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Abstract—Resilient designs offer the promise to remove in-
creasingly large margins due to process, voltage, and temperature
variations and take advantage of average-case data. However,
proposed synchronous resilient schemes have either suffered from
metastability or require modifying the architecture to add replay-
based logic that recovers from timing errors, which leads to high
timing error penalties and poses a design challenge in modern
processors. This paper presents an asynchronous bundled-data
resilient template called Blade that is robust to metastability
issues, requires no replay-based logic, and has low timing error
penalties. The template is supported by an automated design flow
that synthesizes synchronous RTL designs to gate-level asynchro-
nous Blade designs. The benefits of this flow are illustrated on
Plasma, a 3-stage OpenCore MIPS CPU. Our results demonstrate
that a nominal area overhead of the asynchronous template
of less than 10% leads to a 19% performance boost over the
synchronous design due to average-case data and a 30-40%
improvement when synchronous PVT margins are considered.

I. INTRODUCTION

Traditional synchronous designs must incorporate timing
margin to ensure correct operation under worst-case delays
caused by process, voltage, and temperature (PVT) varia-
tions as well as data-dependency [1]. Different asynchronous
templates have been proposed to address this problem (e.g.,
[2]). Quasi-delay-insensitive (QDI) templates use completion
signal logic, which makes them robust to delay variations at
the cost of increased area and high switching activity due
to a return to zero paradigm [3]. Bundled-data templates
(e.g., micropipelines [4]) use delay lines matched to single-
rail combinational logic, providing a low area, low switching
activity asynchronous solution (e.g., [5]). However, the delay
lines must be implemented with sufficiently large margins in
the presence of on-chip variations, reducing the advantages of
this approach. Researchers have proposed different solutions to
mitigate these margins, such as duplicating the bundled-data
delay lines [6], constraining the design to regular structures
such as PLAs [7], and using soft latches [8].

Meanwhile, the synchronous research community have
investigated various methods to reduce timing margins in
clocked designs. Among these efforts, we highlight resilient
design techniques, which rely on extra logic to detect and
recover from timing violations [9]-[11]. However, many of the
proposed techniques are susceptible to metastability [12] or re-
quire adding replay-based logic, often at an architectural level,
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to recover from these violations, which can be a challenge in
modern processors and lead to high timing error penalties.

This paper presents a new asynchronous bundled-data tem-
plate called Blade, which couples the architectural benefits
of resilient techniques with the flexibility of asynchronous
pipelines. In particular, Blade enables average case perfor-
mance, is robust to metastability issues, requires no replay-
based logic, and has very low timing error penalties.

Blade uses single-rail logic, reconfigurable delay lines, and
error-detecting latches [1] that reliably detect timing viola-
tions. The template implements a novel speculative hand-
shaking paradigm that improves average-case performance
by taking advantage of the fact that errors will have a low
probability of occurrence. Moreover, it is supported by an
automated design flow that synthesizes synchronous RTL de-
signs to gate-level Blade designs. The flow includes automatic
FF to latch conversion, retiming, and resynthesis to further
improve average-case performance while minimizing area. The
potential benefits of Blade and this flow are explored in a
case study using a 3-stage MIPS OpenCore CPU, Plasma [13],
targeting an FDSOI 28nm technology. We compare the gate-
level Blade design to the equivalent synchronous design, and
post-synthesis results demonstrate that for an area overhead of
8.4%, the Blade version of Plasma achieves a 19% average
performance boost. With the removal of synchronous PVT
margins, we estimate a 30%-40% improvement in perfor-
mance.

The remainder of this paper is organized as follows. Sec-
tion II introduces the Blade template, explores the main
components, and details the associated timing assumptions and
overheads. Section III documents the automated conversion
process used to synthesize Plasma and compares the perfor-
mance between the asynchronous and synchronous designs.
Finally, Sections IV and V provide discussion of the case
study results, general observations, conclusions, and several
opportunities for future optimizations and applications.

