all wires at logic ‘0°. Figure 1 shows examples of
1-of-4 data transfers using the four-phase handshake protocol.
The protocol starts with a valid data (“0001”), which means
that the data signals carry a valid codeword. When the receiver
samples the data it asserts an acknowledgement signal (Ack).
The sender then produces a spacer, indicating the end of
transmission and the Receiver answers with another Ack
assertion. A spacer occurs between every two valid codewords,
to complete the 4-phase protocol, guaranteeing the DI property.

e A N S —

Data 0001 0000 0100 0000

Figure 1- Four-phase handshake protocol.

Asynchronous QDI data links are built through pipelines
using two main components: asynchronous registers and
completion detectors (CD). Asynchronous registers are
implemented using C-element as memory elements. A C-
element outputs 1 when all its inputs are 1 and outputs 0 when
all its inputs are 0. Otherwise, it keeps its prior output value.
Other relevant circuits in QDI circuits are completion
detectors. It is responsible to detect if there is valid data
available at the output of a register (or any block). Figure 2
shows the implementation of an asynchronous 3-stage pipeline
for the 1-of-4 code and four-phase protocol using weak
conditioned half buffers. For the 1-of-4 pipeline, the
completion detector comprises a single four-input NOR gate.

T Ack
In

e

DOO

DO1

eyeq indino

=]
S

Input Data
=}
[elciclos

DI3

Ack b
Out —_—

Figure 2 — 1-0f-4 QDI pipeline using weak conditioned half buffer.

DO3

(OO
O

158 2013 IEEE 19th International On-Line Testing Symposium (IOLTS)

B. SEE impact on C-elements

To precisely analyze the behavior of QDI pipelines under
SEEs, it is first required to analyze the behavior of the C-
elements under radiation. Figure 3 summarizes this behavior
with a state graph that describes the behavior of a simple 2-
input C-element under the presence of radiation. The C-
element can present single event transients (SETs) or single
event upsets (SEU). The effect depends on the state of the
victim C-element when it is hit by a particle. In states 000 and
111, the C-element has a continuous electrical path from inputs
to the output. In this case, a particle hit can generate a SET (a
transient fault). In states 010, 100, 011 and 101, the C-element
acts as a memory element. In these cases, radiation can cause
an SEU (an upset or bit flip fault).

Figure 3 - State transition graph of a C-element in presence of SEEs.

C. SEE impact on DI data transmission

To better understand the behavior of a soft error in QDI
data transmission, the four-phase protocol can be sliced in time
windows as proposed in [15]. Figure 4 shows the timing and
SEE analysis on a 4-phase protocol for an m-of-n weak
conditioned half buffer. For each phase of the protocol, the
timing description appears on top side of the figure. The Best
Case Data Delay indicates the fastest path between the
previous stage and the register input. The Data Skew is the
timing difference between the fastest and the slowest bit in the
datapath. The Acknowledge Delay (Ack Delay) is the time
needed from data propagation to completion detection, plus the
detection delay. The observed SEEs in each window are the
result of the C-element behavior.

In the Best Case Delay timing window, the only possible
SEE is the occurrence of an SEU1, due to the behavior of an
SEE in a C-element, when C-element inputs are different. This
event will generate an Incomplete Data (ID). An incomplete
m-of-n data has k wires equal to 1, where k < m.

Worst Case Data Delay Worst Case Spacer Delay
Timing
Best Case Ack | Best Case Ack
DataDelay | D2t@SKeW |5l SpacerDelay | SPacerSkew |p
Input | g * ><
acer (1D ID Data -
Data P ! |
Ack
! ;
Possible SEUT SEiUT SEUf, SEU| SE;Ui SETY|
SEE SET| SET|| SETt SETT
| i
| i
Output] ICD |
Data ID | VCD IDDr ICD or ID X ID

ID = Incomplete Data

VCD = Valid Corrupted Data
ICD = Invalid Corrupted Data
ES = Early Spacer

Figure 4 - Timing and SEE details of m-of-n_four-phase protocol.

