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Abstract-Data visualization is an alternative for representing 

information and helping people gain faster insights. However, 

the programming/creating of a visualization for large data sets 

is still a challenging task for users with low-level of software 

development knowledge. Our goal is to increase the productiv­

ity of experts who are familiar with the application domain. 

Therefore, we proposed an external Domain-Specific Language 

(DSL) that allows massive input of raw data and provides a 

small dictionary with suitable data visualization keywords. Also, 

we implemented it to support efficient data filtering operations 

and generate HTML or Javascript output code files (using 

Google Maps API). To measure the potential of our DSL, we 

evaluated four types of geospatial data visualization maps with 

four different technologies. The experiment results demonstrated 

a productivity gain when compared to the traditional way of 

implementing (e.g., Google Maps API, OpenLayers, and Leaflet), 

and efficient algorithm implementation. 
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I. INT RODUCT ION 

Data generation is increasing exponentially in the last 
years. In 2002, approximately five exabytes of data were 
stored globally, and a volume of eighteen exabytes of new 
data were transferred through electronic ways [1]. In 2007, 
the amount of digital data produced in a year surpassed the 
worlds data storage capacity for the first time. The total amount 
of data generated in 2009 was eight hundred exabytes [2]. 
The International Data Corporation (IDC)1 estimates that this 
volume would grow about forty-four times for 2020, which 
implies in forty percent rate of annual growth. All these data is 
being produced by many worldwide fields, for example, social 
networks, government data, health care, the stock market, 
among others [3]. 

Big Data analysis and data visualization can provide in­
teresting information that can help in decision-making. When 
data sets are well-analyzed, they may predict tendencies for 
helping on future actions, and solving current problems. This 
is often used in areas like Biology, Health, Finance, Social 
Networking, among others. In favor of the data visualization, 
we have the human perception of images that can process 
in parallel many information. While reading texts or values, 
the brain processed it sequentially [4]. Consequently, data 
visualization is more productive on big data analysis because 
facilitates and accelerates the human insight over the data. 
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The representation of information using graphics elements has 
evolved and has been used in several areas for increasing the 
human perception [5]. 

However, big data analysis is still a challenge [6] due to 
the cost required in processing and manipulating by using 
the current tools and applications. Among the techniques 
used for big data analysis, we can highlight: artificial and 
biological neural networks; models based on the principle 
of the organization; methods of predictive analysis; statistics; 
natural language processing; data mining; optimization and 
data visualization [3]. 

When creating data visualization maps in today's scenario, 
the user generates maps inserting all data directly on HTML 
file format and programming with JavaScript. For large raw 
data sets, it becomes more difficult for dealing manually. Most 
of the tools for this purpose requires software development 
skills, even they are providing suitable libraries to create the 
visualization. Another problem is the data filtering because 
requires much legwork for reading and copying each regis­
ter to the secondary file. Finally, the most complex is the 
classification. It uses the result of the filter process, and it is 
up to the user choose the appropriate classification algorithm, 
provide a custom class, or use an external tool. In addition, it 
is necessary to transform the classified output in the JavaScript 
library format. 

Current map visualization scenario obliges at least to 
know/learn two or more web programming languages and 
learn how to work with a pre-processor tool or build one 
from the scratch. We are proposing an external DSL [7]­
[9] that abstracts all these knowledge needed, where only a 
specification-based language with a small dictionary, simple 
syntax, and familiar geospatial visualizations keywords has to 
be learned. Moreover, it is designed to support automatically 
raw data manipulation, pre-processing, filtering, classification, 
and visualization creation. All these abstractions are not taking 
the user's power for fill the visualization needs. The idea is just 
to specify the operations while the DSL's compiler handles its 
implementation. Therefore, the main contributions are: 

• A DSL designed for data scientists to generate geospa­
tial data visualization maps with raw big data sets. 

• An high-level abstraction able to improve the pro­
ductivity compared with current technologies (Google 
Maps API, Leaflet, and OpenLayers). 

• An efficient data processing implementation, which is 
generated by the DSL's compiler. 



