
Extracting Web Content for Personalized Presentation

Rodrigo Chamun, Daniele Pinheiro, Diego Jornada
João Batista S. de Oliveira, Isabel Manssour

Pontifícia Universidade Católica do Rio Grande do Sul — PUCRS
Faculdade de Informática — FACIN

Porto Alegre — Brazil
{rodrigo.chamun, daniele.pinheiro, diego.jornada}@acad.pucrs.br

{joao.souza, isabel.manssour}@pucrs.br

ABSTRACT

Printing web pages is usually a thankless task as the re-
sult is often a document with many badly-used pages and
poor layout. Besides the actual content, superfluous web
elements like menus and links are often present and in a
printed version they are commonly perceived as an annoy-
ance. Therefore, a solution for obtaining cleaner versions for
printing is to detect parts of the page that the reader wants
to consume, eliminating unnecessary elements and filtering
the “true” content of the web page. In addition, the same
solution may be used online to present cleaner versions of
web pages, discarding any elements that the user wishes to
avoid.
In this paper we present a novel approach to implement

such filtering. The method is interactive at first: The user
samples items that are to be preserved on the page and
thereafter everything that is not similar to the samples is
removed from the page. This is achieved by comparing the
path of all elements on the DOM representation of the page
with the path of the elements sampled by the user and pre-
serving only elements that have a path “similar” to the sam-
ple. The introduction of a similarity measure adds an im-
portant degree of adaptability to the needs of different users
and applications.
This approach is quite general and may be applied to any

XML tree that has labeled nodes. We use HTML as a case
study and present a Google Chrome extension that imple-
ments the approach as well as a user study comparing our
results with commercial results.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Re-
trieval—Information Filtering ; H.3.3 [Information Sys-

tems]: Information Search and Retrieval—Search process

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

DocEng’14, September 16–19, 2014, Fort Collins, Colorado, USA.

Copyright 2014 ACM 978-1-4503-2949-1/14/09 ...$15.00.

http://dx.doi.org/10.1145/2644866.2644871.

Keywords

Web content extraction; Web content filtering; Levenshtein
algorithm

1. INTRODUCTION
The printed version of a web page is usually a disappoint-

ing document: quite often it has poor layout and too many
pages. The reason is that the HTML language used to for-
mat the pages was not designed for printing (or for obtaining
printable versions of the content) and web browsers render
pages with unrestricted boundaries, making the conversion
of digital content into physically constrained paper unnat-
ural. The way many pages are designed worsens the ex-
perience: In most cases, main content is surrounded with
elements such as menus, advertisements, comment boxes
and others and all these elements are also transferred to the
printed version. Even reading the online version of a page
may be in many cases annoying because these elements grab
the attention and use too much real estate on the screen.

One solution for these problems is to identify the main
content of the page (the part that most readers probably
wish to consume) and extract these items for cleaner presen-
tation. This technique is known as content extraction. To
ease the manipulation, a HTML page may be represented as
the Document Object Model (DOM [12]), which translates
the HTML text into a tree structure. In this structure, every
element is represented as a node in the tree, with the con-
trol elements usually being internal nodes and content being
leaf nodes. The goal of content extraction is to find out ef-
ficiently and precisely what is desired content and what is
not.

In this work we propose a method to solve the content ex-
traction problem. This solution starts when the user actively
samples elements on the page: The DOM tree is traversed
and used to identify the nodes that were selected, and every
node in the tree that is considered similar to the sample is
identified as possibly interesting content. Similarity is mea-
sured by comparing the node types, their level on the tree
and their paths from the root. The user also provides a
threshold which defines how different a node might be from
the sample to be still considered similar to it. The core of
our approach is the path comparison between nodes, which
is a variation of the Levenshtein algorithm for string edit
distances [9]. After samples are selected from a given web
page, any information about the selection may be stored and
used later for automatic filtering of pages from the same web
site. Thus, interactive filter construction is made only once.