The Data Skew timing window can be divided in two
windows. These are delimited by the Input Data State. If m-1
bits of the Input Data already switched (ID*), then the
encoding reaches an excited state, otherwise the inertial
property of the code will keep filtering any event at the Input
Data. The Data Skew ID* timing window is the only window
where a Valid Corrupted Data (VCD) can happen. A VCD is
an erroneous data transmission where transmitted data consists
in a valid m-of-n code, i.e. with m wires equal to 1. Since the
data is already switching during this window, it is expected that
the remaining data wire switches before the Ack In signal
arrives (event that closes the register for data propagation). If
the data wire arrives before the acknowledge signal, the result
will be an Incomplete Corrupted Data (ICD) instead of a VCD.
An ICD presents the correct data information plus an extra bit
that makes the DI code invalid (m+1-of-n). The invalid code
presented by a corrupted data is able to cross pipeline stages
and arrive to the final data receiver, since it is detected by a
regular completion detector implementation.

The VCD can be removed at design time by guaranteeing
that the data skew is smaller than the Ack In propagation. Data
skews are usually rather small, since all data signals are
generated in the rising edge of the Acknowledge signal. The
environment must always detect and sample data before
acknowledging it. Looking inside the pipeline, it is possible to
note that the Acknowledge propagation will be the time to
cross the next stage register, plus the completion detection
time. This gives enough time to generate the missing data wire.

In 1-of-n DI codes, the Hamming distance between the
spacer and all the data symbols is always one. In this way, data
links implemented with 1-of-n codes are always in the excited
state. This means that when transmitting a spacer, an SEE? (i.e.
a soft error that produces a logic transition from ‘0’ to ‘1°) is
able to generate new data. When transmitting some valid data,
an SEE| (a ‘1’ to ‘0’ transition) is able to clear the data and
generate a spacer. In addition, the Incomplete Data presented at
Figure 4 is replaced in 1-of-n code by an Early Spacer or an
Early Data. These early indications alter the four-phase
protocol sequence and can cause stall in the protocol. The four-
phase protocol hardening is not treated in this work. Here, just
the error correction for the data content is considered. Other
types of errors require different hardening techniques.

III. GALS PARITY CHECK IN M-OF-N CODES

The error detection of « or fewer bits in a data transmission
is only possible when the Hamming distance between
codewords is not smaller than a+/. The distance between any
two valid m-of-n codewords is equal to or bigger than 2. In this
way, m-of-n codes are intrinsically able to detect single bit
errors (ICD) in data transmission. To overcome ICD data
errors, this property can trigger packet retransmission requests,
but these may result in unacceptable communication latencies,
due to natural packet retransmission delays or increased NoC
congestion effects. Analyzing the timing window of the m-of-n
four-phase data transmission in Figure 4, it is possible to
observe that the ICD is the most common data integrity
problem. Thus, an ICD data error correction scheme can

2013 IEEE 19th International On-Line Testing Symposium (IOLTS) 159

mitigate such problems. This work proposes the use of a parity
scheme for m-of-n codes combined with the intrinsic property
of unordered codes to detect single data errors for correcting all
ICDs and detect all VCDs in asynchronous QDI NoC circuits.

A. System Architecture

Figure 5 shows details of a communication architecture for
a GALS SoC based on an asynchronous NoC that employs a
parity scheme. The sender IP is synchronized with a parity
encoder while the receiver IP is synchronized with a parity
decoder. There is no relation between sender and receiver
clocks and the synchronization mechanism required in this
GALS SoC is omitted. The architecture is quite similar to the
MAGALI GALS chip implementation described in [7].

