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Abstract — Semi-custom design flows are a key factor for the 
rapid growth of integrated circuits and systems. They lower 
design complexity through the use of pre-designed and pre-
characterized functional components called standard cells, 
instead of assuming that designers have to draw, place and 
connect each transistor. In this way, modeling of complex 
systems is easier. As CMOS technologies evolve into deep 
submicron nodes, asynchronous techniques gain relevance in 
the research community, due to their ability to cope with 
problems that are hard to solve with the synchronous para-
digm. However, several specific components required in asyn-
chronous designs are not available in commercial standard 
cell libraries, which constrains asynchronous design to use 
approaches close to full-custom ones. This limits modularity 
and increases design complexity. Thus, one of the possibilities 
for enabling further advance of the asynchronous paradigm is 
the availability of asynchronous standard cell libraries. Albeit 
industrial tools provide reasonable support to asynchronous 
standard cells physical design, the characterization of these 
cells using standard tools is usually quite laborious. This work 
proposes the Library Characterization Environment (Li-
ChEn), an open source tool applicable to automatically char-
acterize typical asynchronous standard cells. The tool man-
aged to successfully characterize a standard cell library with 
over five hundred asynchronous components.  

Keywords-component; Asynchronous circuits, C-elements,
electrical characterization, standard cell, design automation 

I. INTRODUCTION

Current system-on-chip (SoC) designs use semi-custom 
design flows extensively as an answer to time to market 
pressures. Such flows speed up the design phase of medium 
to high performance integrated circuits (ICs) and are often 
referred as the key success factor for the rapid growth of 
integrated systems [1]. One of the reasons for this is the use 
of a standard library of pre-defined cells, provided by chip 
or intellectual property (IP) vendors. These libraries most 
often contain a collection of standard gates and flip-flops 
[2]. Cells are pre-designed and pre-verified, and have elec-
trical behavior characterized by models described in text-
based files, such as the Open Source Liberty Format [3]. 
When coupled to specific electronic design automation 
(EDA) tools, standard cell libraries facilitate the automation 
of IC implementations enormously. 

The evolution of technology nodes allows building cir-
cuits with billions of transistors. In such a scenario, the 
design of fully synchronous systems is a daunting challenge.
Guaranteeing clock integrity in highly complex chips by 
means of a single clock distribution network is a hard task, 
even with extensive automation provided by EDA tools. 
Furthermore, the power required by clock networks is in-
creasing [4], which is not adequate for currently relevant 
market niches such as battery-based embedded systems. 
Also, as current technologies allow the implementation of 
multi-processor systems-on-a-chip (MPSoCs), a large 
amount of IP cores following particular standards and/or 
protocols may reside in a same chip. The requirements of 
particular IP cores often determine the use of specific oper-
ating frequencies, making the design of SoCs easier when 
using multiple clocks. 

According to the International Technology Roadmap for 
Semiconductors [4], a shift on the VLSI design paradigm is
inevitable in future technology nodes with regard to clock-
ing strategies. Thus, the use of asynchronous techniques [5]
[6] is gaining relevance in the VLSI research community.
Such techniques can guarantee correct communication be-
tween distinct frequency domains or even completely elimi-
nate the clock signal of a chip, or of some chip modules.
Globally asynchronous locally synchronous (GALS) sys-
tems are those that employ different frequency domains 
with asynchronous interfaces to provide global communica-
tion [7]. On the other hand, fully asynchronous circuits are 
more challenging and consequently are less often used.
However, there are some successful examples reported in 
recent literature, e.g. the Opus2 family of asynchronous 
DSP multiprocessors from Octasic Inc. [8] and high speed 
FPGAs from Achronix, Inc. [9]. 

