
Towards a Domain-Specific Language for Geospatial
Data Visualization Maps with Big Data Sets

Cleverson Ledur, Dalvan Griebler, Isabel Manssour, Luiz Gustavo Fernandes
PUCRS, Faculdade de Informatica, Computer Science Graduate Program,

Fax: +555133203621, Av. Ipiranga, 6681, CEP: 90619-900 - Porto Alegre - Brazil
Email: {cleverson.ledur.dalvan.griebler} @acad.pucrs.br.{isabel.manssour.luiz.fernandes} @pucrs.br

Abstract-Data visualization is an alternative for representing

information and helping people gain faster insights. However,

the programming/creating of a visualization for large data sets

is still a challenging task for users with low-level of software

development knowledge. Our goal is to increase the productiv­

ity of experts who are familiar with the application domain.

Therefore, we proposed an external Domain-Specific Language

(DSL) that allows massive input of raw data and provides a

small dictionary with suitable data visualization keywords. Also,

we implemented it to support efficient data filtering operations

and generate HTML or Javascript output code files (using

Google Maps API). To measure the potential of our DSL, we

evaluated four types of geospatial data visualization maps with

four different technologies. The experiment results demonstrated

a productivity gain when compared to the traditional way of

implementing (e.g., Google Maps API, OpenLayers, and Leaflet),

and efficient algorithm implementation.

Keywords-Data Visualization Maps, Domain-Specific Lan­
guage, Geospatial Data Visualization, Big Data Analysis, Code
Generation, Raw Data Processing

I. INT RODUCT ION

Data generation is increasing exponentially in the last
years. In 2002, approximately five exabytes of data were
stored globally, and a volume of eighteen exabytes of new
data were transferred through electronic ways [1]. In 2007,
the amount of digital data produced in a year surpassed the
worlds data storage capacity for the first time. The total amount
of data generated in 2009 was eight hundred exabytes [2].
The International Data Corporation (IDC)1 estimates that this
volume would grow about forty-four times for 2020, which
implies in forty percent rate of annual growth. All these data is
being produced by many worldwide fields, for example, social
networks, government data, health care, the stock market,
among others [3].

Big Data analysis and data visualization can provide in­
teresting information that can help in decision-making. When
data sets are well-analyzed, they may predict tendencies for
helping on future actions, and solving current problems. This
is often used in areas like Biology, Health, Finance, Social
Networking, among others. In favor of the data visualization,
we have the human perception of images that can process
in parallel many information. While reading texts or values,
the brain processed it sequentially [4]. Consequently, data
visualization is more productive on big data analysis because
facilitates and accelerates the human insight over the data.

I http://www.ide.com/

978-1-5090-0478-2/15/$31.00 ©2015 IEEE

The representation of information using graphics elements has
evolved and has been used in several areas for increasing the
human perception [5].

However, big data analysis is still a challenge [6] due to
the cost required in processing and manipulating by using
the current tools and applications. Among the techniques
used for big data analysis, we can highlight: artificial and
biological neural networks; models based on the principle
of the organization; methods of predictive analysis; statistics;
natural language processing; data mining; optimization and
data visualization [3].

When creating data visualization maps in today's scenario,
the user generates maps inserting all data directly on HTML
file format and programming with JavaScript. For large raw
data sets, it becomes more difficult for dealing manually. Most
of the tools for this purpose requires software development
skills, even they are providing suitable libraries to create the
visualization. Another problem is the data filtering because
requires much legwork for reading and copying each regis­
ter to the secondary file. Finally, the most complex is the
classification. It uses the result of the filter process, and it is
up to the user choose the appropriate classification algorithm,
provide a custom class, or use an external tool. In addition, it
is necessary to transform the classified output in the JavaScript
library format.

Current map visualization scenario obliges at least to
know/learn two or more web programming languages and
learn how to work with a pre-processor tool or build one
from the scratch. We are proposing an external DSL [7]­
[9] that abstracts all these knowledge needed, where only a
specification-based language with a small dictionary, simple
syntax, and familiar geospatial visualizations keywords has to
be learned. Moreover, it is designed to support automatically
raw data manipulation, pre-processing, filtering, classification,
and visualization creation. All these abstractions are not taking
the user's power for fill the visualization needs. The idea is just
to specify the operations while the DSL's compiler handles its
implementation. Therefore, the main contributions are:

• A DSL designed for data scientists to generate geospa­
tial data visualization maps with raw big data sets.

• An high-level abstraction able to improve the pro­
ductivity compared with current technologies (Google
Maps API, Leaflet, and OpenLayers).

• An efficient data processing implementation, which is
generated by the DSL's compiler.

The remainder of this work is organized as follows. Sec­
tions II and ill presents the background and the most important
related work. Section IV details the proposed domain-specific
language. The used methodology for the evaluation is de­
scribed in Section V. Section VI describes the experiments and
evaluates the performance and the code productivity. Finally,
Section VII presents the conclusions and future works.

II. B ACKGROUND

Geospatial data visualization uses a special type of data
that specify the location of an object or phenomena [4].
Generally, this is possible due to the information of Latitude
e Longitude in each register. Examples of geospatial data
are global climate modeling, environmental records, economic
and social measures and indicators, customer analysis, and
crime data. The strategy used to represent this kind of data
is to map spatial attributes directly to the two physical screen
dimensions, resulting in map visualizations.

In creating a data visualization, it is important to know
about the input, structure and kind of data that we are handling.
When this data come from an external source, it is necessary to
perform data preparation for selecting, filtering and cleaning.
After, it is possible to map data into visual representations,
according to the attributes previously selected. Finally, the
visualization generation can be done [4].