157

The approach is general enough to be used in any tree
that has labeled nodes. The main contribution is that with
a few clicks the user is able to select from the page only the
interesting elements, whereas the threshold used for simi-
larity allows for better customization. The filter produced
from the samples may be applied to the web page already
on the web browser and immediately all items that were not
selected are removed, and it may also be stored for later use.
We present a Google Chrome extension supporting the

approach and extended the filtering procedure so that users
may apply a filter to several pages from the same web site
at once, obtaining a customized view of a set of web pages.
This may be presented as a new HTML document or as a
PDF document for printing.
This paper is structured as follows: In Section 2 we pro-

vide an overview of web content extraction in the academic
literature and existing commercial solutions. Section 3 ex-
plains in deeper detail how the proposed method works and
how it relates to previous works. In Section 4 we describe
an application that implements the method as a Google
Chrome extension. Section 5 presents user impressions when
comparing our results with the results of an existing com-
mercial solution. Finally, in Section 6 we present our con-
clusions and goals for future research.

2. RELATED WORKS
Several approaches have been proposed to tackle the prob-

lem of content extraction from HTML pages. Most of these
try to find the most interesting content by exploring the
DOM representation of the page and assigning some rele-
vance to each node, sometimes using visual cues from the
rendered page to help in the task. Other approaches as-
sume a domain context (mainly the news article domain)
and explore features unique to this domain.
Cai et. al. [5] presented a hierarchical structure for iden-

tifying web content based on the page representation that
groups page segments that look alike. Each identified seg-
ment of the page is a branch in the DOM hierarchy. Under
the same parent there are elements that are thought to be in
the same section of the page, thus having a similar semantic
context. This branching is done according to visual features
on the page such as the font used for text elements (color
and size), segments that are placed near each other, back-
ground colors and natural page divisors such as the <hr>
tag.
A semi-automatic approach is proposed by Line et. al. [10].

It uses visual features to guess the main content of a page
and the user is able to modify it at will. The algorithm
explores the DOM tree of the page looking for leaf nodes
and groups them by similarity. The similarity is measured
by element properties such as geometry, position, style and
tag types. Groups are clustered into blocks that have their
importance measured by a heuristic. The block with the
highest importance is returned as the main content of the
page. The goal of that work is to start from pages that orig-
inally have complex layouts and contain a balanced mixture
of text and multimedia content and obtain printed versions
without the diversity of elements usually presented on a web
page.
The approach proposed by Wang et. al. [14] aims at ex-

tracting content from news sites. It takes advantage of the
fact that most news pages are based on a static template
filled with content. This suggests the creation of a wrapper

for a web page (without knowing its original template) based
on content and spatial features. It is based on machine learn-
ing and the wrapper is learned from a few samples from a
single site and extended to extract news content from other
sites. This technique consists in finding the best sub-tree of
the DOM tree, as presented in [10]. The extracted article
has exactly the same visual style as the page and the result
may still have some unwanted content.

Reis et. al. [13] proposes an approach that also takes ad-
vantage of the templates filled with content that many news
pages adopt for their presentation. Web sites are crawled
and have their pages gathered and clustered according to the
similarity of their tree structures. For each cluster, a tem-
plate is extracted from elements that do not change among
the pages in the cluster. Once the most important content
of an input page is desired, it is submitted to a classification
process to find which cluster it belongs to, then, its content
is retrieved by looking for changes between the page and the
template of that cluster.

Another filtering process is proposed in Gupta et. al. [6]
to provide a clean version of the web page for screen readers
used by visually impaired people. Instead of trying to find
the most important content, the algorithm tries to eliminate
non-content and assumes that what is left is interesting. The
elimination is done by removing elements from the DOM
using a series of different filtering techniques and the authors
report that the algorithm performs well on pages with large
blocks of text, such as news articles.

Also trying to provide a clean printable version of a web
page, Luo et. al. [11] approach the problem by grouping
text segments that appear to be in the same context (i.e.
do not have a line break between them) and identify the
set of segments more likely to contain the most relevant
information, to make sure only segments that belong to the
news story are selected.