Wider adoption of asynchronous techniques is con-
strained by the fact that such circuits still have limited de-
sign automation support [6]. There are a few tools for auto-
mating semi-custom asynchronous circuits design, but basic 
standard cells for implementing these circuits are not avail-
able off the shelf. In this way, asynchronous design is prac-
tically limited to full-custom approaches, where asynchro-
nous logic components are specific to each design, and 
implemented through logic design approaches. 
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Building a generic standard cell library with components 
to support the asynchronous paradigm can be challenging. 
First, asynchronous circuits can be implemented using sev-
eral different styles [6], each of which requiring a specific 
component set. Moreover, albeit typical industrial tools 
from vendors like Cadence, Mentor or Synopsys may be 
employed in the physical design of asynchronous compo-
nents, the electrical characterization of such components 
using these tools is not straightforward. This is due to the 
fact that these tools aim primarily the synchronous para-
digm. Characterizing sequential cells typically starts by 
treating control signals, especially the clock, and their as-
sumptions. The drawback is that asynchronous sequential 
components are not controlled by a single global clock sig-
nal, but by signaling of specific, local events. Thus, using 
current commercial tools to characterize asynchronous cells 
entails laborious manual work. 

This work proposes the Library Characterization Envi-
ronment (LiChEn), deemed to allow an automatic and pre-
cise electrical characterization process for asynchronous 
standard cells. LiChEn was developed to support any 
CMOS technology and is built around SPICE simulations. It
supports the characterization of propagation and transition 
delays, internal and switching power, measured for different 
input slopes and output loads and modeled using non-linear 
table models. Also, it enables capturing input and output 
pins capacitance and the leakage power for each of the cell 
internal states and for each power source. Results present 
the efficiency of LiChEn in terms of the total time required 
to characterize asynchronous standard cells. A cell subset 
that contains 18 different cells illustrates the characteriza-
tion process. Additionally, the tool was recently used to 
characterize the electrical behavior of cells in the ASCEnD 
library [10] [11], composed currently by over five hundred 
asynchronous components. 

The rest of this paper is organized in five sections. Sec-
tion II discusses basic asynchronous components applicable 
at the gate level in asynchronous systems. Section III dis-
cusses challenges for the characterization of asynchronous 
standard cells, including a case study discussion. Section 0
presents the LiChEn tool, discusses its implementation, and 
shows the characterization environment.  Section V presents 
some performance data for the characterization of standard 
cells using LiChEn. Finally, Section VI draws some conclu-
sions and provides selected directions for further work. 

II. ASYNCHRONOUS COMPONENTS

Asynchronous circuits can be implemented through a 
wide variety of schemes [5] [6] [12]. These schemes usually 
rely on a delay model, a data encoding, a handshake proto-
col and a set of basic components available at the standard 
cell level or as full custom cells. 

A fundamental device that enables the design of several 
asynchronous templates is the C-element. The importance of 
C-elements is the fact that they help in the synchronization 
of independent events. Figure 1(a) depicts the truth table 
and Figure 1(b) shows a transition diagram for an ordinary 
2-input C-element. Its output switches only when all inputs 
have the same logical value. When inputs A and B are 

equal, output Q assumes this same value. However, when
inputs are different, the output keeps the previous logic 
value. The asynchronous state transition diagram of Figure 
1(b) for the C-element has vertices containing values of 
inputs and output in the order ABQi. Albeit this component 
can be build using typical logic gates available in most 
standard cell libraries, this is inefficient. 

The most popular transistor level topologies used for C-
elements´ implementation appear in Figure 2: (a) Martin´s 
[13], (b) Sutherland´s [12], and (c) van Berkel´s [14]. Basi-
cally, the choice for a C-element implementation comprises 
a power-area-speed tradeoff, as discussed in detail in [15]. 
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Figure 1 – Simple 2-input C-element specification: (a) truth table and (b) 
asynchronous state transition diagram. 

Each C-element topology can be adapted to support 
more than two inputs and differentiated functionality. Such 
functionalities may include set and reset control inputs and 
inputs with asymmetric behavior. Set and reset inputs force 
the output of the component to logical 1 and logical 0, re-
spectively. Asymmetric inputs, in turn, are inputs that inter-
fere only in the low-to-high or in the high-to-low transition 
of the output, as discussed in [6]. 
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Figure 2 – The three basic C-element transistor topologies: (a) Martin´s 
[13], (b) Sutherland´s [12] and (c) van Berkel´s [14]. 

Specific asynchronous templates may require other 
components. Examples are the pre-charged half buffer or the 
pre-charged full buffer templates, discussed in detail in [6].
The use of these templates can be advantageous. However, 
their drawback is that there are currently little automation 
for the synthesis of asynchronous systems implemented 
with them. 