Sender
Clock
5

=4
Encoder
Sender DI Parity | |
IP Core Conversion Calculation
o
2o _ g S8
2w = NoC | 5O
@O Q %0
Transmitted
Parity
Receiver Binary L] Parity : Parity L1
IP Core Conversion| | Correction Extraction [|

DI
Parity —Data

Calculation +
Decoder SEE

Receiver
Clock
gt

Figure 5 - Parity communication architecture.

The data (Binary Data) exchanged between sender and
receiver IP Cores is structured in packets transmitted through
the asynchronous NoC [13]. This NoC is available in two
distinct DI code-based implementations, dual-rail and 1-o0f-4,
both employing four-phase handshake protocols. Internally, the
NoC uses XY routing for packet transmission in wormhole
switching mode. Each packet comprises two fields: a header
with routing information and a payload.

The parity Encoder receives binary data and converts each
datum to an m-of-n codeword in the DI Conversion module.
The main novelty of the proposed scheme is that Parity
Calculation is performed on generated m-of-n codewords,
rather than on binary data. Since each m-of-n codeword can
transport more than one bit, a single bit flip in the m-of-n
codeword during transmission can generate multi-bit errors in
the binary data. In this way, a mechanism for error correction
of m-of-n codewords can be more effective than an equivalent
process for binary codewords. In this work, each binary data
originated from the Sender represents an elementary portion of
a packet (in fact, a flit) to be transmitted through the
asynchronous NoC.

The parity Decoder is divided into four modules. Parity
Extraction removes the transmitted parity bits from each flit

and forwards these to the Parity Correction unit. The Parity
Calculation module receives each flit and applies the same
parity generation method used in the Encoder. The Parity
Correction module receives the flit and the two parity vectors.
Based on this information, it can detect/correct errors in m-of-n
codewords. After correction, Binary Conversion occurs, and
data are delivered to the receiver.

B. The m-of-n Parity Encoding

Parity check is a block code where redundant bits are added
to a message to enable error detection and/or correction. The
use of unordered codes also enables error detection in data
transmission. Here, parity check is used associated to
unordered codewords to detect and correct data errors in DI
data transmission. It is important to note that since an error in a
m-of-n codeword can affect several data bits, the use of parity
alone is not able to allow correcting data errors. For example, if
the codeword 0001 is transmitted but the codeword 1001 is
received, it is not possible to determine if the correct data is
“00” or “11”, since both have the same parity.

This work assumes that the communication system is a
GALS SoC where all IP Cores are synchronous, while the
communication architecture is formed by asynchronous
channels using some m-of-n code. In the synchronous side,
binary code is used. This means that each datum is represented
as a binary data vector d = [ay, as, ..., ar;], where for all a;, a;
€ {0, 1}. To perform data communication through the NoC,
data is translated to an m-of-n codeword using a bijective
function denoted DI(d). The binary data vector has length L(d)
equal to k. The length is defined as the number of bits in the
codeword. Of course, in this case the number of possible
different codewords that can represent some data is 2X. The
maximum number of distinct codewords that can be encoded in
a single m-of-n vector is defined by the combination:

S— - 0

Cml(n—m)!

n,m

Therefore, the minimum number of m-of-n codewords S(d)
that is needed to cover all binary data vectors in d is:

S(d) = ceiling(logcn,,,, 2) @

Any data with L(d)=k is transformed into an m-of-n data
matrix (flit) F = [f;;], i=1,....s, j=1, ...,n, where s = S(d) and n
is the number of wires of the m-of-n code.