II. BLADE TEMPLATE

The proposed Blade template, as shown in Figure 1, uses
single-rail logic followed by error detecting latches (EDLs),
two reconfigurable delay lines, and an asynchronous Blade
controller. The first delay line is of duration § and controls
when the EDL becomes transparent, allowing the data to
propagate through the latch. The Blade controller speculatively
assumes that the data at the input of the EDL is stable when
it becomes transparent and thus sends an output request along
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Fig. 1: The Blade template

the typical bundled data channel L/R. The second delay line,
with duration A, defines the time window during which the
EDL is transparent. If data changes during this window, but
stabilizes before the latch becomes opaque, it is recorded
as a timing violation, which can subsequently be corrected.
Consequently, A defines a timing resiliency window (TRW)
after 6 during which the speculative timing assumption may
be safely violated.

In particular, if the combinational output transitions during
the TRW, the error detection logic flags a timing violation by
asserting its Err signal, which is sampled by the controller.
The Blade controller then communicates with its right neigh-
bor using a novel handshaking protocol implemented with an
additional error channel (RE/LE) to recover from the timing
violation by delaying the opening of the next stage’s latch, as
will be described in more detail in Section II-B.

A. Error Detection Logic

As illustrated in Figure 2, the error detection logic consists
of EDLs, generalized C-elements, and Q-Flops [14]. While
there are many possible implementations of EDLs (e.g., [1],
[9], [11], [15]), we implemented a custom design based on
the Transition Detecting Time Borrowing (TDTB) latches
proposed in [1], a functional block diagram of which is shown
in Figure 2. The already low overhead of the TDTB is further
reduced by integrating the transition detector into the pass-gate
latch circuit, where inherit internal latch delays are repurposed
to replace the ¢ p delay line connected to the XOR gate. The
XOR gate itself is also optimized at the transistor level to
improve the transition detector’s sensitivity [15].

The generalized C-elements in Figure 2 are also designed at
the transistor level using the flow proposed in [16] and act to
temporarily remember violations detected by the EDL during
the high phase of CLK. While the input connected to CLK
is symmetric, i.e. required for both low-to-high and high-to-
low output transitions, the X signal from the EDL feeds a
positive asymmetric input, which can only affect low-to-high
transitions. Accordingly, the generalized C-element will switch
to 0 if CLK is at 0 and to 1 only if both CLK and the X input
are at 1. This creates a memory cell that temporarily stores
any violation detected by the EDL during the high phase of
CLK, i.e. during the TRW. Note that a compensation delay is
added by the t.,m, delay line, the purpose of which will be
explained in Section II-E.

Under normal operation, the pulse on X will be sufficiently
large to guarantee the output node of the C-element is fully
charged, indicating an error has occurred while CLK is high,
as outlined in [15]. However, because the data may violate
the setup time of the EDLs, the X signal and the C-element
may exhibit metastablity, as will be further discussed in Sec-
tion II-C. To ensure safe operation, this metastability must be
filtered out before reaching the main controller. In synchronous
designs, the filtering would be handled through multi-stage
synchronizers increasing the latency of error detection dramat-
ically. In contrast, the output of the C-element in the Blade
template is sampled at the end of the TRW using a Q-Flop,
which contains a metastability filter that prevents the dual rail
output signal, Err, from ever becoming metastable, even if the
C-element is in a metastable state. The Blade controller simply
waits for the dual-rail Err signal to evaluate to determine
whether or not an error occured, gracefully stalling until
metastabiilty is resolved.

To minimize area overheads due to error detection, it is
desirable to amortize the cost of the C-elements and Q-
Flops across multiple EDLs. As shown in Figure 2, a 4-input
generalized C-element can combine the X signals of 3 EDLs
using parallel inputs such that an error from any of the three
EDLs triggers the C-element output to fire. An OR gate can
further combine 4 C-elements before reaching a Q-Flop. In this
scenario, a single Q-Flop will accurately catch errors and filter
metastability from 12 EDLs. Counterintuitively, this added
delay provides timing benefits in addition to multifaceted area
savings, as will be further explored in Sections II-E and II-F.
Note that the C-element’s static implementation [3] makes it
undiserable to have more than 4-inputs as the PMOS stack
grows too large.