The focus of this work is on C-elements, which enable 
asynchronous design that relies on standard cells using au-
tomated flows such as that proposed by Thonnart et al. [16].
Yet, these can also serve as a basis to build more sophisti-
cated, template-based flows.  
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III. THE STANDARD CELL CHARACTERIZATION 
PROBLEM

The standard cell design method assumes that all cells 
are pre-designed and pre-validated circuit blocks. After 
interconnecting place and route these in a given design, it is 
possible to analyze power and delay figures. Enabling elec-
trical analysis of the design requires a database containing 
detailed information on the timing and power consumption 
for each library cell. Different industrial tools are available 
to generate this standard cell timing and power database.

One example tool is called Encounter Library Character-
ization (ELC), commercialized by Cadence. It basically 
requires a SPICE or Spectre transistor level description of 
the standard cell, along with the technology models and a 
set of configuration parameters. These parameters are: pro-
cess corner, operating voltage and temperature, and non 
linear model tables, which define input slew and output load 
vectors. With this information, the tool can recognize the 
logic behavior of the standard cell and generate the data-
base. Next, it performs a set of simulations and outputs a
Liberty file containing power and timing characteristics. In 
this way, the designer just produces a set of scripts and the 
tool automatically performs all required computation, with 
no manual intervention involved, except for the script gen-
eration. Considering that such libraries usually contain hun-
dreds of components, this flow considerably simplifies the 
production of power and timing models. 

However, its use in the characterization of asynchronous 
standard cells proved to be laborious, as the tool was not 
developed for this specific purpose. The problem is that 
when the logic behavior of the standard cell is not automati-
cally identified by ELC, a designer needs to manually speci-
fy it inside the database. This means that the characteriza-
tion process must be stopped, while the modification is 
done. This requires the generation of some text files by the 
tool, which are then modified by the designer, according to 
a specific syntax, defined within ELC. Once the correct 
logic behavior is specified, the designer must update the 
database and the tool can continue its characterization flow. 
Albeit some scripts could help automating the corrections 
required to use ELC, these are usually dependent on internal 
node labels that are only available after layout extraction 
and that vary from cell to cell. Thus, even using such an 
enhanced approach would lead to extra manual labor, where 
scripts need to be configured for each C-element that ELC 
fails to recognize.  

To illustrate the above mentioned issues, Figure 3 shows 
what happens when trying to characterize the 2-input Suth-
erland C-element (see Figure 2(b)) with ELC. The tool 
identifies all transistors, but cannot compute the cell logic 
function. When it detects the loop that forms the memory 
mechanism of the C-element, it stops the characterization 
process and prompts the user to solve the problem. 

TABLE I presents the topologies that have their logic 
recognized by ELC and can thus be automatically character-
ized by the tool, and the ones that the tool fail to recognize. 

Figure 3 – Example of unrecognized C-element in ELC. 

The Table presents results for 2-input C-elements with 
and without asymmetric inputs. Mention to 1d and 1u refer 
to the cells that have one input that only interferes in high-
to-low (1d) and low-to-high (1u) transitions of the output. 
The Martin topology is recognized in all its variations: 2- 
and 3-input, asymmetric inputs and settable (set) and reset-
table (rst) C-elements. However the Sutherland and the van 
Berkel topologies were not automatically recognized, which 
required manual specification and verification of their func-
tion to characterize them. 

TABLE I STANDARD CELLS THAT ARE RECOGNIZED BY ELC. 

C-element Martin Sutherland van Berkel
2-input OK FAILED FAILED
2-input 1d OK FAILED FAILED
2-input 1u OK FAILED FAILED
2-input rst OK FAILED FAILED
2-input set OK FAILED FAILED
3-input OK FAILED FAILED

A serious problem with his behavior is that the Suther-
land and the van Berkel topologies are those that typically 
present the best power/speed/area tradeoffs [15]. Therefore, 
they are often preferred in asynchronous design. Also, con-
sidering that ASCEnD comprised over five hundred C-
elements, from which 66% were based on Sutherland and 
van Berkel topologies, an alternative choice for ELC was 
required. 

We suspect that ELC and similar characterization tools 
are designed to extract the logic behavior of transistor to-
pologies with no feedback connections and from a few to-
pologies with feedback connections in specific configura-
tions, are found in typical synchronous components like 
latches and flip-flops. An example of such configuration is 
the two-inverter loop found in CMOS latches and RAM 
memory bits. This is exactly what the Martin topology C-
element uses as output stage and is its only source of se-
quential behavior. However, the other topologies (Suther-
land and van Berkel) use more complex feedback paths. 
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Figure 4 – The LiChEn electrical characterization flow. 