The remainder of this work is organized as follows. Sec­
tions II and ill presents the background and the most important 
related work. Section IV details the proposed domain-specific 
language. The used methodology for the evaluation is de­
scribed in Section V. Section VI describes the experiments and 
evaluates the performance and the code productivity. Finally, 
Section VII presents the conclusions and future works. 

II. B ACKGROUND 

Geospatial data visualization uses a special type of data 
that specify the location of an object or phenomena [4]. 
Generally, this is possible due to the information of Latitude 
e Longitude in each register. Examples of geospatial data 
are global climate modeling, environmental records, economic 
and social measures and indicators, customer analysis, and 
crime data. The strategy used to represent this kind of data 
is to map spatial attributes directly to the two physical screen 
dimensions, resulting in map visualizations. 

In creating a data visualization, it is important to know 
about the input, structure and kind of data that we are handling. 
When this data come from an external source, it is necessary to 
perform data preparation for selecting, filtering and cleaning. 
After, it is possible to map data into visual representations, 
according to the attributes previously selected. Finally, the 
visualization generation can be done [4]. 

There are some libraries that allow users to create data 
visualization maps. When using these libraries, like Google 
Maps API, OpenLayers, and Leaflet, it is up to the user pre­
processing the data in the correct format. When dealing with 
big data sets, users will have to work hardly and consume 
more time to plot a map. Usually, it will worth to create a 
software for automating data processing. Figure l(a) shows 
the workflow of traditional libraries to generate a visualization. 
The dotted line around Generation of the Visualization and 
Library Format Data demonstrates the scope of these libraries 
support without the needing of extra programming by the user. 

A. Google Maps API 

Introduced by Google in 2005, this API revolutionized 
the way we use maps on the web, allowing users to drag 
and interact the visualization to find the expected information. 
Google Maps API operates using HTML, CSS, and JavaScript 
working together. The map tiles are pieces of images that are 
loaded in the background with Ajax calls and then inserted into 
a <div>in the HTML page. When navigating through the map, 
the API sends information about the new coordinates and zoom 
levels of the map in Ajax, which returns new images [10]. 

For creating data visualization maps using Google MAPs 
API, the user needs to have knowledge in JavaScript for 
creating variables, objects and use functions. Initially, this 
requires the inclusion of the library in the HTML file and 
the association of a map object to a variable and information 
inside, considering map details like initial position, zoom, and 
layer. After, for each marker can be created a limit of three 
lines of code to generate an object with latitude and longitude 
information. If a classification is desired, like to change marker 
colors, users may also insert in the JavaScript code a tag for 
an icon declaration. 

B. OpenLayers 

OpenLayers is an open source JavaScript library that 
provides features for displaying map data in web browsers. 
Also, it provides an API for building web-based geographic 
applications. Furthermore, this presents a great set of compo­
nents, such as maps, layers, or controls. OpenLayers offers 
access to a great number of data sources using many different 
data formats, and implements many standards from Open 
Geospatial Consortium2 [11]. 

Also, it requires the insertion of the library in the HTML 
file and a library creation before adding a new marker. The 
layer is an OpenLayers feature in that allows the implementa­
tion of different types of data visualization in a single data 
visualization. Google Maps API and Leaflet, presented in 
Subsection II-C, abstracts this option. Consequently, they are 
limiting for users to show just one type of data visualization. 
This possibility of layers creation impacts in the marker 
insertion process, because each marker may be created and 
associated to a layer. If a simple data visualization map with 
just one layer may be created, this generates more lines of 
code than in other layers. 

C. Leaflet 

Leaflet is an open-source JavaScript library for the creation 
of interactive maps. Leaflet works taking advantage of HTML5 
and CSS3 [12], and also allows the creation of maps using 
geospatial data. Moreover, it provides tile layers, markers, pop­
ups, vector layers like polylines, polygons, circles, rectangles, 
circle markers, GeoJSON layers, image overlays, WMS layers 
and layer groups. 

The marker and map creation in Leaflet is similar to others 
libraries. Initially occurs the insertion of the library into the 
HTML file and a set of codes is responsible for creating 
the map as well as the markers are inserted later. An option 
allows the specification of information inside markers when 
it is selected by a click. As in others libraries, the user must 
have knowledge in JavaScript programming to create a data 
visualization map and the replication of code for each marker 
inserted. 