To further reduce area and power overheads of the error
detection logic, two additional micro-architectural optimiza-
tions are considered. First, not every pipeline stage need be
error-detecting and non error-detecting stages can time borrow.
Time-borrowing stages permit data to pass through the latch
during the entire time it is transparent without flagging any
violations. In particular, we found alternating between error-
detecting and time-borrowing stages can work well as this
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effectively halves the overhead of error detection logic while
still providing sufficient resiliency. Secondly, we define a
stage’s critical path as the longest possible input to output
path in the combination logic, which sets the endpoint of the
TRW. If another path has delay within the TRW it is said to be
"near-critical”". Only latches that terminate near-critical paths'
need be error detecting, further reducing the number of EDLs
required in the entire design.

B. Speculative Handshaking Protocol

The proposed Blade template implements a new form of
asynchronous handshaking: speculative handshaking. To un-
derstand this protocol, we first introduce the expected behavior
of the CLK signals of four Blade stages in a pipeline, shown in
Figure 3. As Instructions 1 and 2 flow through the pipeline, the
arrows indicate the dependency of one clock signal on another.
Instruction 1, shown in red, launches from Stage 1 at time zero.
While Stage 2’s latch is transparent, a timing violation occurs
indicating the ¢ delay line in Stage 1 was shorter in duration
than the combinational logic path. The rising edge of Stage
3’s CLK signal is nominally scheduled to occur ¢ time units
after Stage 2’s, shown as the dotted gray region; however,
the timing violation extends this time, giving Instruction 1 a
total of 6 + A to pass from Stage 2 to Stage 3. Conversely,
Instruction 2 does not suffer a timing violation in Stage 2,
which allows Stage 3’s CLK signal to activate J time units

after Stage 2’s.
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Fig. 4: Speculative handshaking protocol

An example of the speculative handshaking protocol that
achieves this behavior using two-phase signaling is shown in

'Note that by definition a critical path is also "near-critical".
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Figure 4. Here, a Blade stage speculatively receives a request
and data value on its L channel. The request passes through
the ¢ delay line before reaching the Blade controller while the
speculative data propagates the combinational logic. The Blade
controller then checks with the previous stage’s controller if
the speculative request was sent before the input data was
actually stable, i.e., if the previous stage experienced a timing
violation. This action is implemented via a second handshake
on the pull-channel LE. When no timing violations occur in the
previous stage (Figure 4a), the LE.req signal is immediately
acknowledged by LE.ack, indicating the speculative request
was correct and no extension is required. In Figure 4b, on the
other hand, a timing violation occurs in the previous stage
causing the LE.ack signal to be delayed by A time units
while the final, committed input data passes through the stage’s
combinational logic. In both cases this stage is given a nominal
delay of ¢ to process stable data. In addition, notice that
the information of whether a timing violation occured is not
directly transmitted between stages; rather, this information is
encoded into the variable response time between LE.req and
LE.ack. Additionally, the R.req signal of the controller, not
shown in Figure 4, is coincident with the arrival of LE.ack,
which forces the R channel request to be delayed by A as
well when an extension is necessary.

C. Metastability Analysis

Since the input data may stabilize sometime after the open-
ing of the latch, Blade’s susceptibility to metastability (MS)
must be examined. MS in the datapath is not a concern as we
ensure A is set sufficiently large as to avoid closing the latch
while the datapath is still evaluating. However, certain internal
nodes of the error detection logic can become metastable due
to several different scenarios:

e Scenario M1: A data transition occurring near the rising
edge of CLK will cause a pulse on the X output of the
EDL to occur before the rising edge of CLK arrives at
the generalized C-element. In this case, the C-element
may only partially discharge its internal dynamic node,
resulting in metastability at the output. Fortunately, the
width of the timing window in which this can occur is
sufficiently small that timing violations caused by these
transitions are short in duration and their impact can
be absorbed by the following stage. Consequently, the
value to which metastability resolves is not critical and
the circuit will work correctly regardless of the value to
which the Q-flop eventually resolves.