LiChEn was designed to overcome the difficulties of 
characterizing the C-elements of the ASCEnD standard cell 
library [10], deemed to support a semi-custom approach and 
multiple asynchronous templates. During the construction of 
this library many issues were faced when dealing with elec-
trical characterization by commercial tools, as these failed to 
recognize the C-elements logic functionality for topologies 
other than Martin´s. Circumventing the problems required 
extensive manual work to generate the cell power and tim-
ing database . 

IV. THE LICHEN LIBRARY CHARACTERIZATION 
ENVIRONMENT

LiChEn is implemented using the C/C++ language and 
is open source. It is based on the generation of a SPICE 
simulation environment where each standard cell has all its 
arcs and states exercised and its power and timing figures 
are characterized and exported to the Open Source Liberty 
format [3], compatible with most commercial EDA tools. 
All commands are given through a command line interface, 
and text-based scripts can help the automation of standard 
cell libraries characterization. The electrical characterization 
flow employed by LiChEn is represented in Figure 4. It 
comprises three main steps, represented by diamonds: (i)
producing a cell simulation environment, (ii) finding static 
states and transition arcs, and (iii) generating timing and 
power figures through SPICE simulation.  

A. Simulation Environment 
In order to characterize asynchronous standard cells, the 

simulation environment must be configured. This requires to 
employ technology-specific data, providing corner selection, 
operating conditions, electrical specifications, and simula-
tion parameters. 

First, technology models are furnished to the tool, to-
gether with the specific corner to use during simulation. 
Next, electrical parameters for collecting information must 
be given such as minimum logical 1 and maximum logical 0 
voltages, low-to-high and high-to-low transition thresholds. 
The precision of the results generated by LiChEn for the 
provided technology depends on the quality of choice of 
these parameters. The tool also requires information about 
operating conditions, nominal voltage and temperature, and 
global power nets like vdd and gnd, which feed the standard 
cells. Afterwards, parameters to control the simulation must 
be furnished, including maximum simulation time, instant 

when to start measuring the information and simulation 
minimum step. 

Pin-to-pin propagation, transition delays and dynamic 
power consumption depend on the input slew rate and on 
the output capacitance load. Hence, these delay and power 
figures are modeled in non-linear tables, where each value 
depends on a combination of an input slew rate and an out-
put load capacitance. However, to do so, input slew rate and 
output load capacitance vectors are required, to generate the 
characterization simulation environment. These vectors can 
then be independently used to generate the models for each 
standard cell. Moreover, since characterization relies on 
non-linear table models, the quality of the results is a func-
tion that strongly depends on the precision of the provided 
input slew rate and output load capacitance vectors. 

B. Static States / Transition Arcs Search 
Once the simulation environment configuration is satis-

factory, the tool can deal with specific standard cells. These 
are available as SPICE netlists containing the transistors 
schematic along with all parasitics. Also, the standard cell 
logic function and output and input pins names must be 
defined, to guide the tool in its search for transition arcs and 
static states, which will be used to conduct the simulations 
required for the standard cell characterization. In LiChEn, 
logic functions can employ the following logic operations: 
conjunction (*), disjunction (+) and complement (~). More-
over, parenthesis can be used to express hierarchy. 

For instance, the basic C-element with inputs A and B 
and output Q has the following logic function: 

)*()*()*( QBQABAQ ���        (1) 

In this function, it is clear the feedback loop formed by 
output Q. As explained before, characterizing a standard cell 
that executes such a logic function with conventional tools 
requires laborious manual work. Also, as a standard cell 
library typically contains hundreds of cells, it is advanta-
geous to have a highly automated characterization process. 

LiChEn employs a branch and bound algorithm to find 
all transition arcs and static states (SSs), even in functions 
that employ a feedback loop. Basically, the tool initially sets 
all input and output pins to logical 0 and computes the re-
sulting value of the output according to the logic function, 
obtaining the first static state.  
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Figure 5 – Computation of transition arcs and static states of a two input C-element. “R” stands for low-to-high transitions (rise) and “F” for high-to-low 
transitions (fall). Graph edges are labeled numerically by EN according to the order that they occur during the transition arcs search. 