There are also commercial solutions developed either as
native browser features or as extensions. HP Clipper [7] is a
web browser extension to extract content semi-automatically.
It tries to find the main content of the page and allows
users to fine tune the result by manually removing items.
CleanPrint [1] is another extension that works similarly,
where users manually select the content they wish to re-
move. Reading View [3] and Reader [4] are native features
for the Internet Explorer and Safari browsers, respectively,
that automatically selects the content, but the user cannot
add or remove elements and they do not work for every page
on the web. Finally, Evernote Clearly [2] works exactly as
the Reading View and Reader but as a browser extension.

The above methods have different approaches to the prob-
lem of recognizing content: Some are based on template
recognition, some on hierarchical structure or item context,
others do not disclose their methods as in the case of com-
mercial software. In any case, they seldom ask the most
important agent of the whole process, the user has very lit-
tle say in the selection of items. Even when this is done,
as is the case of HP Clipper [7] and CleanPrint [1], this has
to be done for each web page and the selection cannot be
reused for different pages. In our proposal, the user will be
the main agent for selection and his selection will be made
only once and produce a filter to be applied over and over.

158

3. PROPOSED METHOD
Our approach for content extraction works on documents

represented as a hierarchical structure. In order to identify
the most important content of a web page and extract it
for later presentation, we use the Document Object Model
(DOM) [12]. This representation translates the string of
HTML text to a tree structure where every element is turned
into a node in the tree, with control elements usually being
internal nodes and content being leaf nodes. One naive ap-
proach might suggest that all leaves of a given HTML tree
are the content, but the superfluous elements are also leaves
in the tree and since elements have no semantic information
the goal to solve the problem is to find out what is desired
content and what is not.
The first developed approach to select content was quite

simple: As HTML nodes are sampled from the screen by the
user, the HTML path for each of those nodes is stored and
the collection of paths represents a selection (or filter) to be
used on that web page. When the filtering process runs on
another web page it searches for all nodes with exactly the
same paths from the root as the sampled ones. Although
straightforward, this approach is very restrictive as even the
slightest difference in the HTML paths will force relevant
nodes to be rejected.
Clearly, such a strict method is not flexible enough to be

used with a language as tolerant as HTML, where slight
changes in the structure may not affect the visual presenta-
tion of content (and thus preserve its logical connection in
the interpretation of users). Therefore some kind of toler-
ance should be inserted into the path analysis, providing for
some measure of “closeness” to the nodes originally selected.
In this second approach the process begins when users

perform manual sampling of items to be preserved on the
web page and associate to each sampled item a threshold
representing an acceptable difference between the sample
and other candidate elements. With that information each
leaf node in the HTML tree has its path compared to the
sample. When changes are found, the amount of difference
is calculated and if it is less than or equal to the provided
threshold, we assume that the nodes are similar and the node
is part of the desired content. Clearly, the same approach
may be used with any XML tree and is not limited to HTML.
The amount of difference compared with the threshold

value is processed as follows: Before comparing paths, a
specific weight is assigned to each level of the HTML tree.
These weights are used to assure higher penalties to path
differences happening closer to the top of the tree and more
lenient to differences closer to the bottom of the tree. We de-
fine that the tree has total weight 100 assigned to its longest
path and distribute that weight across all levels in a way
that levels close to the root weight more than deeper lev-
els. This works as follows: For the root node, we divide the
total weight assigned to the tree by a damping coefficient,
take this value out of the total weight and divide the new
value of the total weight by the damping coefficient on the
next level. Then we keep doing this process until we reach
all levels of the tree. The remaining of the total weight is
equally distributed among all levels of the tree. Algorithm 1
describes this process.
For example, Figure 1a shows a HTML tree with the

weights of its levels already calculated. In this example the
user has selected the node IMG21 as the sample node (its
path in the tree is shown in Figure 1b) and the nodes to

Algorithm 1 Algorithm that calculates the weights for the
tree levels.

function weights(tree: HTML tree)
w ← 100
h← tree′s height

list← ∅

for i← 0 to h do

listi ←
w

DAMPING

w ← w − listi
end for

rest← w
h

for i← 0 to h do

listi ← listi + rest

end for

return list

end function

be compared to it are IMG5 and IMG18 (with the paths
shown in Figures 1c and 1d respectively).