For example, the binary vector d = [0111100110111100]
with Length L(d) = 16, when converted to the 1-of-4 encoding
by DI(d) generates a 1-of-4 data flit matrix F, shown in (3)
below. Here, the number of columns is equal to the number of
wires in the m-of-n code (four in this example, which uses the
1-0f-4 code) while the number of lines is S(d)=8, and for all f;;,
fij € {0,1}. Starting with (3), a parity vector P = (po, p2, ..., Pn-
1) with length L(P) = n is generated with a XOR operation of
all elements in a same column as follows:

viepi = fi,O @fi,l D... (—B](i,s—l'

Applying the XOR operation to matrix (3), the parity vector
P is computed as: P(F) = (1001). After generation, the parity

160 2013 IEEE 19th International On-Line Testing Symposium (IOLTS)

vector is translated to equivalent m-of-n codewords. The
translation uses the bijective function DI(P). The result is S(P),
a new set of m-of-n codewords, concatenated to Matrix F to
generate the extended flit matrix EF. In matrix (4), the last two
rows are the equivalent 1-of-4 codes DI(P) of the parity vector.

0 0 0 1] 0001
1000
1000
3 4
1000() 1oool (4
0100
0100
F=l0 0 1 o |00 10
o100
0100 L0 0o
1000 001 0
0 0 1 0] 0010
0100

It is important to note that the parity scheme adopted here
associates one single parity bit to each column of the matrix.
More elaborate parity implementations can be applied where
more than one bit is used for each column. This potentially
increases the correction capability of the parity scheme. The
proposed code is one special case of the product codes where
the unordered codes identifies the row containing the error in
the matrix while the parity isolates the column. In this way, the
element in the matrix that contains the error can be defined and
corrected.

C. The m-of-n Parity Decoding

Parity decoding is achieved based on the transmitted parity
and the recalculated parity conducted at the receiver side. If the
transmitted parity contains an ICD, correction is not performed.
Since only a single data error is considered in each flit, the
error in Parity codeword means that the data is error-free. If an
ICD is detected at the Parity codeword and another ICD is
present in any data codeword at the same flit, then an error is
indicated to the IP Core and a retransmission can be requested.

When the transmitted parity does not carry any error, an
XOR operation is performed between the two parity vectors
(received and recalculated). If the result is non-zero, there are
errors in the flit. The position of the ‘1’ in the resulting XOR
indicates the position of the error, that is, it indicates which
column of the F matrix (3) contains the error. To identify the
m-of-n code that contains the error, the Rows of the F matrix
are verified to identify an ICD. In this way, the fault in the
unordered property of the code indicates the m-of-n codeword
that contains the error (isolating the row) while the parity
indicates which wire carries the error (isolating the column).
When the victim codeword is detected, the operation defined in
the truth table depicted in Table 3 is performed, wire by wire.

Table 3- Parity correction operations.

Data Wire |Parity |Corrected Data
0 0 0
0 1 0
1 0 1
1 1 0

Figure 6 shows an example of data correction in an 1-of-4
code with a single ICD error.

If a single flit is victim of two or more errors in data
codewords in different columns, the parity scheme is still able
to correct the error. In this way, in a m-of-n data transmission
the parity can fix until » errors since these errors appear in
different columns of the transmitted matrix. The VCD error
alters the parity regeneration in two different columns for the
1-of-n code since the VCD consists in a two-bit error. In this
case, the row error isolation is not possible. Thus, data
correction is not possible, but error detection can be achieved,
since the parity indicates an error.

1-of-4 1-of-4
Transmittedd Corrected Data
Data Matrix Matrix
1 0|00 - 1 0|00
1 0|00 - 1 0|00
ICD D
Row Error 0 ‘\:’/‘ 1 0 > 0 0 1 0
» 0 1 0|0
I Y Y
—_ [e]
c2 I
Sy 5%
280 5
= 0 X
Foc " 0 ‘ 1 ‘ 0 ‘ 0
O E X
&3 X Column Error
C 4 Indication
0 1 1 0
1-of-4 to I L
Binary
3
E > 0 1 0 0
€T
25
5 0|0 1 0
=

Figure 6 =Single ICD Data Error Correction example.