III. RELATED WORK 

In data visualization domain, some DSLs have been pro­
posed looking for increasing the visualization creation pos­
sibilities for some domain-specific users. They have focused 
on some domain and does not support the creation of standard 
visualizations. Vivaldi [13] aims at facilitating the visualization 
creation and volumetric processing on heterogeneous systems. 
By other hand, ViSlang [14] operates in scientific visualiza­
tion, where its main contribution is to provide extensibility. 
Diderot [15] looks for simplifying image analysis, using a 
language with tensors to approximate the users' domain. 
Finally, Shadie [16] was designed to create efficient scientific 
big data visualizations. 

Superconductor [17] provides a set of generic big data 
visualization features. It is not designed for a specific vi­
sualization type. Also, it allows the user to personalize the 

2http://www.opengeospatial.org 
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Fig. l .  Visualization creation comparison. 

visualization by changing visual elements. Comparing to our 
work, Superconductor is more robust. However, users have to 
build their visualizations from the scratch interacting with low­
level programming stuff, while we are abstracting program­
ming language interaction using a user specification approach. 

Vivaldi, ViSlang, Diderot, and Shadie are focusing in 
the generation of data visualizations volumetric having not 
minded data visualization maps. Superconductor allows the 
user to create maps because have more expressiveness, but it 
requires expert skills to implement visual elements. These are 
different approaches from what we are doing. While Google 
Maps API, Leaflet and OpenLayers are not so far from ours 
because they are data visualization maps libraries with high­
level abstractions. However, they do not avoid to learn a 
programming language and pre-processing, insert data and 
configure the visualization details such as size, icons, layers 
and data. 

Concluding, both DSLs and Libraries are not abstracting 
from the user all the data visualization pipeline. When using it, 
users still need to manipulate raw data and transform it in the 
appropriate format, using external tools or doing it manually. 
Our proposed DSL provides an abstraction covering the whole 
visualization pipeline, supporting a high-level language specifi­
cation for data pre-processing and visualization specifications. 

IV. THE PROPOSED DSL 

Aiming at facilitating the creation of visualizations for 
large-scale geospatial data through point phenomena, we pro­
posed an external DSL to provide a high-level specification 
language. The goal is to be as much as possible closer to the 
domain vocabulary, supporting a suitable language syntax. 

Users that will use this DSL instead of using tools and 
libraries as Google Maps API, Leaflet and OpenLayers will 
have some advantages. First, they will not have to know 
programming aspects like functions, variables, methods and 
any other web development issue. Second, the user will have 
a data processing that empowers the data filtering, cleaning 
and classification automatically as shown in Figure l. When 
working with huge files, this DSL allows same operations. 
Also, we have an optimized file loading in memory to open 
files bigger than RAM memory available in the system. The 
third advantage is that this DSL is not linked with a host lan­
guage. Also, the interface is extremely approximated from the 

user domain. In this case, for general dotted data visualization 
maps with a simple interface. 

Even we are providing all these features, our DSL also 
have some limitations. It only allows the creation of already 
implemented data visualization, and users have to learn a new 
specification language. 

A. DSL Architecture 

We internally divided our DSL in three modules as fol­
lowing described. Figure 2 illustrates each module using green 
arrows to demonstrate input dependencies and blue arrows to 
express the generation of code or data. 

• Code Analyzer: This module receives the DSL source 
code as input to perform lexical analysis, parsing, 
semantic analysis and code generation. These steps 
are done by a compiler constructed in C/C++ using 
Flex and Bison. 

• Data Pre-processor: C/C++ source files are created 
after input code analysis. One correspond to the data 
pre-processor, which is capable to open large-scale 
files, bigger than available memory, and process these 
files for applying filters and classification. Then, this 
pre-processor saves an output file with the data used 
in the data visualization. 

• Data Visualization Generator: The DSL Interface 
module generates a second code that uses the output 
data from data pre-processor and generates the visu­
alization using HTML, Javascript, and Google Maps 
API libraries. 

DSL DSL Complier 
Source Code 

output data 
Raw Data 

Fig. 2. DSL architecture. 
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In the following subsections, the DSL Interface, Data Pre­
processor, and Data Visualization Generator will be described 
and explained. 