To quantify the amount of difference between the paths
we add the weights of the levels where changes happen. The
first test happens between the paths to nodes IMG21 and
IMG5. As presented in Figure 1a, the first difference be-
tween IMG21 and IMG5 occurs on the second level where
the weight is 2.61 and the final result of this comparison is
11.66.

The second test happens between the paths to nodes IMG21

and IMG18. The difference between the paths happens
deeper on the tree, on a level of which weight is 1.78 and
the final result is significantly smaller, only 4.75.

The threshold provided by the user controls how much
one element is allowed to be different from the sample. Fol-
lowing the same example and keeping node IMG21 as the
sampled node, a threshold value of 5 will make node IMG18

be considered similar whereas IMG5 will be rejected. A
larger value may consider node IMG5 similar as well at the
risk of including more content that is less similar to IMG21.

The changes between paths are detected by a variation of
the Levenshtein algorithm [9]. This algorithm is originally
used to calculate the minimum amount of operations needed
to transform a string of characters S into another string
S′. The original string operations are character substitution,
insertion and deletion and each of these operations adds 1 to
the cost of the transformation. Our adaptation to the path
comparison problem consists of using this algorithm to find
how many operations are needed to transform the path of
the current node into the path of the sample, but instead of
characters we use node labels and instead of using 1 as the
operation cost we use the weight assigned to the level where
the operation takes place. This variation of the Levenshtein
algorithm is shown in Algorithm 2 below.

3.1 Comparison with other approaches
We do not wish to extract content from web pages au-

tonomously, but rather to provide a tool for users to select
samples of what they want and provide some measure of
adaptability to select other items that may be similar to
the samples. This information can be used later to auto-
matically filter pages that share similar structure with the
sampled pages, eliminating the need for the user to sample

159

(a) Part of a HTML tree: first levels are shown and the weight of each level is on the right

(b) Path to IMG21 node (c) Path to IMG5 node

(d) Path to IMG18 node

Figure 1: Example of a HTML tree and the weights for each level and paths to three nodes in that tree.

Algorithm 2 Algorithm to calculate the difference between
paths

function calculate(a, b: node path, w: list of weights,
i, j: path position)

if i < 0 then

return
j∑

k=0

wk

end if

if j < 0 then

return
i∑

k=0

wk

end if

cost← wmax(i, j)

if ai == bj then

cost← 0
else

equal← wmax(i, j)
end if

return min(calculate(a, b, w, i− 1, j) + cost,

calculate(a, b, w, i, j − 1) + cost,
calculate(a, b, w, i− 1, j − 1) + equal)

end function

elements again in another page from the same domain. This
approach should not be exclusive for news or HTML pages,
even though we use them as case study. We also implement a
proof of concept application as a Google Chrome extension,
to be detailed in Section 4.

As several works [6, 10, 14] our approach explores the
DOM structure for extracting content from web pages. On
the other hand, the proposed method is not limited to news
sites [14, 13] and may be applied automatically after a first
sampling made by the user, unlike [3, 4, 2].

Two of the related works have similar approaches to ours:
Gupta [6] also proposes a filtering approach in which the
DOM structure is navigated and a series of heuristics to
remove specific nodes are used. Thus it is expected that
content will remain on the page while non-content is re-
moved. This approach also requires user interaction because
the heuristics are set by the user. Besides the filtering ac-
tion, this approach is opposite from ours, since our users
must select what they want to keep on the page. It also
has a drawback since it requires specific rules for specific
types of elements and every undesired type must have spe-
cific heuristics associated to it. On the other hand, as our
method allows users to select what they want on the page
any type of element may be selected with no special rule
whatsoever.

