
August 2017

Towards Distributed Parallel
Programming Support for the SPar DSL

Dalvan Griebler a,1, Luiz Gustavo Fernandes a

a Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil

Abstract. SPar was originally designed to provide high-level abstractions for
stream parallelism in C++ programs targeting multi-core systems. This work pro-
poses distributed parallel programming support for SPar targeting cluster environ-
ments. The goal is to preserve the original semantics while source-to-source code
transformations will be turned into MPI (Message Passing Interface) parallel code.
The results of the experiments presented in the paper demonstrate improved pro-
grammability without significant performance losses.

Keywords. Parallel Programming Languages, Domain-Specific Language, Stream
Parallelism, Algorithmic Skeletons, Parallel Patterns, Parallel Programming.

1. Introduction

Parallel programming for cluster architectures remains a challenging task for application
programmers. For the most part, they need to deal with source code rewriting and low-
level programming libraries when they try to achieve high-performance in distributed
parallel processing. The current standard is the Message Passing Interface (MPI), which
requires code modeling with explicit communication implementation, load balancing,
processes synchronization, and data serialization (except MPI data types). Programmers
must also understand the underlying architecture to efficiently exploit the parallelism.

This problem is well documented in the literature and though there are state-of- the-
art initiatives such as the X10 [18], Chapel [5] and Charm++ [6], there is still a lack
of high-level and productive alternatives such as proposed in SPar [13]. For instance,
Charm++ is a machine independent programming system based on C++. The program-
mer exploits the parallelism in a object-oriented manner, and the runtime can run object
and classes in parallel while the communication must be done through message pass-
ing [1]. On the other hand, X10 is a new object-oriented parallel programming language
designed to work with the Asynchronous Partitioned Global Address Space (APGAS)
model [15]. Moreover, targeting heterogeneous parallel architectures (CPU and GPU),
there are related approaches that use C++ attributes (the same annotation mechanism of
SPar) to abstract parallelism as part of a software engineering methodology [8,9]. How-
ever, they do not provide support for distributed parallel programming.

In contrast to these initiatives, we are proposing support for distributed parallel pro-
gramming without changing the original semantics of SPar. In fact, our approach enables
application programmers to add standard C++ annotations rather than having to rewrite
their sequential code on shared memory architectures (multi-core) [12,11]. Our goal in

1Corresponding Author: dalvan.griebler@acad.pucrs.br