B. DSL Interface 

This DSL contributes providing a high-level interface for 
processing, filtering, classifying data and creating data visual­
izations maps. It allows to create a data visualization using few 
lines of code. Being an external DSL, this is limited just to the 
specifications about the data visualization. Therefore, the user 
will not mind with other characteristics of host languages like 
in Superconductor [17]. In contrast, we make this DSL easier 
to use. 

For simplifying the implementation of a new data visual­
ization using the proposed architecture, we considered creating 
an external DSL. This decision was done because an external 



language simplify the use since we have the freedom to create 
an interface similar to natural language. 

This DSL language consists of blocks and declarations, 
as specified in Table I. A block contains declarations that 
are formed by a property and value. Basically, we have four 
block names: data, classification, structure and visualization­
settings. Declarations may always be used inside a block, with 
exception for the visualization type that is created in the global 
scope with data and visualization-setting blocks. In Figure 4 
is demonstrated the structure of a declaration by an example 
of visualization specification pointed by gray dotted lines and 
in Figure 5 is presented the structure of a block with the main 
declarations inside using as example a data block. 

TABLE I. PROPOSED DSL RESERVED WORDS. 

Keyword Description 

Block Names (.a) 

data This contains all the data declarations. 

classification This is used to declare classification rules. 

structure This names a block with data structure declarations. 

visualization-settings This will detennine details for the data visualization. 

Properties ( b) 
class. filter This specify a logic to select/classify data. 

date-format This specifies the date format used in input file. 

delimiter. end-register This is used to inform data delimiters. 

file This receives files location. 

latitude, longitude This specifies the fields containing geo-positioning. 

marker-text This is considered for specifying the text of markers. 

page-title This receives the value for visualization page title. 

size This is used for specifying the visualization size. 

visualization This receives the visualization type name. 

Values (.c) 

field This represents a field when used with properties. 

full, medium, small Values to express sizes. 

Operators (.d) 

and, or Logical operators for join values (/\ and V). 
contains Used to verify existence of object inside another (E). 

different, equal Used to apply equality operations ('" and -). 

greater, less Express a logical operation of size (> and <). 
is, than Determines a relation between two objects. 

In figure 3 is demonstrated the use of field value in this 
interface. The manipulation of data using this interface is 
done by the field value. Considering that a data set stores 
registers separated in an organized way, using delimiters and 
end registers characters, we can count each field localization. 

Field 2 

/ 
Field 1 '- DataseV Field 3 

"'Field 1 Field 2 Field 3· 

0 

� 

Fig. 3. Field value over data set registers. 

This interface have three main elements: a declaration and 
two blocks. These three elements are specified globally in 
the source code, as illustrated in Figure 4. The first element 
consists of a visualization declaration which specifies the type 
of data visualization to be created. The second element is a 
visualization settings block with declarations of visualization 
details like required fields, sizes and titles. Concluding the 
code, an input data block with data declarations like filters, 
classification, data format and delimiters. 

Boost this DSL with other types of data visualization in 
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Fig. 4. DSL interface general overview. 

the future is a desired goal. Wherefore, this DSL was built 
using generalizations seeking to turn easy this objective. An 
example of language generalization in our DSL is the first 
declaration in the beginning of code. In this declaration users 
can inform the desired visualization name as a parameter 
which enables to change the types of data visualization just 
changing few lines of code. In Figure 4 is presented an example 
of a visualization declaration element. In sequence, it is 
constructed a block containing information about visualization 
settings like required fields3, page title, visualization size and 
any information to generate the visual elements. 

Declarations of page-title and size are inserted in the block 
represented in Figure 5. The page-title property will receive 
a value. This value must be informed between quotes. The 
visualization size is informed in the size property, which can 
receive a full value for a full page display, medium value for 
a 70% page visualization, and small value for a 50% page 
visualization. 

Block Property Value 

vis ualization -settings { 

} 

latitude: field 4; 
longitude: field 5; 
size: full: 
page-title: "Example"; 

Declaration 
Declaration 
Declaration 
Declaration 

Fig. 5. The visualization-settings block example. 