Next, it switches the logical value of one input at a time 
and evaluates the next output value through a recursive 
function. Each new input/output value after a transition is 
accounted as a new SS. To avoid exponential computation 
time, as soon as LiChEn detects that a previously computed 
SS was already computed previously, it stops the recursion. 
During switching of the inputs logical values, LiChEn eval-
uates in which cases the output value changes when an input 
switches. These cases are called Dynamic Transition Arcs 
(DTAs). The cases where input switching does not cause an 
output switching are called Internal Transition Arcs (ITAs). 

Figure 5 presents the computation of transition arcs and 
SSs for the logic function of the 2-input C-element de-
scribed by Equation (1). In the Figure, graph edges are nu-
merically labeled according to the order in which they are 
computed. Initially, inputs A and B and the output Q are set 
to logical 0 (E0). The resulting value is Q = 0. This charac-
terizes an SS (A=0, B=0, Q=0). Next, through a recursive 
function, input A switches to logical 1 (E1). The result is 
still Q = 0. However, a new SS (A=1, B=0, Q=0) and an 
ITA (A=R, B=0, Q=0) are found. Then, the value of A is 
switched once more (E2), resulting in the static state (A=0, 
B=0, Q=0). Because this state was already computed previ-
ously, this branch of the search graph is pruned. The func-
tion returns one node (A=1, B=0, Q=0), and switches the 
other input B logical value (E3). However, this time, this 
input switching event caused the output to switch, generat-
ing a new SS (A=1, B=1, Q=1) and a new DTA (A=1, B=R, 
Q=R). From this node, the next step is to switch the logical 
value of input A (E4), generating a new branch in the search 
graph as E5 and E6 take place. Once this branch is pruned, 
input B has its logical value switched again (E7). This 
search continues until all branches are killed after the last 
event (E12). 

TABLE II shows the complete set of SSs, DTAs and 
ITAs, in the order they were computed, for the logic func-
tion of the 2-input C-element. This simple algorithm is ca-
pable of detecting all SSs, DTAs and ITAs, even those that 
depend on feedback loops. In this way, it is possible to effi-
ciently characterize the electrical behavior of asynchronous 
standard cells. Yet, currently, the tool supports only single 
output standard cell, and cannot characterize typical syn-

chronous constraints for sequential cells, such as setup and 
hold times. Thus, other than asynchronous cells, LiChEn 
can be used to characterize typical combinational logic cells, 
such as ANDs and ORs. However, it is not recommended its 
use to characterize synchronous sequential standard cells 
like flip-flops or latches. 

TABLE II RESULTING SSS, DTAS AND ITAS AFTER THE COMPLETE 
SEARCH FOR THE LOGIC FUNCTION OF A 2-INPUT C-ELEMENT. LOGICAL 

VALUES ASSUME THE ORDER A, B, Q FOR INPUTS/OUTPUTS. 

SSs DTAs ITAs
0,0,0 1,R,R R,0,0
1,0,0 0,F,F F,0,0
1,1,1 F,0,F F,1,1
0,1,1 R,1,R R,1,1
1,0,1 1,F,1
0,1,0 1,R,1

0,R,0
0,F,0

C. Timing/Power Figures Generation 
LiChEn may start the characterization process once all 

SSs, DTAs and ITAs have been computed. Based on these 
results, the tool generates SPICE files that implement each 
transition arc and each SS. Measurements are conducted 
during SPICE simulation, based on the configuration given 
in the first stage of the characterization flow, discussed in 
Section 0.A. During characterization, LiChEn measures 
input gate capacitance for low-to-high and high-to-low 
transitions, static and dynamic power and timing figures.  

Timing figures are measured as pin-to-pin propagation 
delays and output transition delays. The static power is 
measured for each SS. Dynamic power, in turn, is divided in 
two parts: switching and internal power, measured as the 
power consumed in DTAs and ITAs, respectively. 