o Scenario M2: Late transitions in the datapath can cause
pulses on the EDL’s X output that are coincident to the
falling edge of CLK. Similarly, the rising edge of the C-
element’s output may coincide with the rising edge of the
Q-Flop’s sampling signal. Timing violations in this case
indicate the datapath is so slow that it exceeds our timing
resiliency window and such circuits should be filtered out
during post-fabrication testing.

o Scenario M3: Datapath glitches that occur in the middle
of the TRW may also induce metastability in the C-
element. However, through careful design of the EDL,
these input glitches will only cause glitches on the X
output and not the data output [15], i.e. the transition



detector is more sensitive to glitches than the data latch
itself. Consequently, metastability in this scenario only
affects performance but not correctness, just as MS in
Scenario M1. Moreover, the probability of entering MS
can be reduced by making the generalized C-element
more sensitive to glitches than the transition detector.

In rare cases, the output of the Q-Flop will take an arbi-
trarily long time to resolve due to internal MS. In a robust
synchronous design, similar resolution delays translate directly
into increased margins or extra clock cycles and synchronizers
to wait for this rare occurrence to resolve. However, due to
the asynchronous nature of our template, the Blade controller
will gracefully wait for the metastable state to resolve before
allowing the next stage to open its latch, effectively stalling
the stage and ensuring correct operation. This is a significant
benefit of asynchronous design which, to the best of our
knowledge, cannot be easily approximated in synchronous
alternatives.

D. Blade Controllers

The Blade controller is implemented as a set of three
interacting Burst-Mode state machines [17] and synthesized
using the tool 3D [18]. Figure 5 shows these state machines
for pipeline stages with EDLs. Note that intermediate signals
goL, goR, and goD are communication signals between the
three individual state machines, and signals delay, edi, and
edo are used to add the A delay line into the controller. For
simplicity, the delay line is duplicated between CLK—delay
and edo—edi. Consolidating these to a single delay line is left
as future work.

We have extended this controller to a token version, which
generates an output request after reset, as well as simplified
versions for stages without error detection logic, creating four
distinct Blade controllers. We added reset to the unmapped
netlists and manually mapped them to our 28nm library of
gates. For all cases, the implicit fundamental mode timing
assumption [17] was validated using a simulation environment
with random environmental delays.

E. Timing Constraints

The datapath in Blade most closely resembles a standard
time borrowing design [19]. However, the introduction of error
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Fig. 6: Timing constraints in Blade
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detecting stages as well as the error detection logic itself
alters these constraints making the analysis of Blade timing
constraints similar to that of Bubble Razor [11].

The annotated timing diagram of the CLK, X, and D signals
for a single error detecting Blade stage in Figure 6 shows
the overheads associated with our error detection logic. The
delay through the error detection logic is comprised of five
components: (i) propagation delay from D to X of the EDL,
tx pa; (ii) output pulse width of pin X, tx p.; (iii) C-element
propagation delay, tcg pq4; (iv) Q-Flop setup time, tQF setups
and (v) propagation delay of the OR gate between the C-
elements and Q-Flop, toRr pd-

Note that ¢x ,q and tx ;,, would enforce a large setup time
before the EDL becomes transparent to ensure a transition be-
fore the rising edge of CLK is not flagged as a timing violation.
Therefore, a small compensation delay tcomp = tx pd +1x,pw
is added to the CLK input of the C-element, as seen in Figure
2, to prevent these unintended errors.

1) Timing Resiliency Window: The actual size of the timing
resiliency window is affected by each of the error detection
logic delays. In particular, the TRW can be defined as:

TRW = A + X pw — (D

Note that tx ,q impacts the TRW in two ways: positively for
transitions occurring near the rising edge of the CLK and
negatively for transitions at the falling edge. Hence this term
cancels out in (1).