The data block will contain information about input data 
and how it will be loaded and processed by the data pre­
processor. This block is divided in four elements: file declara­
tions, a structure block, a filter declaration, and a classification 
block, as demonstrated in Figure 6. 

Block 

{ 

} 

<files> 
structure { ... } 
<filter> 
classification { ... } 

Fig. 6. Input data block tree. 

Declarations 
Sub-block 
Declaration 
Sub-block 

An unlimited number of files can be declared in our DSL. 
We built in this way because users can use a database separated 
into many files. This attribute receives a value between quotes 
that informs the path to a file. Lines 1, 2 and 3 in Listing 1 
demonstrate examples of files declaration. 

3Required fields can change for different types of data visualization. An 
example of a required field is lal;lUde and longilUde for data visualization 
maps. 



The structure sub-block contains information about the file
type, delimiter, and end register character. This information
is extremely important for the data pre-processor recognize
the limits of each register. This block is demonstrated by an
example in Listing 2.

1 d a t a {
2 f i l e : <va lue>
3 <s t r u c t u r e b l o c k >

4 < f i l t e r s p e c i f i c a t i o n s >
5 <c l a s s i f i c a t i o n s p e c i f i c a t i o n s >
6 }

Listing 1. Database input specification with proposed DSL.

1 s t r u c t u r e {
2 f o r m a t : CSV; / / Type of i n p u t f i l e .
3 d e l i m i t e r : ’\ t ’ ; / / F i e l d s d e l i m i t e r c h a r .
4 end−r e g i s t e r : ’\n ’ ; / / R e g i s t e r s d e l i m i t e r c h a r .
5 da t e−f o r m a t : YYYY−MM−DD; / / D a t a s e t d a t e f o r m a t .
6 }

Listing 2. Structure block example.

This interface allows the specification of one or more files
to be processed even that it has a limitation. All informed files
may have the same format. This limitation exists because data
pre-processor uses the same delimiter separators specified in
the source code to structure and process all the data files. For
example, in a CSV file is common use comma as the delimiter
and a new line (\n) to end of the register. When working with
date, the user also must specify the format used.

An important section in our interface is the specification of
logical operations to filter and classify registers. Users can de-
clare a filter to select data and display only useful information
in the visualization. A filter declaration uses logical operators
to select one or more information of fields. A filter is declared
using a filter property which receives as parameter a logical
operation. Hereafter, a logical operation is declared that when
processing over a register add (if true) or not add (if false) this
in the output.

We implemented eight logical operators that can be com-
bined in a filter declaration and classification. The operators
AND and OR can be used to join logical operations using the
other logical operators. We used x for field number, and y and
z to illustrate values in Figure 7, where we also demonstrate
the relation between the operators that can be combined.

Fig. 7. Logical operators for filtering and classifying.

With these operators, the user can construct filters using
logical operations. Figure 8 illustrates the structure of a filter
declaration using a simple logical operation example.

Fig. 8. Simple filter declaration example.

In some cases, the user wants to create classifications. To
do so, the sub-block classification were created to allow the
user to specify logical operations for the data that will be
classified. Listing 3 presents the syntax to create a class. Each
class will receive a logical operation, equal to that one used in
filters. This logical operation will be applied in all the registers.
When returning true, the register will be inserted in the class.

1 c l a s s i f i c a t i o n {
2 c l a s s : < l o g i c a l −o p e r a t i o n>
3 c l a s s : < l o g i c a l −o p e r a t i o n>
4 c l a s s : < l o g i c a l −o p e r a t i o n>
5 }

Listing 3. Database input specification with proposed DSL.

The classification sub-block applied in data visualization
maps allows the creation of markers with different colors for
each class. We can create classes using the logical operators.
Also, the registers inserted in each class will receive a different
marker color during visualization generation.

Listing 4 is demonstrating a code example when using
our proposed DSL for the Devices visualization type that is
generating a map with markers. This data visualization has a
device classification. The data inserted in this data visualization
map application is from YYFCC100M data set provided by
Yahoo Labs4.