The input gate capacitance is computed as the average 
current for low-to-high and high-to-low input transitions and 
exported as rising and falling input capacitances, respective-
ly. Static power, on the other hand, is measured for each SS 
according to the average current drawn from the power 
source. In addition, the static power consumption of each SS 
is measured for each power source independently. 
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LiChEn models dynamic power consumption using non-
linear tables to achieve comprehensive coverage of the elec-
trical behavior of standard cells combinations. In this way, a 
vector of input slew rates and output capacitance loads is 
required by the simulation environment, as described in 
Section 0.A. The tool measures switching and internal pow-
er consumption [2] for each combination of input slew and 
output load, generating a two dimensional non-linear table. 
The switching power is measured as the power consumed in 
DTAs, and the internal power as the power consumed in 
ITAs, without considering static power consumption. The 
internal power consumption is calculated as “PI”, according 
to Equations (2) and (3) 1:  

tot

T

tvddI StaticdtIVP �� �0 )()( *
,       (2) 

� �)(***)( initafterinitbeforevddtot ttItIVStatic ���
(3) 

Here, Statictot stands for the total measured static power 
consumption. Computation starts by calculating the total 
charge drawn from the power source while in the SS that 
occurred before the transition arc (Ibefore*tinit). This 
charge is added to the charge drawn from the power source 
for the SS that results from the transition arc in the remain-
ing simulation time. This sum is then multiplied by the 
supply voltage, generating Statictot. Simulation time defini-
tions are given prior to characterization, as explained in 
Section 0.A. In this way, internal power consumption con-
siders only the charge drawn from the power source that 
was caused by an input switch. Switching power consump-
tion is calculated in a similar way. However, the current 
required to charge the output capacitance is also subtracted.
In this way, the switching power consumption is measured 
as “Ps”, according to Equation (4): 

�
	



�
�

��� � 2

)(0 )()( **
2
1* vddouttot

T

tvddS VCStaticdtIVP (4) 

As for timing characteristics, LiChEn models propaga-
tion and transition delays [2]. Propagation delay is measured 
for DTAs as the total time that it takes for a switching at the 
input to cause a switching at the output. This depends on 
high-to-low and low-to-high transition thresholds, as ex-
plained in Section 0.A. 

Figure 6 displays an instance, the propagation delays 
DPlth and DPhtl for a 2-input C-element. These are based on 
DTAs (A=1, B=R, Q=R) and (A=F, B=0, Q=F), respective-
ly. First, both inputs and the output are at logical 0. Next, 
input A switches to logical 1, without modifying the value 
of the output. However as soon as input B reaches the low-
to-high transition threshold, when switching its logical val-
ue, the time it takes for Q to reach the high-to-low transition 
threshold starts to be measured. This is modeled as a low-to-
high (rising) propagation delay from pin B to Q. Similarly, a 

                                                          
1 Note that strictly speaking, the values called here power correspond 
indeed to energy values, but this is the approach we borrowed from the 
EDA vendors’ terminology and the Liberty, with which we have to keep 
compatibility.

high-to-low transition in input B followed by a high-to-low 
transition in input A is modeled as high-to-low (falling) 
propagation delay from pin A to Q. In this manner, the tool 
models all possible propagation delays of a given standard 
cell from all inputs to the output. Transition delays are mod-
eled as the time it takes for an output to switch from a logi-
cal value to another. These values are based on minimum 
logical 1 and maximum logical 0 voltages, as discussed in 
Section 0.A.

V(A)

t
V(B)

t
V(Q)

t
DPlth DPhtl

VLtH

VLtH

VHtL

VHtL

Figure 6 – Example of propagation delays for a 2-input C-element. 

Figure 7 shows an example of the transition delays for 
an output pin Q. The low-to-high (rising) transition delay 
(DTlth) is measured as the time an output takes to achieve the 
minimum logical 1 voltage after it reached the maximum 
logical 0 voltage. Similarly, the high-to-low (falling) transi-
tion delay (DThtl) is the opposite. 

V(Q)

t
VLOW

VHIGH VHIGH

VLOW

DTlth DThtl

Figure 7 – Transition delays example for an output pin Q. 

Currently, the tool does not characterize setup time and 
minimum pulse width. This is due to the fact that this is not 
necessary for most of asynchronous templates, because 
circuit monotony is guaranteed. Also, all simulations are 
currently performed through Cadence Spectre SPICE simu-
lator. However, LiChEn is easily adaptable to support other 
simulators. After modeling all the electrical figures of the 
library standard cells, LiChEn exports the generated results 
to a text based file in the Open Source Liberty Format [3],
which is compatible with most EDA tools. 