2) Propagation Delay: When using the optimizations de-
scribed in Section II-A, there are three potential logic path end
points. First, pipeline stages that do not have error detection
use regular latches that allow time borrowing. Second, latches
in error detecting pipeline stages that are not on near-critical
paths are not converted to EDLs and have constraints similar
to flops. Finally, the EDLs in error detecting stages are the
end points for paths with delay longer than §.

For paths ending at non-error detecting stages, the propa-
gation delay is simply:

(tCE,pd + tOR,pd + tQF,setup)

(@)

where t4¢cn,cq is the clock to Q delay of the source latch
and ¢jqtch,setup 15 the setup time of the sink latch?. For paths
ending at non-error detecting latches in an error detecting
stage, the propagation delay is also straightforward:

tpd,TB < 0+A— tlatch,CQ - tlatch,setup

3

Note that latch setup time is not included in this constraint
because the data is arriving at the rising edge of clock, i.e.
when the latch becomes transparent.

Finally, the propagation delay of paths ending at EDLs can
be derived as:

tpd, NE < 0 — tiateh,cQ

tpa,g < 0 +TRW — tiateh,co “4)

where TRW is defined as in (1). Note that latch setup time
does not appear here either as the requirement to meet the
TRW is always stricter than the latch’s setup time.

2This equation assumes that each stage can borrow the maximum amount
of A, which occurs when time borrowing and non-time borrowing stages are
alternated. See [19] for the more general time borrowing constraints.
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Fig. 5: Burst-mode state machines for Blade controller with error detection

3) Contamination Delay: The Blade controller enforces
a condition that latches of neighboring stages cannot be
transparent at the same time, which provides significant hold
time margin. When including the clock tree delays, tcrx pds
the hold time constraint between two stages is:

&)

tea > (tcLKkn,pd — tCLKL pd) — tack_to_clk

where L and R represent two neighboring stages and ¢,c_to_cik
is the delay from R’s controller generating an acknowledge-
ment signal to L’s controller raising its clock signal. In
practice, tack_to_cik 1S around 4 gate delays, making ¢.4 small
or even negative for balanced local clock trees. This is in
contrast to many resiliency schemes which exacerbate hold
time issues (e.g. [11]).

4) Hiding Handshaking Overhead: After a request is re-
ceived at a Blade controller, a full two-phase handshake must
occur on its LE channel to check if the previous stage suffered
a timing violation. Even when no violations occur, this process
takes a non-zero amount of time, tgc, due to gate delays
in the two controllers. Fortunately, this delay can be hidden
completely by shortening the stage to stage delay, J, by tgc.
If § is not shortened, the circuit will still operate correctly but
with slower performance.

F. Maximum Timing Resiliency Window

To compute the maximum width of the timing resiliency
window, T'RW 4., we first define a few additional delays:

e tQF,pa : the nominal propagation delay from the sample

input to the outputs of the Q-Flop without metastability.

e tET pa : the maximum propagation delay of the AND and

OR trees that collect the individual dual-rail error signals
from the Q-Flops.

To find TRW 4., it is also helpful to first define A4z,
the maximum clock pulse width for a Blade stage. Because
opening the latch of one stage depends on checking if an
error occurred in a previous stage, A cannot be equal to ¢
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and still achieve the expected cycle time including overheads.
Therefore, A4, is conservatively set as:

(6)

where tpp,o]_to_cir 18 the internal controller delays from
receiving Err[0] one controller to raising the clock signal in
the subsequent stage. Combining (1) and (6) we find:

Amaw =0— tET,pd - tQF,pd - tErr[O]ftoﬁclk

TRWma:L' =0— tET,pd - tQF,pd - tEr'r[(]]jofclk
+txpw — (tcE,pd + tOR,pd + tQF, sctup)

)

In some cases, a large TRW may not be ideal and setting it to
20-30% may be sufficient, as was done in [11]. In addition,
reasonable estimates of tcg pq and tQF setup in @ modern
process are on the order of tens of ps. However, the magnitude
of tgr pa and tor pq depend on multiple factors, including the
number of EDLs per stage and the degree to which the EDLs
are amortized across Q-Flops. This presents an interesting
optimization problem in which reducing the number of EDLs
may also maximize the potential performance of the design.