1 v i s u a l i z a t i o n : marked−map
2 v i s u a l i z a t i o n −s e t t i n g s {
3 l a t i t u d e : f i e l d 1 1 ;
4 l o n g i t u d e : f i e l d 1 0 ;
5 marker−t e x t : ”<img s r c = ’ ” f i e l d 14 ”’>” ;
6 page− t i t l e : ” 2014 Pho tos C l a s s i f i e d by Device ” ;
7 s i z e : f u l l ;
8 }
9 d a t a {

10 f i l e : ” y f c c 1 0 0 m d a t a s e t −0” ;
11 f i l e : ” y f c c 1 0 0 m d a t a s e t −1” ;
12 f i l e : ” y f c c 1 0 0 m d a t a s e t −2” ;
13 s t r u c t u r e {
14 d e l i m i t e r : ’ / t ’ ;
15 end−r e g i s t e r : ’\n ’ ;
16 da t e−f o r m a t : YYYY−MM−DD;
17 }
18 f i l t e r : f i e l d 3 IS BETWEEN 2014−01−01 AND

2014−12−30;
19 c l a s s i f i c a t i o n {
20 c l a s s : f i e l d 6 CONTAINS ” Canon ” ;
21 c l a s s : f i e l d 6 CONTAINS ” Sony ” ;
22 }
23 }

Listing 4. Devices visualization example implemented with our DSL.

4http://webscope.sandbox.yahoo.com/catalog.php



C. Data Pre-processor 

We implemented the Data Pre-processor in five operations: 
partitioning, structuring, filtering, classifying and output sav­
ing. As presented in Figure 9, partitioning is the first function 
used in this workflow. The partitioning phase allows us to use 
large data sets in low memory architectures since this separates 
the entire data set in pieces of data. 

Fig. 9. Data pre-processor workflow. 

The pieces of data size shown in Figure 9 are divided 
considering available memory using the Equation 2. For better 
understanding, consider the following definition. 

Definition 1: 
D = do,d1, ... ,dn- a group of di (data sets) 
F = fa, h, ... , fn- a group of Ii (files) 
Fm(fj) = System free memory when processing fj 
em(fj) = System cached memory when processing fj 
Considering: 

(1) 

We calculate the pieces of data with the bellow function: 

(2) 

Our 2.5 constant is the size of memory that the pre­
processor uses during its operations. For example, whenever 
1GB of data loads in memory, during the processing, this 
information can become 2.5GB due the structuring, filtering 
and classification processes. 

For filtering, we did a study of search algorithms to choice 
an optimal to perform the registers selection. In this analysis, 
our study based on Big 0 notation [18] of each algorithm. 
Three search algorithms were selected for this analysis: Linear 
Search, Binary Tree, and Interpolation Search. 

For the comparison of the algorithms, we used the time and 
space complexity considering worst time. As these algorithm 
may process a huge data set, consider the worst case is 
appropriate to evaluate them. The comparison of algorithms 
for data selection was made using the sum of the results of 
each algorithm. Them, considering that when combining two 
o values the greater is the result. We used the greater value 
to compare each combination with Linear Search algorithm. 

Space complexity was considered when comparing these 
algorithm because the memory space used for them is an 
important issue to consider. If we are processing a huge data 
set with a size of 1024 Giga Bytes, an O(n) space complexity 
algorithm will load on memory 1048576 Giga Bytes. Obvi­
ously, on the actual multicore computer architectures, it can 
present a memory problem. Then, for this evaluation we seek 
an algorithm that present a minimum O( n) for worst time­
space, maintaining the same quantity of data. 

In our analysis, we found that Linear Search have the 
greater worst running time of O( n) since this verify all the 
elements of the array during the search. On the other hand, this 
algorithm does not require a sorted array. That choice allows 
its usage for any input data. Differently, Binary Search and 
Interpolation Search with O( n log n) and O(log log n) need a 
sorted array to find an element, respectively. 

Through this analysis, we can highlight that for ordered 
arrays the better alternative is an Interpolation Search. For 
disordered arrays, the Linear Search is more convenient. To 
certify this, we analyzed this algorithms combining them with 
some sorting algorithms. 

As verified, the time complexity of Binary and Interpo­
lation Search are increased with sorting operations with the 
minimal complexity time of O(k + N) using Radix Sort 
algorithm. The implementation of a binary or interpolation 
search is harder than the linear search algorithm since it needs 
the development of a sorting algorithm. We choose a linear 
search algorithm for executing the filtering step because it will 
process unsorted data sets in our data pre-processor. 