The approach by Reis [13] is also similar to ours but de-
pends on crawling to get all pages of a web site, process
them in sets of similar pages and store this information.
Therefore, the approach works only for a web site that was
processed, new websites must have all of its pages crawled
to have their content extracted. Our approach allows a very
simple filter creation in less than a minute for any page the

160

users want. Since users know the pages they visit, they
know if they are similar, and the filter information is the
only thing that needs to be saved. Finally, the creation of a
new filter requires only a few clicks and no need to crawl a
entire web site.

4. APPLICATION OF THE METHOD
In this section we describe an application that implements

our method as an extension to the Google Chrome web
browser. The choice of browser was based on its popularity
and the availability for several operating systems, but other
browsers could have been used as well.
Before content extraction, node sampling is necessary:

The user is asked to sample nodes and assign them to several
existing node types. Thus, a node assigned to a type called
“headline”may be handled differently than a node classified
as “text”. Similar information could be obtained from the
analysis of HTML tags of the nodes, but we chose to avoid
that analysis and work with explicit information provided
by the user.
For example, to identify all paragraphs of a web page and

handle them as normal text later on, the user selects a para-
graph element on the page, assigns it to the text type, ad-
justs the threshold and runs the algorithm. Every DOM
node similar to the sample is assigned to text as well. We
provide three default types that categorize most elements on
a page: “headline”, “text” and “image”, but we also provide
the option of creating new, personalized types. This per-
sonalization allows users to select elements from the page
and assign those elements to a new type, as for example
date and author. This may be interesting when further pro-
cessing is to be made on the data obtained from the web
page and content may be “tagged”with such types for easier
identification.
For node sampling, the user clicks on an element on the

page, assigns it to a type and moves a slider to set the thresh-
old as described in Section 3 and the higher it is, less similar
a node needs to be from the sample to be selected as simi-
lar content. As the slider is changed, all elements that are
selected by the algorithm are highlighted on the screen.
Figure 2 shows the extension’s menu. The extension works

in two modes: The Clean and the Clean All options. The
Clean option resets the application and begins to work with
samples, so the user may select items to create a new filter
for that web page, apply it to the page (and clean it, there-
fore the name), save the filter or load an existing one. The
second option is Clean All, where an existing filter can be
applied immediately to several links that are selected from
the current web page.
Figure 3 illustrates the selection of a sample of text. When

the user moves the slider in the extension’s menu, the al-
gorithm selects other elements according to the threshold
defined by the slider value. Figure 4 depicts the web page
after the threshold specification. The process for headline,
image and custom elements is the same.
A filter may be applied on the same page used to create it

by clicking on the Apply button on the extension’s interface.
When this action is performed, only the elements that match
the sampling will remain on the page – thus cleaning the
page. Figure 5b presents the results of a filter that keeps only
the headline and the paragraphs of the news pages shown
on Figure 5a.

Figure 2: Extension’s interface

Figure 3: Sampling a piece of text.

The extension also provides the functionality of applying
the filter created for a single page to a set of other pages. By
clicking on Clean All, this may be automated for a number of
links on a page. The link selection follows the same approach
presented for sampling elements: The user selects a link
from the current page as a sample and then moves the slider
to select more or less similar links. This is exemplified on
Figure 6. Thereafter, clicking at the Apply option starts the
process: All links that match the sample will be followed
and the filter will be applied to them.

The extension receives the results obtained from follow-
ing the links and sends them to an external tool to create a
layout for this content. The tool used in our extension im-
plements the algorithms presented by Oliveira [8] to render

Figure 4: Selected paragraphs of a web page.

161

(a) Original page.

(b) Filtered page.

Figure 5: A news page before (a) and after (b) content ex-
traction.

pages with columns. The output format is chosen by the
user, either as a PDF file or HTML to be rendered by the
browser. Figure 7 presents the HTML output of this feature
on the browser, with a navigator at the top which paginates
the output, a page for each link. Figure 8 shows the PDF
output that is downloaded by the user.