III. CASE STUDY: PLASMA 3-STAGE CPU
A. Automatic Translation to Blade Template

An automated flow to convert single CLK domain syn-
chronous RTL designs to asynchronous Blade using indus-
try standard tools, including DesignCompiler and PrimeTime
from Synopsys (for synthesis and STA) and NC-Sim from Ca-
dence (for simulation), was developed to analyze the benefits
of the proposed template on a 3-stage version of Plasma [13], a
MIPS OpenCore CPU, targeting a 28nm FD-SOI technology.
The flow consists of various Tcl and shell scripts, a library
of custom cells, and a Verilog co-simulation environment
for verification and analysis that are wrapped in a Makefile
system, which provides multiple configuration knobs to control
the synthesized frequency, TRW, compensation for overheads,
and other aspects of the design. The flow has 5 main steps:



RTL Specification

Synchronous Synthesis]

l FF-Based Design

FF to Latch Conversion]

- l Master-Slave Latch-Based Design
Synch Retiming ]
Library

l Balanced Latch-Based Design

Resynthesis ]

>

Custom
Blade

Cells

l Resiliency-Aware Optimized Latch-Based Design

Latch to EDL Conversion +
Controller Insertion

Final Blade Netlist

Fig. 7: Blade design flow

1) Synchronous Synthesis: The synchronous RTL is syn-
thesized to a flip-flop (FF) based design at a given clock
frequency with preset I/O delays and output load values.
FF to Latch Conversion: The FFs are converted to
master-slave latches by synthesizing the design using a
fake library of standardized D-Flip Flops (DFFs) that can
be easily mapped to standard-cell latches.

Latch Retiming: The latch-based netlist is then retimed
using a target TRW that defines the maximum time
borrowing allowed, where the combined path delay con-
straint of any two stages equals the given clock period.
Resynthesis: The retimed netlist is then resynthesized to
optimize the expected area and performance of the final
resilient netlist, as will be described in Section III-C.
Blade Conversion: The resynthesized latch-based netlist
is then converted to the Blade template by removing
clock trees and replacing them with Blade controllers.
The control logic, delay lines, and error detection logic
are also inserted to create a final Blade netlist.

2)

3)

4)

5)

The final Blade netlist is validated via co-simulation with the
synchronous netlist from step 1 to verify correct operation and
measure performance. In particular, to verify correct operation
the stream of inputs is forked to both the synchronous and
Blade netlists and the stream of outputs is compared.

B. Handling Macros

In many designs there may be logic blocks that are either
implemented using hard macros or would be problematic
to convert to the Blade template directly. Therefore, it is
beneficial to capture errors at the inputs to these cells and
ensure the timing for the macro is satisfied at the ideal target
clock frequency, i.e. the given clock period minus the TRW.
Fortunately, an important advantage of asynchronous design
is that we can add new pipeline stages to the design without
changing functionality. For Blade, we take advantage of this
feature by adding an error-detecting pipeline stage at the
input of the macro controlled by a non-token-buffer pipeline
controller. These controllers only pass tokens through the
system; unlike token controllers, they do not generate tokens
on reset. Therefore, the functional behavior of the design is
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unchanged. In synchronous designs, this would not be possible
without major architectural modifications as adding a pipeline
stage changes the functionality greatly.

As an example of this process, the Plasma CPU contains
a 32 entry register file (RF) that can be implemented using
a memory generator or synthesized directly as 32 flip-flops
per register. It is not uncommon for either the input or output
of the RF to be on a critical path in the CPU; however, it is
often the case that the majority of this critical delay occurs
outside of the macro boundary (e.g. an ALU’s result being
stored into the RF). With Blade, if a near-critical path ends
at the RF, all internal registers would need to be converted to
EDLs, resulting in large area overheads. But we can exploit
the fact that the decoding logic inside the RF macro is quick
in comparison to the rest of the input path by adding a non-
token Blade stage on the data and address inputs to the RF. We
therefore achieve the same resiliency benefits while reducing
the number of EDLs drastically without changing the macro
itself; for a 32-bit RF, only 37 EDLs are required when placed
at the input (32 for data, 5 for address) instead of 1024 when
the internal flops are converted to EDLs. The nominal datapath
delay from the added error detecting Blade stage, through the
RF, and to the subsequent Blade stage must be faster than the
ideal target frequency for this method to be effective, which
was easily met in our case.