IV. CONDUCTED EXPERIMENTS AND RESULTS

Soft error evaluations were performed in a fully
asynchronous 4x4 mesh NoC [14] using the characterization
method proposed in [13]. This NoC uses the 1-of-4 code and
four-phase handshake protocol. It was designed to transport 32-
bit flits. Thus, sixteen 1-of-4 codewords are needed to carry a
flit. One additional codeword is used to control the packet
transfer protocol. Thus, seventeen 1-0f-4 codewords are needed
to transmit a flit. The NoC version with parity corrections uses
four extra bits for parity. Thus, two extra 1-of-4 codewords are
necessary and nineteen 1-of-4 codewords are needed for a flit.

The evaluation traffic scenario is based on the MultiMedia
System (MMS) application described in [9]. The presented
results were obtained from a commercial 65nm technology
working at 1V, 25°C and typical transistor models.

Figure 7 shows the error classification as a function of the
resulting DI code corruption, when the NoC is under a fault
injection test case with charge injection of 70fC.

2013 IEEE 19th International On-Line Testing Symposium (IOLTS) 161

Error Classification B No Data Correction

B Parity
3
5 - 25
=
57
g g 1,5
zW 1
0,5
ICD ERRORS VCD ERRORS
Type of Error

Figure 7 - DI error classification.

Results show that the ICD errors are the most common, as
expected. Since the proposed parity scheme is capable to
correct all the ICDs, in the parity evaluation no ICD was
detected at the receiver side. The number of VCDs was kept
the same. It is important to note that the parity scheme can
detect VCD errors. Thus, residual VCDs can be solved by a
retransmission scheme, for example.

Table 4 shows the area and static power comparison of the
asynchronous NoC and the NoC with the additional parity
codewords. The area overhead of 12% is far below the 180%
presented by the TRDIC scheme proposed in [15] and is
capable to correct the same class of errors. The area results of
sixteen encoders and sixteen decoders are also shown. These
sixteen Encoders/Decoders are necessary in the 4x4 NoC
example used in the evaluation.

Table 4 - Area overhead in the asynchronous NoC.

Implementation Area (sq. mm) Area Overhead
NoC 1.31000 -
NoC + Parity 1.47000 12.9%
Encoder 0.17936 1.37%
Decoder 0.68784 5.2%

Summing up the NoC, encoder and decoder areas, the total
system overhead for the 4x4 test case is 19.47%. This area
overhead is ten times smaller than that of the TRDIC technique
proposed in [15], for example. It is important to note that the
NoC area occupied by the parity bit is independent on the
number of bits in the flit. However, the area increases with the
number of wires of the m-of-n code. The latency overhead is
around two clock cycles, one for parity calculation and another
for decoding and correction. The throughput of the NoC it is
not affected by the extra parity codewords, since they are sent
in parallel with the data flit.

V. CONCLUSION AND FUTURE WORKS

In this work a new scheme for error detection and
correction for m-of-n DI Codes was proposed and evaluated.
The correction scheme is based on parity and can detect all 2-
bit flips, referred here as VCD errors. It can also correct all
single bit flips, referred here as ICDs. The proposed scheme
can be applied to any GALS system with asynchronous
communication employing m-of-n codes. However, due to its
simplicity and low area overhead, it is well adapted for end-to-
end data correction in GALS SoCs based on asynchronous
NoCs. Future works include the use of the proposed parity

scheme with different m-of-n codes. The hardening of the
control circuitry of the NoC against soft errors is also an
ongoing work.

REFERENCES

[1] Agyekum, M. Y.; Nowick, S. M. “An error-correcting unordered code
and hardware support for robust asynchronous global communication.”
In: DATE’11, pp. 765-770, 2011.

[2] Bainbridge, J.; Furber, S. “Chain: A Delay-Insensitive Chip Area
Interconnect.” IEEE Micro, 22(5), pp. 16-23, Sep.-Oct., 2002.

[3] Bainbridge, W. J.; Salisbury, S. J. “Glitch sensitivity and defense of
quasi delay insensitive network-on-chip links.” In: ASYNC’09, pp. 35-
44, 2009.

