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Abstract—Transactional Memory (TM) is reputed by many
researchers to be a promising solution to ease parallel pro-
gramming on multicore processors. This model provides the
scalability of fine-grained locking while avoiding common issues
of traditional mechanisms, such as deadlocks. During these
almost twenty years of research, several TM systems and
benchmarks have been proposed. However, TM is not yet
widely adopted by the scientific community to develop parallel
applications due to unanswered questions in the literature, such
as “how to identify if a parallel application can exploit TM
to achieve better performance?” or “what are the reasons of
poor performances of some TM applications?”. In this work,
we contribute to answer those questions through a comparative
evaluation of a set of TM applications on four different state-
of-the-art TM systems. Moreover, we identify some of the
most important TM characteristics that impact directly the
performance of TM applications. Our results can be useful to
identify opportunities for optimizations.
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I. INTRODUCTION

The multicore technology has proven to be able to accom-
plish high performance along with reduced power consump-
tion. However, applications must be parallelized in such a
way that the degree of concurrency is optimized to exploit
the full power of multicores. Unfortunately, most of the
problems in high performance computing are not embarrass-
ingly parallel, so developers often rely on synchronization
mechanisms to guarantee the correct execution of concurrent
accesses on shared data. Traditional synchronization struc-
tures such as locks, mutexes and semaphores are extensively
used in a multicore context. However, they have several
disadvantages: (i) they are low-level mechanisms, since one
must explicitly control the access to shared variables; (ii)
they cause blocking, so threads always have to wait until
a lock (or a set of locks) is released; (iii) they are hard to
manage effectively, especially in large systems; and (iv) they
can be vulnerable to failures and faults, such as deadlocks
and livelocks [1].

In this context, Transactional Memory (TM) provides
a new attractive way of developing parallel applications
through a higher abstraction level, shifting the synchroniza-
tion problem to the TM system, which is responsible for
ensuring that deadlocks will not occur and race conditions
are correctly handled [2], [3]. It allows programmers to write
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parallel code as transactions, which are guaranteed to exe-
cute atomically and in isolation regardless of eventual data
races [1]. At runtime, transactions are executed speculatively
and the TM runtime system continuously keeps track of
concurrent accesses and detects conflicts. Conflicts are then
solved by re-executing conflicting transactions. TM can be
implemented in hardware (HTM), software (STM) or both
(HyTM). Our work focuses on STM systems because they
are easier to modify and have no architectural limitations
compared to hardware [4].

Several studies were carried out to improve the use of
TM in parallel programming during the last twenty years.
In addition to that, different TM systems [5], [6], [7], [8]
as well as TM benchmarks from different domains [9], [10]
were proposed. Although there have been advances in the
area, TM is still under research due to unanswered questions.
As discussed in [11], it is still challenging to know what kind
of applications can really take advantage of TM. Finally, as
identified by [12], it is essential to investigate the reasons
why some TM applications present low performance and
how to identify in advance which applications can benefit
from this model.

Considering this scenario, this work presents a compar-
ative evaluation of a set of transactional applications and
systems. We intend to take a step towards understanding the
existing problems and identifying opportunities in the STM
systems in order to contribute to answer the questions that
remain open. Our main goals are to present a comparative
analysis of STM systems and to identify the characteristics
of TM applications that impact the most on the performance
of STM systems. Our contributions can be summarized as
follows:

1) We present a performance evaluation of state-of-art
STM systems and TM applications;

We extend the analysis presented in [10], including
the RSTM [7] system;

We find out some transactional characteristics that
considerably affect the performance TM applications;
We identify some of the bottlenecks of TM applica-
tions that limit their scalability and we show possible
improvements to achieve better performance.

2)
3)

4)

The rest of this paper is organized as follows. In Sec-
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tion II, we introduce our research methodology. A perfor-
mance analysis of STM systems are presented in Section
IIT and IV. In Section V, we analyze the impact of transac-
tional characteristics on the performance of TM applications.
Section VI reviews some related works concerning the
performance evaluation of STM systems. Finally, concluding
remarks and future works are presented in Section VIIL.

II. METHODOLOGY

Our main goal is to present a comparative analysis of
STM systems and to identify the characteristics of TM
applications that impact the most on their performances. We
caried out three sets of experiments to achieve this goal.

First, we analyze the performance of four state-of-the-
art STM systems using the Stanford Transactional Ap-
plications for Multi-Processing (STAMP) benchmark [9].
Second, we perform a thorough evaluation of STM systems
using EigenBench [10], which can mimic the behavior of
STAMP applications while offering a fine-tune control of the
input parameters. As shown in [10], EigenBench can attain
very similar transactional behavior of STAMP applications.
Finally, we evaluate the impact of certain transactional
characteristics on the performance of TM applications using
EigenBench. This experiment allows us to study the behavior
of applications in a controlled manner by changing one
characteristic at a time.