V. LICHEN PERFORMANCE

Different experiments were performed during LiChEn 
development, in order to assure its precision when charac-
terizing standard cells. Some of these are presented herein.
All experiments employ the STMicroelectronics 65nm 
CMOS technology. 

The first experiment uses the manufacturer´s standard 
cell library. LiChEn characterized the extracted physical 
views of the circuits for seven logic gates: a buffer, 2- and 
3-input AND and OR gates, and 2-by-2 ANDOR and 
ORAND gates. The obtained results were compared to those 
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provided by the chip manufacturer models, also represented 
in the Open Liberty Format. Results are depicted in TABLE 
III.  

A design containing a single cell was implemented for 
each of the seven cells. These designs fed the validation 
environment, where a 10 ps slew rate, equivalent to the 
transition delay of an average sized inverter, was applied in 
all inputs and a 5fF load connected to the output, equivalent 
to the input capacitance of four equivalent inverters. Timing 
figures for each design were annotated for falling and rising 
delay of each input-to-output pins, which account for the 
sum of propagation and transition delays. A switching activ-
ity of one million transitions in all pins was provided for 
power analysis. Through this scenario, results were generat-
ed when using the original characterization models, supplied 
by the standard cell library provider (called Corelib), and the 
ones generated by LiChEn. All results are based in a typical 
process operating at 25oC and 1V supply. 

TABLE III COMPARISON OF ANOTATED STATISTICAL TIMING, POWER
AND INPUT CAPACITANCE VALUES WHEN USING THE CORELIB ORIGINAL 

LIBERTY FILE AND THE ONE GENERATED THROUGH LICHEN WITH 
CADENCE RTL COMPILER. 

Standard Cell Delay (ps) Power (nW) Input 
Cap. (pF)Rise Fall Dynamic Static

BUFF Corelib 18.00 21.00 48,978 37.5 1.253
LiChEn 17.00 21.00 48,542 36.4 1.229

AND2 Corelib 22.50 20.00 68,030 49.6 1.576
LiChEn 21.50 19.00 71,267 48.0 1.530

AND3 Corelib 30.60 23.30 84,033 45.8 1.544
LiChEn 29.60 22.30 85,896 44.1 1.504

OR2 Corelib 18.00 29.50 65,142 43.7 1.459
LiChEn 17.50 29.00 66,993 42.1 1.421

OR3 Corelib 25.30 45.60 84,614 37.3 1.427
LiChEn 24.30 44.60 87,825 34.7 1.409

AO22 Corelib 26.50 38.25 97,850 55.8 1.530
LiChEn 25.25 36.50 102,867 54.6 1.499

OA22 Corelib 27.50 38.00 98,585 56.8 1.530
LiChEn 26.25 37.75 102,382 55.8 1.493

The delay for rise and fall transitions is measured as the 
average delay for each input pin. Power consumption was 
obtained according to the power analysis scenario previous-
ly described (in Section 0.C) and the input capacitance was 
annotated directly from the Open Liberty Format files. Re-
sults show that LiChEn provides a rather precise characteri-
zation. In the worst case, the difference between the results 
obtained using the original characterization models and the 
ones generated by LiChEn was within 5%. By the authors’ 
own experience this is not very significant, as similar varia-
tions may occur even when using industrial tools from two 
different EDA vendors and the same timing and power 
model files. 

As a second experiment, LiChEn was employed in the 
characterization of all C-elements of the ASCEnD library 
[10], a library for supporting generic standard cell based 
asynchronous designs. The library was implemented in the 
same 65nm CMOS technology, using general purpose 
standard threshold transistors. ASCEnD comprises over five 
hundred different C-elements [11], with varying driving 

strengths, number of inputs, control signals and functionali-
ties. The generated characterization models are fully com-
patible with typical models provided by standard cell library 
vendors. 