Figure 6: Selected links where filters are to be applied.

For a non-news web page, Figure 9a shows the original
web page containing a recipe and several other minor ele-
ments, including advertising. Figure 9b, on the other hand,
shows a much cleaner version of the same web page after
filtering, without any ads. It is interesting to notice that
in this case we used the existing item types (headline, text,
image) and a fourth type was created to select the recipe

Figure 7: HTML output. Content from http://www.bbc.

com.

Figure 8: PDF output. Content from http://www.bbc.com.

ingredients. Thus, if further processing was needed these
ingredients would be readily recognized in the HTML file.

5. USER EVALUATION
This user evaluation was based on interviews to collect

user opinions about the extracted content rather than the
prototype usability or the final document layout. Users were
asked to compare the output from our prototype with the
output of Reading View [3] and point out their preference.
Two pages from BBC News1 and one from G12 were selected
arbitrarily and used in all interviews. Since the concern
was on the tool output only, the users were presented with
printed versions of each page and printed versions of the
results of each tool.

Eighteen people between ages 19 and 30 were interviewed
individually. Their background ranged from computer sci-
ence to psychology and communication. Each interview was
performed as follows: a brief explanation about web content
extraction was given to the volunteer and then the printouts
of each web page were shown in turn. For each page, the

1http://www.bbc.com/
2http://g1.com.br/

162

(a) Original web page with a recipe, including several extra
items and an advertisement.

(b) The content from the page, after filtering.

Figure 9: An example of extraction on a non-news web page.

user was told which printout was the original news page,
for the Reading View output the user was told only that a
tool generated it automatically, and for the output of our
prototype the user was told that another tool generated it
with a few clicks. To emphasize that the output could be
personalized, two versions of our output (one containing the
news headline, text and image and the other with the same
content plus the author name and date) were shown as be-
ing different outputs of the same tool for the same page. It
was never mentioned the name of the application that gen-
erated each output and the volunteer was asked to disregard
the layouts and evaluate only whether the extracted content
interested them in contrast to the original page. After show-
ing all versions of the same news page we asked which one
the volunteer preferred and why.
As presented in Figure 10, 9 people preferred the output

from our prototype claiming that it is more useful to choose
what goes to the output while 7 people preferred Reading
View’s automatic approach. Only 2 people said they would
stay with the original page. These results leads to the think-
ing that most people are not satisfied with the printing of

web pages as they are presented on the screen and wish some
degree of adaptation to paper.

Figure 10: Graph with the interviewee’s preference

At the end of the interview we asked the volunteers whether
they would use a personalized content extraction applica-
tion if it was available to them. From the 18 people, 13
said they would use such an application. Some of them said
they would use it only if it was made available for a mobile
version.

Most people preferred a clean and customizable version.
We believe that there are two reasons for this reaction: first,
some people really prefer cleaner pages, whereas a second
reason could be that people generally wish to be able to
customize stuff, even when they do not do that in practice.

6. CONCLUSION
Web pages and specially news pages are in many cases

composed by a “main” content usually made of text and
images as well as items such as advertisements, menus and
others. These may be very distracting to readers and when
the page is printed such items usually are sent to the output.
This is in most cases a waste of resources since they do not
add any value to the content. One solution for this problem
is to extract the main content from the page and show it in
a cleaner presentation, either on the screen or on paper.

In this work we offer a solution that consists on creating
a filter to be applied based on items from the page: Only
that content goes through the filter, anything else is blocked
and not presented. Users are able to create this filter in a
semi-automatic way: They sample elements to be considered
relevant and any element similar to the samples is identified
and collected by our algorithm. We represent the web pages
as the DOM standard, a tree like structure for HTML doc-
uments in which each element is a node. Element similarity
is measured by comparing their node paths with a varia-
tion of the Levenshtein algorithm. Our approach produces
a cleaner output containing only elements the users think
are interesting.