All experiments were performed on a Dell PowerEdge
R610 machine with two quad-core Intel Xeon E5520 2.27
GHz processors with 8MB of L2 cache and 16GB of shared
memory. All results are arithmetic means of at least 30 runs
to guarantee a confidence level of 95%.

III. PERFORMANCE COMPARISON OF STM SYSTEMS
USING STAMP BENCHMARK

In this work, we focus on STM systems implemented in
C/C++. We first give a brief description of the STM systems
used in this study. Then, we evaluate the performance
obtained with these STM systems on STAMP applications.

A. STM Systems

STM systems such as TL2 [8], TinySTM [5], Swis-
sTM [6] and RSTM [7] are examples of state-of-the-art
STM systems. In this paper, we used the latest versions
available of these systems and compiled them with their
standard configurations.

The Transactional Locking II (TL2) is the second ver-
sion of the original Transactional Locking (TL) algorithm
developed by D. Dice and N. Shavit [8]. TinySTM [5] is
another well-known STM implementation that also uses a
global versioning approach (shared counter as clock) to con-
trol the conflicts between transactions and locks to protect
shared memory locations. SwissTM [6] presents some new
features when compared to TL2 and TinySTM. One of its
innovations is the hybrid conflict detection scheme: it detects
write/write conflicts eagerly, which prevents transactions that
will probably abort from running and wasting resources,
and read/write conflicts lazily, allowing more parallelism
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between transactions. In read/write conflicts, a time-based
scheme (similar to the TL2 global version-clock) is applied
to handle conflicts. Finally, the Rochester Software Transac-
tional Memory (RSTM) [7] is one of the oldest open-source
STM systems. RSTM reduces cache misses by employing a
single level of indirection to access shared objects. It means
that each object has a unique metadata structure during its
lifetime, avoiding the creation of a new locator whenever a
object is acquired by a transaction.

B. Performance Evaluation

The STAMP benchmark suite includes 8 applications and
30 variants of input parameters and data sets. We used
the same set of input parameters for each application for
non-simulated runs as presented in [9]. Figure 1 presents
speedups of each STAMP application. Speedups are relative
to a sequential baseline without transactions.
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Figure 1. Speedups of STAMP applications.

Overall, SwissTM and RSTM achieved better perfor-
mance than other STM systems. However, all systems pre-
sented poor results when running ssca2, yada and bayes. Af-
ter analyzing the source codes, of these applications we iden-
tified several regions of non-transactional code. Although
this limits the parallelism, it is necessary to investigate the
transactional characteristics of such applications to identify
reasons for their poor performance.

Among all applications, only two achieved good scalabil-
ity. Labyrinth presented ideal performance with 2 cores on
all STM systems, but with 4 cores only RSTM and SwissTM
sustained a good performance. Although, genome achieved
good performance with 2 cores on all systems, only RSTM
achieved ideal speedup. For more than 4 cores, RSTM and
SwissTM systems showed better overall performances.

Even though the STAMP benchmark has a set of appli-
cations that stresses out STM systems, we could verify that
all tested STM systems could not achieve satisfactory results



in terms of performance. In fact, the characteristics of the
STAMP applications presented in [9] do not give enough
information to fully comprehend their performance results.
A good starting point to better understand these performance
issues would be to find a way to identify and manipulate the
transactional characteristics of STAMP applications. These
characteristics must represent the application as completely
as possible, indicating attributes that may help to understand
their performance and to identify opportunities for improve-
ments. We further study these aspects in Section V.

IV. SWISSTM vs. RSTM USING EIGENBENCH

In this experiment, we narrowed our set of tested STM
systems to those which presented better performance in
the previous experiment in Section III, i.e., SwissTM and
RSTM. The reasons for choosing two STM systems instead
of only the best one are threefold: (i) these systems showed
very similar results for some STAMP applications; (ii)
the use of two systems will allow us to compare their
results helping to detect unusual behaviors; and (iii) RSTM
is an important system in the literature and was not yet
tested with EigenBench [10]. We also decided to reduce
the number of STAMP applications for this experiment. We
chose applications with poor (ssca2), medium (intruder and
vacation) and good (labyrinth and genome) scalability.

Our evaluation is based on two relevant metrics used in the
context of TM [13]: speedup and aborts per commit (ApC).
The former focus on the scalability of the application, which
will be in fact the overall performance of the TM application.
The latter, on the other hand, reveals the degree of conflicts
of the TM application and shows how well the STM system
deals with those conflicts.