[4] Bastos, R. P.; Sicard, G.; Kastensmidt, F.; Renaudin, M.; Reis, R.
“Asynchronous circuits as alternative for mitigation of long-duration
transient faults in deep-submicron technologies.” Microelectronics
Reliability, 50, pp. 1241-1246, Nov. 2010.

[5] Beigné, E.; Clermidy, F.; Vivet, P.; Clouard, A.; Renaudin, M. “An
Asynchronous NoC Architecture Providing Low Latency Service and its
Multi-level Design Framework.” In: ASYNC’05, pp. 54-63, 2005.

[6] Chapiro, D. “Globally-Asynchronous Locally Synchronous Systems.”
PhD Thesis, Stanford University, Oct. 1984, 134 p.

[7] Clermidy, F.; Cassiau, N.; Coste, N.; Dutoit, D.; Fantini, M.; Ktenas, D.;
Lemaire, R.; Stefanizzi, L. “Reconfiguration of a 3GPP-LTE
telecommunication application on a 22-core NoC-based system-on-
chip.” In: NoCS’11, pp. 261-262, 2011.

[8] Frantz, A. P.; Cassel, M.; Kastensmidt, F. L.; Cota, E.; Carro, L.
“Crosstalk and SEU-Aware Networks on Chips.” IEEE Design & Test
of Computers, 24(4), pp. 340-350, Jul.-Aug. 2007.

[91 Hu, J.; Marculescu, R. “Energy- and performance-aware mapping for
regular NoC architectures.” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 24(4), pp. 551-562, Apr.
2005.

[10] International Technology
http://www.itrs.net/, 2011.

[11] Mukherjee, S. “Architecture Design for Software Errors.” Morgan
Kaufmann Publishers, Burlington, 2008. 337p.

[12] Murali, S.; Theocharides, T.; Vijaykrishnan, N.; Irwin, M.J.; Benini, L.;
De Micheli, G. “Analysis of error recovery schemes for networks on
chips.” IEEE Design & Test of Computers, 22(5), pp. 434- 442, Sept.-
Oct. 2005.

[13] Pontes, J.; Vivet, P.; Calazans, N. “An Accurate Single Event Upset
Digital Design Flow for Reliable System Level Design”. In: DATE’12,
Pp. 224-229,2012.

[14] Pontes, J. J. H.; Moreira, M. T.; Moraes, F. G.; Calazans, N. L. V.:
“Hermes-AA: A 65nm Asynchronous NoC Router with Adaptive
Routing”. In: SOCC’10, pp. 493-498, 2010.

[15] Pontes, J.; Calazans, N.; Vivet, P. “Adding Temporal Redundancy to
Delay Insensitive Codes to Mitigate Single Event Effects.” In:
ASYNC’12, pp. 142-149, 2012.

[16] Rahbaran, B.; Steininger, A. “Is asynchronous logic more robust than
synchronous logic?” IEEE Transactions on Dependable and Secure
Computing, 6(4), pp. 282-294, Dec. 2009.

[17] Rossi, D.; Angelini, P.; Metra, C. “Configurable Error Control Scheme
for NoC Signal Integrity.” In: IOLTS’07, pp. 43-48, July 2007.

[18] Sparse, J.; Furber, S. “Principles of Asynchronous Circuit Design — A
Systems Perspective.” Kluwer Academic Publishers, Boston, 2001.
354p.

[19] Bose, B. “On Unordered Codes.” IEEE Transaction on Computers,
40(2), pp. 125-131, Feb. 1991.

[20] Yu, Q.; Ampadu, P. “Dual-Layer Adaptive Error Control for Network-

on-Chip Links.” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 20(7), pp. 1304-1317, Jul. 2012.

Roadmap for Semiconductors,

162 2013 IEEE 19th International On-Line Testing Symposium (IOLTS)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