C. Resynthesis

Each EDL adds overhead in timing and area in multiple
ways: i) the EDL itself is larger than a latch; ii) the number
of C-elements and Q-Flops increase; and iii) the size of the
OR/AND trees needed to combine error signals also increases.
Therefore, it is desirable to minimize the number of EDLs
while maintaining both the robustness to timing violations and
the expected performance increases. One method to achieve
these goals is through resynthesis. The retiming step of the
Blade design flow generates a report of latches that should
be converted to EDLs, i.e. all latches that are on a near-
critical path, such that the static timing analysis indicates a
timing violation would occur when running at the ideal target
frequency. Constraining the delay to one of these latches to
be no greater than the target frequency and resynthesizing the
design would therefore remove the selected latch from the
EDL report, allowing it to be implemented using a standard
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Fig. 8: Resynthesis to improve area and decrease error rate



latch rather than an EDL. Although the combinational area
may increase due to tighter constraints on certain paths, this
overhead can be offset if multiple latches that were slated
to become EDLs are no longer on near-critical paths as
well. Unfortunately, the high degree of shared paths in the
combinational logic makes it challenging to estimate the the
reduction in EDLs, i.e. constraining one latch may also speed
up shared paths to many other latches. Moreover, the reduction
of EDLs combined with faster combinational logic may lead
to a reduced frequency of timing violations during simulation,
which affects the maximum performance of the circuit.

Without reliable methods of estimating these two effects, it
is difficult to know a priori which latch(es) in the EDL report
to further constrain; therefore, a brute-force approach in which
all latches marked EDL are tested one by one is employed to
find a suitable candidate latch. Figure 8 shows the results of
this approach on the Plasma CPU, with a given frequency of
666MHz and a target frequency of 952MHz. After retiming,
there 456 latches required to be converted to EDLs. A max
delay constraint equal to the target clock period was placed
on each latch separately to ensure no timing violations would
occur. Then the netlist was resynthesized, converted to Blade,
and simulated in the co-simulation environment to obtain both
the post-conversion area and error rate, i.e. the frequency of
timing violations averaged over the entire simulation. The best
point, highlighted in red in Figure 8, yields a 27% decrease
in number of EDLs with a 1.79% decrease in overall area,
and 39% improvement in error rate. Note that the potential
benefits of this resynthesis approach will depend heavily on the
initial starting frequency, i.e. a design that is already heavily
constrained cannot easily be constrained further to achieve area
and performance benefits.

D. Area and Performance Comparisons

Using the flow described in Section III-A, Plasma was
converted from a 666MHz synchronous flop-based design to
Blade with a timing resiliency window of 30% in a 28nm
FDSOI process. New library cells were created and char-
acterized for the EDLs, C-elements, and Q-Flops to obtain
accurate area and timing information for the synthesis tools
and our simulations. While a behavioral model of the burst-
mode Blade controller, described in Section II-D, was used for
simulation, a preliminary gate-level design was also mapped
to our technology to estimate controller area and timing.
The timing information generated through synthesis was then
used to inform delays in our behavioral controllers and delay
lines. The final asynchronous control logic and error detection
overheads are depicted in Figure 9. The overall area overhead
from the original synchronous design is 8.4% after one pass
of the resynthesis method presented in Section III-C.