This approach has the obvious advantage that users pro-
vide their own concept of relevance, thus avoiding a possi-
bly complex process of trying to identify relevant items and
also allowing for the production of personalized filters better
suited to each user.

Also, a filter created for a specific page can be reused
for a different page as long as they have a similar structure
and the result can be obtained automatically, meaning that

163

the element sampling is a one-time job that may be used
extensively for similar pages.
To validate our approach, we implemented it as a Google

Chrome extension and validated its output with users by
comparing them with the output of a commercial solution.
The users preferred our outputs mainly because it was known
to be customizable.
Finally, for future works we intend to detach the filtering

implementation from the browser so that it can run as a
standalone process, implement the approach for mobile de-
vices and to conduct an user evaluation that examines both
the users reaction to the results and their experience using
our approach.

7. ACKNOWLEDGMENTS
This paper was achieved in cooperation with Hewlett-

Packard Brasil Ltda. using incentives of Brazilian Infor-
matics Law (Law n. 8.2.48 of 1991).

References

[1] Clean Print.
http://www.formatdynamics.com/cleanprint-4-0/,
2014. [Online; accessed 24-March-2014].

[2] Evernote Clearly. http://evernote.com/clearly/,
2014. [Online; accessed 24-March-2014].

[3] Internet Explorer Reading View.
http://msdn.microsoft.com/en-us/library/ie/

hh771832(v=vs.85).aspx#reading-view, 2014.
[Online; accessed 24-March-2014].

[4] Reader. http://support.apple.com/kb/ht4550,
2014. [Online; accessed 24-March-2014].

[5] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying
Ma. Vips: A vision-based page segmentation
algorithm. Technical report, Microsoft technical
report, MSR-TR-2003-79, 2003.

[6] Suhit Gupta, Gail Kaiser, David Neistadt, and Peter
Grimm. Dom-based content extraction of html
documents. In Proceedings of the 12th international

conference on World Wide Web, pages 207–214. ACM,
2003.

[7] HP Clipper. http://www.hpclipper.com/, 2014.
[Online; accessed 24-March-2014].

[8] João Batista S. de Oliveira. Two algorithms for
automatic document page layout. In Proceedings of

the Eighth ACM Symposium on Document

Engineering, DocEng ’08, pages 141–149, New York,
NY, USA, 2008. ACM. ISBN 978-1-60558-081-4. doi:
10.1145/1410140.1410170. URL
http://doi.acm.org/10.1145/1410140.1410170.

[9] Vladimir I Levenshtein. Binary codes capable of
correcting deletions, insertions and reversals. In Soviet

physics doklady, volume 10, page 707, 1966.

[10] Suk Hwan Lim, Liwei Zheng, Jianming Jin, Huiman
Hou, Jian Fan, and Jerry Liu. Automatic selection of
print-worthy content for enhanced web page printing
experience. In Proceedings of the 10th ACM

symposium on Document engineering, pages 165–168.
ACM, 2010.

[11] Ping Luo, Jian Fan, Sam Liu, Fen Lin, Yuhong Xiong,
and Jerry Liu. Web article extraction for web
printing: a dom+ visual based approach. In
Proceedings of the 9th ACM symposium on Document

engineering, pages 66–69. ACM, 2009.

[12] J. Marini. Document Object Model : Processing

Structured Documents: Processing Structured

Documents. McGraw-Hill Professional Publishing,
2002. ISBN 9780072228311. URL http:

//books.google.com.br/books?id=vFXu8D9ml8AC.

[13] Davi de Castro Reis, Paulo Braz Golgher, ASd Silva,
and AF Laender. Automatic web news extraction
using tree edit distance. In Proceedings of the 13th

international conference on World Wide Web, pages
502–511. ACM, 2004.

[14] Junfeng Wang, Chun Chen, Can Wang, Jian Pei,
Jiajun Bu, Ziyu Guan, and Wei Vivian Zhang. Can
we learn a template-independent wrapper for news
article extraction from a single training site? In
Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining,
pages 1345–1354. ACM, 2009.

164