D. Visualization Generator 

This DSL have a data visualization generator which pro­
duces data visualization code according to the specifications 
declared in DSL source code. The output file of this module 
is a HTML file with data visualization done. 

Our visualization generator receives specifications from 
the code analyzer. After, it attaches data-preprocessor output 
into a HTMLlJavascript template to generate the visualization 
file. Finally, it creates an output file containing a HTML and 
Javascript skeleton code with the Google Maps API call, the 
information about title, sizes, and markers, and the data in the 
Google Maps API required format. 

Our DSL does not generate the visual elements of the data 
visualization. Therefore, we used libraries like Google Maps 
API in the HTML generated code. We choose this library 
to simplify code generation because it provides a high-level 
interface for manipulate maps details and insert data. It also 
will allow the implementation of other visualizations types 
without changing the DSL architecture and data pre-processor 
output. It is possible since the input data format of Google 
Maps API is the similar used in Google Charts and D35. 

V. MET HODOLOGY 

We evaluated code productivity and programming effort 
using the SLOCCount tool. We created four data visualizations 
with our DSL comparing to three different libraries: Google 
Maps API, OpenLayers, and Leaflet. We do not included 
DSLs presented in Section III in this comparison because they 
do not offer the creation of data visualization maps. Each 
data visualizations created for this comparison we describe as 
follows: 

• War - 2014 photos tagged with "war" word. 

• Manifestation - 2014 photos tagged with "manifesta­
tion" word. 

5http://d3js.org/ 



• Devices - general photos classified by device used. 

• WorldCup - 2014 photos with "world cup" words in 
tags. 

For code productivity measurement, we used the SLOC­
Count suite, also used by [19] for the evaluation of a DSL 
interface and by a set of other researches (e.g., [9], [20]). 
SLOCCount3 is a software measurement tool, which counts 
the physical source lines of code (SLOC), ignoring empty 
lines and comments. It also estimates development time, cost 
and effort based on the original Basic COCOM06 model. 
The suite supports a wide range of both old and modern 
programming languages (e.g., C++, Javascript, HTML, and 
CSS), which are naturally inferred by SLOCCount and thus 
used for measurement. For our DSL, we selected CSS because 
it has similar syntax. 

In the performance experiment, we used YFCC100M data 
set [21] as input, which is available from Yahoo Labs. This 
data set has 54GB of data, divided in 10 files. This is a public 
multimedia data set with 99.3 million images and 0.7 million 
videos, all from Flickr and all under Creative Commons 
licensing. We did a preliminary evaluation of execution time 
when processing huge quantities of data. For this tests, we 
replicated the YFFCC100M data set to achieve 100GB of data. 
We did a measurement of 10GB, 50GB and 100GB to verify 
the time it takes for processing. 

VI. RESULTS 

Table II presents the Source Lines of Code (SLOC) values 
generated by SLOCCount. Consequently, we can verify that 
even with data pre-processing specification in our DSL, the 
lines of code necessary to develop a map visualization does not 
increase. In this analysis, we removed the data from traditional 
libraries that usually is inserted into the source code using 
Javascript (as previously demonstrated in Section II). The 
insertion of a new marker inside the visualization can generate 
until three or four lines of code because it needs to attend the 
required format, which generates a bigger file. In the proposed 
DSL, we avoid this issue by using of Data block. In this block, 
we offer features for selecting, filtering and cleaning the data 
through the use of logical operators, as demonstrated in Section 
IV. This simplification also reflects in the code productivity 
measurement, presented in Figure 10. 

TABLE II. CODE PRODUCTIVITY (PHYSICAL SOURCE LINES OF CODE). 

Application DSL Google Maps API OpenLayers Leaflet 

Devices 22 74 25 79 

War 15 20 27 25 

Manifestation 15 20 17 25 

World Cup 15 20 18 25 

Even with the additionally features for data pre-processing, 
we maintain the code productivity in the four applications 
when using the proposed DSL. In Figure 10, we can observe 
that development time are very similar in War, World Cup and 
Manifestation applications. However, we have an exception in 
Devices application. This occurs because the application has a 
classification that change icons colors according to the data that 

6http://www.dwheeler.com/sloccountlsloccount.html#cocomo 

will be displayed. OpenLayers require fewer lines of code to 
implement it, presenting a lower time. The difference between 
the libraries is due to the javascript implementation to create 
a new map which configure initial positions and display it. 