The time for characterizing 18 different types of C-
elements of the ASCEnD library using LiChEn was meas-
ured to evaluate the program performance. Results were 
obtained using an Intel Xeon W3540 2.93GHz workstation, 
using one core only, due to restrictions of the tool itself. 
TABLE IV shows the total wall clock time to characterize 6 
types of C-elements for each of the three topologies referred 
in Section II. The characterized C-elements included: 2- and 
3-input cells, 2-input resettable (rst) and settable (set) and 
2-input asymmetric cells, with one input that only interferes 
in high-to-low transitions of the output (1d) and one input 
that only interferes in low-to-high transitions of the output 
(1u). All results account for the total time required by all 
characterization steps, including environment configuration,
search for SSs, DTAs and ITAs, generation of the simula-
tion environment, electrical simulation and generation of the 
Open Liberty Format file. 

TABLE IV TIME FOR CHARACTERIZING C-ELEMENTS WITH LICHEN. 

C-element Martin Sutherland van Berkel
2-input 120 s 130 s 104 s
2input 1d 88 s 79 s 87 s
2-input 1u 95 s 90 s 103 s
2-input rst 244 s 256 s 260 s
2-input set 285 s 244 s 278 s 
3-input 419 s 397 s 415 s

As TABLE IV shows, the fastest characterization was 
for the 2-input 1d Sutherland C-element, less than 80 se-
conds. More complex schematics such as the 3-input im-
plementations required up to 419 seconds to be character-
ized. From the measured times, over 95% of these were 
typically required by electrical simulation, which demon-
strates the efficiency of the LiChEn algorithms. Also, li-
censing elapsed time for the Spectre simulator employed for 
these simulations accounted for almost 35% of total time, in 
the worst case. TABLE V presents the total time required to 
characterize the C-elements showed in TABLE IV without 
taking into consideration licensing elapsed time. As the 
Table shows, the efficiency of LiChEn could be substantial-
ly improved if multiple simulator calls were avoided or 
parallel simulations were performed. This is under devel-
opment for the next version of the tool.

TABLE V TOTAL TIME FOR CHARACTERIZING C-ELEMENTS WITH 
LICHEN WITHOUT CONSIDERING SPECTRE LICENSING ELAPSING TIME. 

C-element Martin Sutherland van Berkel
2-input 84 s 89 s 98 s
2-input 1d 57 s 68 s 66 s
2-input 1u 64 s 69 s 72 s
2-input rst 201 s 209 s 198 s
2-input set 218 s 216 s 210 s 
3-input 322 s 330 s 348 s

Considering the worst case performance presented in 
this work, 419 seconds to characterize a single C-element, a 
library of 100 standard-cells would take roughly 11,5 hours 
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to be characterized. The authors consider this a good result, 
considering that LiChEn can be configured using a text-
based script file, which helps automating the process of 
characterizing large libraries of standard cells. Also, having 
a fully automated flow for characterizing asynchronous 
standard cells, avoids the possibility of errors that can occur 
when employing tools designed for synchronous systems, 
given the manual labor required by them. 

VI. CONCLUSIONS AND FUTURE WORK

This work proposed an open source EDA tool for auto-
matically characterizing asynchronous standard cell librar-
ies. Results show that the tool is quite precise and can also 
be employed to characterize typical single-output combina-
tional logic cells. The tool is capable of characterizing input 
pins capacitance, static, internal and switching power and 
propagation and transition delays. Also, it was efficiently 
employed in the electrical characterization of a standard cell 
library composed by over five hundred standard cells. Per-
formance figures demonstrate that the tool can efficiently 
generate timing and power models for big libraries in some 
hours. This is accounted in terms of the total wall clock time 
required by LiChEn to characterize typical asynchronous 
standard cells. As the interest in asynchronous circuits con-
tinuously grows in the research community, LiChEn can be 
very useful to enable semi-custom approaches to this design 
paradigm. 

Currently, LiChEn is based on Cadence Spectre SPICE 
simulator. Future work includes allowing the use of other 
vendors’ simulators. Also, LiChEn does not yet support 
distributed computing when simulating all the generated 
scenarios. However there is work in progress in coupling the 
tool with the Sun Grid Engine, which is also open source 
and can be used to accelerate the characterization process. 
Another future work is enabling the tool to characterize 
multi-output standard cells, which is very useful for specific 
classes of asynchronous circuits. Finally, another important 
thing about LiChEn is that it searches all SSs and transition 
arcs of a logic function, generating SPICE simulation sce-
narios, which can be very useful for academic purposes, 
such as in the context of microelectronics and VLSI design 
courses. 
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