To compare the performance between the synchronous and
asynchronous designs, we executed one iteration of an industry
standard benchmark, CoreMark [13], on both CPUs. The Blade
design achieved an average frequency of 793MHz with a
peak frequency of 950 MHz, an increase of 19% and 42%,
respectively. A plot of the performance over time is shown
in Figure 10, where average performance is measured across
the entire benchmark while the instantaneous performance is
measured only over the previous 1,000 cycles. The Blade
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design quickly switches operating frequencies, benefiting from
large variations in data dependent delays near the beginning
of the benchmark before the overall performance averages to
just under 800MHz.

IV. DISCUSSION
A. Retiming

The retiming step of the Blade conversion flow may reduce
the performance of Blade and increase area overhead of the
final netlist. This opens the door to optimization problems that
involve retiming to maximize average case performance. For
example, a traditional synchronous retiming algorithm may
prefer unbalanced paths between time-borrowing latches in or-
der to save area without sacrificing performance. However, the
final placement of the latches also affects the number of near-
critical paths in the circuit. For resilient designs, poor latch
placement could unnecessarily inflate the number of EDLs,
resulting not only in larger area overheads but also higher
error rates and lower performance. Finding ways to exploit
the positive benefits of retiming in resilient architectures such
as Blade is an area of on-going research.

B. Performance with Margins

Because Blade utilizes programmable delay lines, it is
expected that, after tuning, these delays will reasonably track
the delay of datapath combinational logic even in the presence
of variations due to process and environmental factors [20].
Therefore, we can reduce the amount of margin required in
our timing assumptions compared to traditional synchronous
designs. The § delay line impacts the start of the timing
resiliency window, and thus may lead to fluctuations in ex-
pected error rate under variation, but timing violations will
still be identified and corrected. Accordingly, the majority of
margin can be added to the A delay line, which controls the
clock pulse width and delay penalty when a timing violation
occurs. In our simulations with Plasma, the average frequency
of timing violations were 20% - 40% in the benchmarks we
considered. Thus, the impact of the added margin is only ex-
perienced 20-40% of the time, greatly reducing the percentage
drop in performance compared to synchronous designs. This is
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in contrast to non-resilient bundled-data designs (e.g., [5]) in
which the added margin affects performance 100% of the time.
As an example, a 10% increase in variation due to PVT can
result in up to 30% margin penalty for synchronous designs;
however, the performance impact on Blade is less than 13%,
when considering even a 40% rate of timing violations.

V. CONCLUSIONS

This paper presents a novel asynchronous resilient design
template that achieves modest performance improvements due
to variations in data dependency alone. When combined with
expected variation due to PVT, the performance benefits can
be significant, at the cost of a less than 10% increase in area.
The Blade template excels compared to other synchronous
resiliency schemes and previous asynchronous approaches in
the following key ways:

o Some synchronous resiliency approaches either do not
handle metastability or handle it unsafely. For example,
Razor has no protection from metastability, which Razor
II fixes at the cost of adding synchronizers in the con-
trol path [10]. Likewise, Bubble razor fails to account
for metastability, which leads to poor MTBF [12]. On
the other hand, the metastability filter in the Q-Flop
of the Blade stage guarantees correct operation of the
circuit under metastability at the expense of performance.
The stage will stall indefinitely until metastability has
resolved, which is simply not possible in synchronous
designs.

o As was shown in Section III-B, adding pipeline stages in
an asynchronous design is straightforward and requires
no architectural modifications to the original RTL. This
allows enormous freedom in how the impact of difficult
to handle timing paths can be mitigated. In the Plasma
case study, adding a pipeline stage to the input to the RF
reduced the area overhead in EDLs alone by ~67%.

As ongoing work we are exploring power characterization
for Blade designs and improvements that can be obtained via
voltage scaling. Because the template allows performance im-
provements when compared to synchronous designs, designers
can trade-off these improvements with power savings through
voltage scaling, achieving lower power at iso-throughput.
Furthermore, Blade also motivates new areas of future work,
including avenues for optimization for the average-case at
the logic and architectural levels as well as new challenges
in the area of automated physical design to realize these
benefits post-layout. In addition, new testing strategies could
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be developed to both optimally tune the programmable delay
lines based on in situ error rate monitoring and identify chips
with delay variations too large to correct.
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