In this analysis, we measured just the code productivity 
when creating the visualization applications. The transforma­
tion and manual insertion of data in Javascript code, required 
by traditional libraries, were not considered in our results. 
In the proposed DSL, we abstract from the user any data 
transformation due to the high-level interface usage and an 
automatic data pre-processor. Thus, the code productivity in 
developing a visualization reduces much more if we consider 
the user will not handle data manually or look for external 
tools to automatize this. 

YFCC100M Data Set 
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Fig. 10. SLOCCount programming effort results. 

We also measured the completion time of data pre­
processor. The goal was to verify how long it takes to process 
a huge quantity of data and generate an output. We could 
not compare this with traditional libraries once the data pre­
processing is done using different approaches, or in some 
cases, manually. Table III presents this results for data transfor­
mation and visual mapping. Data transformation comprehends 
the total execution time to open, structure, filter, classify the 
input data, and save the output file. Visual Mapping compre­
hends the total execution time to generate the visualization and 
display for the user. We variate the input data in 10GB, 50GB 
and 100GB of data. 

TABLE III. COMPLETION TIMES (SECONDS). 

Size Data Transformation Visual Mapping - Google Maps API 

10GB 110.4948 (Std. 0.9763) 2.910 (Std. 1.6084) 

50GB 544.0506 (Std. 9.4225) 3.2738 (Std. 2.0663) 

100GB 1098.9284 (Std. 19.0383) 3.8536 (Std. 2.7584) 

If we consider the complexity time of linear search, which 
is O( n) like demonstrated in Section IV-C, we can verify a 
similar behaviour of the completion time in the data transfor­
mation as it grows in a linear way according to the input size. 
Consequently, it is possible to observe an increasing order of 
approximate 11 times (11.0494 x 10GB, 10.88l0x50GB, and 
10.9892 x 100G B). We can conclude that as the input data size 
modifies, the execution time to process the data will keep a 
relation between completion time and input size, keeping the 
time complexity in a linear order. 

These execution time results demonstrated that as the 
input data size is modified, the times in visual mapping have 
a minimal difference. However, data transformation process 
express a huge difference between the different input sizes. 



As a consequence, it is important to consider that data trans­
formation process have a higher computational cost when the 
input size increases. We also observe that the automatic data 
pre-processing optimizes the visualization implementation. If 
users develop using traditional libraries, the needing of handle 
manually a huge quantity of data can take much more time. 

VII. CONCLUSIONS 

This paper introduced the data visualization map problem 
and provided a new domain-specific language for the geospa­
tial data, supporting big raw data sets. Therefore, we described 
our description-based language and how we implemented it. 
During the text, it was possible to point out how much 
simpler and friendly is our approach with respect to the current 
scenario. Also, we used a real-world data set to evaluate our 
DSL, comparing in different visualization types. 

Overall, the results demonstrated that our DSL may help 
data visualization users for gaining insights and extracting 
information from big data sets. Also, even that we did not 
measure the effort when users have to prepare the data set, 
we can highlight that it increases the user's productivity by 
the possibility of automaticaIly handling raw input data. This 
abstraction avoids much legwork and complexities on data 
manipulation such as partitioning, structuring, filtering, and 
classification. 

Moreover, the performance experiments show that we 
achieved an efficient implementation of the raw data proces­
sor as expected by the algorithm analysis (time and space 
complexities). Also, we identify the opportunity for reducing 
the completion time. Consequently, we plan as future work to 
investigate alternatives for taking advantage of the parallelism 
available on the multi-core architectures, speeding the pre­
processing performance. 

As mentioned in the paper, we also have in mind to provide 
more features in our language interface. For example, new 
visualization types (graphs, treemaps, column and area charts), 
new logical operators for data selection precision, and offer 
support for hierarchical data formats such as JSON and XML. 
Meanwhile, also to include some advanced classification data 
mining algorithms in our data processor. 
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