A. EigenBench Input Parameters

In EigenBench, we can describe an application based
on its Eigen characteristics. Concurrency is number of
concurrently running threads; Working-set Size is size of
frequently used memory; Transaction Length is number
of shared accesses per transaction; Pollution is fraction
of shared writes to shared accesses; Temporal Locality is
probability of repeated address per shared access; Contention
is probability of conflict of a transaction; Predominance is
fraction of shared access cycles to total execution cycles;
and Density is fraction of non-shared cycles executed outside
transactions to total non-shared cycles.

The above mentioned Eigen characteristics are derived
from a set of input parameters [10]: A1, A2xN, A3,
R1, Wl, R2, W2, R30, W30, R3i, W3iand LCT.
Thus, to change the Eigen characteristics of a workload one
needs to set all these input parameters.

Several different TM workloads can be created by care-
fully setting the input parameters described above. In fact,
the authors of EigenBench proposed input parameters to
mimic the behavior of STAMP applications [10]. We then
use the same set of values for the input parameters and
characteristics defined in [10] to create workloads very
similar to those available on STAMP. Table I presents the
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Table T
APPLICATIONS CHARACTERISTICS FROM STAMP BENCHMARK

Characteristic ssca2 intruder  vacation labyrinth  genome
‘Working-set Size 400 MB 20 MB 256 MB 16 MB 20 MB
Transactional Lenght 3 24 226 357 88
Pollution 33% 5% 2% 50% 5%
Temporal Locality 0.33 0.52 0.59 0.77 0.58
Contention 0.0005% 22% 0.2% 5% 0.5%
Predominance Low Low High Low High
Density High High High Low High

input parameters used in our study. The working-set size and
transactional length are average values.

B. Performance Evaluation

Figure 2 shows the results using EigenBench to mimic
the selected STAMP applications. Results with SwissTM are
similar to those introduced in [10], confirming that we could
reproduce their experiment correctly. As it can be observed,
SwissTM outperforms RSTM in 4 out of 5 applications.
Overall, applications presented a very similar behavior in
terms of speedups with the single exception of genome with
8 cores, which was significantly different on both systems.
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Figure 2. Speedups and ApCs of EigenBench on SwissTM and RSTM.

To perform the analysis of each individual application, we
used the following information: speedups, ApC, orthogonal
characteristics of each application and source codes. We
discuss below our findings and conclusions.

Genome. It was the only application that presented sig-
nificantly distinct performance results among STM systems.
This fact is explained by the design choices of SwissTM
which allows the system to deal satisfactorily with both short
and long transactions. The application has different transac-
tion lengths, ranging from very short transactions up to long
transactions. Even though the fact that smaller transactions
are more frequent than long ones in this benchmark, the use
of longer transactions resulted in a reduction of the overall



performance of the application. High predominance and high
density also influenced its performance.

Intruder. It presented the worst speedups among the
tested applications. This application has a large variation in
terms of memory allocation during its execution time. The
main reason for the poor performance is its high level of
contention, which increased the number of ApCs (Figure 2).
This contention is caused by the fact that the main shared
structure (a self-balancing tree) has much less nodes near
the end of the execution. Because of that, the probability of
having transactions accessing the same nodes is very high,
increasing considerably the ApC metric.

Labyrinth. It achieved the best results among the selected
applications. The application has a uniform distribution in
transaction length and the amount of memory used is often
small. Although this application has large transactions, they
have low density and low predominance. Additionally, this
application presents low contention and high locality, which
also contributed to its good performance.

Ssca2. It showed poor performance on both systems. Al-
though the application has short transactions, it uses a large
amount of memory which impacts the overall performance.
Unlike intruder, it does not present high percentage of ApCs.
This indicates that the loss of performance is not caused
by conflicts. Instead, it comes from the difficulty of STM
systems to deal simultaneously with both short transactions
and large amounts of memory.

Vacation. It also presented poor performance on both
systems. It has the following combination of characteristics
that compromise its performance: a large amount of memory
and a large variety of transaction lengths. Moreover, high
predominance and high density are also present.

Our findings can be summarized as follows: (i) TM
applications that use large amounts of memory did not
present good performance, since STM systems need to keep
track of much more data to detect conflicts; (ii) the variation
in terms of transaction lengths during the execution is not
well treated by most of the STM systems; (iii) low degrees of
predominance and density help TM applications to perform
better; and (iv) high levels of ApC generally limit the
performance of TM applications.

V. EVALUATING THE IMPACT OF TRANSACTIONAL
CHARACTERISTICS

To perform this test, we selected the four applications that
presented low performance in our experiments in Section I'V:
genome, intruder, ssca2 and vacation. Our goal in this
last experiment is to identify opportunities to improve the
performance of these applications. We use a single STM
system (i.e., SwissTM), since we want to focus on the
characteristics of TM applications. We performed a “trial
and error” approach [10] driven by the knowledge acquired
in our previous analysis. Based on that, we identified which
transactional characteristics were relevant for each applica-
tion. We then isolated them to analyze the impact of such
characteristics on the performance of the TM applications.
We present below the initial analysis of each application
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as well as the proposed modifications to improve their
performances.
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Figure 3. Speedups when varying transactional characteristics.

Among the characteristics discussed in Section IV, some
results were relevant to determine the performance of appli-
cations. As an example, we could cite: contention, which
impacted the result of intruder; temporal locality, which
helped the performance of the labyrinth; working-set size,
which impacted in applications with large memory (ssca2
and vacation); and, transactional length, which impacted
applications with both short and long transactions (genome).
In the following sections, we analyze each one of the
selected applications separately.

Genome. The poor performance of genome was strongly
related to the transaction length. This characteristic is de-
rived from following EigenBench input parameters: R1, R2,
Wl and W2. We varied these input parameters to analyze
their performance impacts. Version V1 reduces the size of
long transactions. Versions V2 and V3 reduce the sizes
of both medium and long transactions. On the contrary,
version V4 increases the sizes of both medium and long
transactions. Figure 3-genome presents the results when
varying these parameters. Versions V1 to V3 showed better
results than the original application since we identified that
long transactions lengths were the cause of poor performance
in this application. Version V4 confirms our findings, since
the performance of genome becomes worse than the original
one when we increase the length of transactions.

Intruder. After carrying out several experiments, we
found that the poor performance of intruder was due to tem-
poral locality issues. This characteristic is directly related to
the input parameter LCT in EigenBench. LCT can assume
values ranging from O to 1,024. The higher is the value,
the higher will be the probability of accessing a previous
used memory address in a transaction. We generated four
modified versions of intruder with different values for LCT.
Versions V1, V2 and V3 increase the temporal locality
whereas version V4 reduces it to the worst case possible.



In Figure 3-intruder, we confirm that the temporal locality
has an important role on the performance of intruder, since
versions V1, V2 and V3 presented better speedups.

Ssca2 and vacation. In Section IV-B, we concluded that
the poor performance of ssca2 and vacation came from the
use of a large amount of memory inside transactions. Eigen-
Bench allows us to control it through the Eigen characteristic
called working-set size. This characteristic is derived from
the sum of the following input parameters: A1, A2 and A3.
Versions V1, V2 and V3 reduce the amount of memory
used inside transactions whereas version V4 increases it.
Figure 3-ssca2 and Figure 3-vacation present the impact of
this characteristic, showing that the performance is increased
when we reduce the working-set size. As expected, version
V4 presented worse performance than the original one.

VI. RELATED WORK

Ansari et al. [13] instrumented an STM implementa-
tion to collect relevant information during the execution
of applications. They have showed a set of 12 metrics to
characterize TM applications. They selected 3 applications
from the benchmarks STAMP and Lee-TM to investigate
and comprehend TM applications. Lourenco et al. [12]
implemented a framework with low overhead, which col-
lects transactional events and stores them in a log file. To
evaluate the results, they implemented a tool to visualize
the collected transactional information. Castro et al. [11]
proposed an approach for collecting and tracing relevant
information about transactions. It was based on the Linux
dynamic linking mechanism, which traces events about
transactions. Their solution can be applied to different STM
libraries and applications since it does not modify neither
the applications nor the STM source codes. Zyulkyarov et
al. [14] proposed a series of profiling techniques for TM
applications that provide comprehensive information about
the wasted work caused by aborting transactions. Their study
explores 3 directions: (i) identification of potential conflicts;
(i1) identification of the data structures involved in conflicts;
and (iii) visualization techniques to summarize how threads
spend their time and which of their transactions conflict
more frequently.

Our work differs from the previously mentioned ones
since we focus on a general evaluation not only of appli-
cations but also of STM implementations without modify-
ing source code and covering a larger set of transactional
systems and applications. Unlike [12], [13], this approach
has the advantage of using a larger variety of STM systems
without modifying the source codes. Moreover, it does not
add any overhead, as opposed to the works presented in [11],
[14] which may modify the behavior of the applications due
to extra operations to collect data.

VII. CONCLUSION

This paper presented a comparative evaluation of STM
systems and TM applications. We intended to answer some
of the open questions in the literature and to identify oppor-
tunities for improvements in TM applications. The results of
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this comparative evaluation set directions and contributions
that could be useful for the scientific community.

We carried out a series of experiments to better understand
the performance of TM applications on state-of-the-art STM
systems. Our results pointed out that there exist some
important characteristics that drive the performance of TM
applications. However, TM applications must be analyzed
carefully to identify the most relevant characteristics that
may help to improve their overall performance. As an op-
portunity for the future, we intend to extend this work using
some tracing mechanisms as proposed in [11]. Moreover, we
intend to study the impact of the TM characteristics on the
performance of TM applications when executed on a real
HTM processor such as the Intel Haswell.
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