There are some libraries that allow users to create data
visualization maps. When using these libraries, like Google
Maps API, OpenLayers, and Leaflet, it is up to the user pre­
processing the data in the correct format. When dealing with
big data sets, users will have to work hardly and consume
more time to plot a map. Usually, it will worth to create a
software for automating data processing. Figure l(a) shows
the workflow of traditional libraries to generate a visualization.
The dotted line around Generation of the Visualization and
Library Format Data demonstrates the scope of these libraries
support without the needing of extra programming by the user.

A. Google Maps API

Introduced by Google in 2005, this API revolutionized
the way we use maps on the web, allowing users to drag
and interact the visualization to find the expected information.
Google Maps API operates using HTML, CSS, and JavaScript
working together. The map tiles are pieces of images that are
loaded in the background with Ajax calls and then inserted into
a <div>in the HTML page. When navigating through the map,
the API sends information about the new coordinates and zoom
levels of the map in Ajax, which returns new images [10].

For creating data visualization maps using Google MAPs
API, the user needs to have knowledge in JavaScript for
creating variables, objects and use functions. Initially, this
requires the inclusion of the library in the HTML file and
the association of a map object to a variable and information
inside, considering map details like initial position, zoom, and
layer. After, for each marker can be created a limit of three
lines of code to generate an object with latitude and longitude
information. If a classification is desired, like to change marker
colors, users may also insert in the JavaScript code a tag for
an icon declaration.

B. OpenLayers

OpenLayers is an open source JavaScript library that
provides features for displaying map data in web browsers.
Also, it provides an API for building web-based geographic
applications. Furthermore, this presents a great set of compo­
nents, such as maps, layers, or controls. OpenLayers offers
access to a great number of data sources using many different
data formats, and implements many standards from Open
Geospatial Consortium2 [11].

Also, it requires the insertion of the library in the HTML
file and a library creation before adding a new marker. The
layer is an OpenLayers feature in that allows the implementa­
tion of different types of data visualization in a single data
visualization. Google Maps API and Leaflet, presented in
Subsection II-C, abstracts this option. Consequently, they are
limiting for users to show just one type of data visualization.
This possibility of layers creation impacts in the marker
insertion process, because each marker may be created and
associated to a layer. If a simple data visualization map with
just one layer may be created, this generates more lines of
code than in other layers.

C. Leaflet

Leaflet is an open-source JavaScript library for the creation
of interactive maps. Leaflet works taking advantage of HTML5
and CSS3 [12], and also allows the creation of maps using
geospatial data. Moreover, it provides tile layers, markers, pop­
ups, vector layers like polylines, polygons, circles, rectangles,
circle markers, GeoJSON layers, image overlays, WMS layers
and layer groups.

The marker and map creation in Leaflet is similar to others
libraries. Initially occurs the insertion of the library into the
HTML file and a set of codes is responsible for creating
the map as well as the markers are inserted later. An option
allows the specification of information inside markers when
it is selected by a click. As in others libraries, the user must
have knowledge in JavaScript programming to create a data
visualization map and the replication of code for each marker
inserted.

III. RELATED WORK

In data visualization domain, some DSLs have been pro­
posed looking for increasing the visualization creation pos­
sibilities for some domain-specific users. They have focused
on some domain and does not support the creation of standard
visualizations. Vivaldi [13] aims at facilitating the visualization
creation and volumetric processing on heterogeneous systems.
By other hand, ViSlang [14] operates in scientific visualiza­
tion, where its main contribution is to provide extensibility.
Diderot [15] looks for simplifying image analysis, using a
language with tensors to approximate the users' domain.
Finally, Shadie [16] was designed to create efficient scientific
big data visualizations.

Superconductor [17] provides a set of generic big data
visualization features. It is not designed for a specific vi­
sualization type. Also, it allows the user to personalize the

2http://www.opengeospatial.org

.a

. b

Traditional Visualization Creation

L-__ -----' 1
I
I
I I
l _______________ J

Fig. l . Visualization creation comparison.

visualization by changing visual elements. Comparing to our
work, Superconductor is more robust. However, users have to
build their visualizations from the scratch interacting with low­
level programming stuff, while we are abstracting program­
ming language interaction using a user specification approach.

Vivaldi, ViSlang, Diderot, and Shadie are focusing in
the generation of data visualizations volumetric having not
minded data visualization maps. Superconductor allows the
user to create maps because have more expressiveness, but it
requires expert skills to implement visual elements. These are
different approaches from what we are doing. While Google
Maps API, Leaflet and OpenLayers are not so far from ours
because they are data visualization maps libraries with high­
level abstractions. However, they do not avoid to learn a
programming language and pre-processing, insert data and
configure the visualization details such as size, icons, layers
and data.

Concluding, both DSLs and Libraries are not abstracting
from the user all the data visualization pipeline. When using it,
users still need to manipulate raw data and transform it in the
appropriate format, using external tools or doing it manually.
Our proposed DSL provides an abstraction covering the whole
visualization pipeline, supporting a high-level language specifi­
cation for data pre-processing and visualization specifications.

IV. THE PROPOSED DSL

Aiming at facilitating the creation of visualizations for
large-scale geospatial data through point phenomena, we pro­
posed an external DSL to provide a high-level specification
language. The goal is to be as much as possible closer to the
domain vocabulary, supporting a suitable language syntax.

Users that will use this DSL instead of using tools and
libraries as Google Maps API, Leaflet and OpenLayers will
have some advantages. First, they will not have to know
programming aspects like functions, variables, methods and
any other web development issue. Second, the user will have
a data processing that empowers the data filtering, cleaning
and classification automatically as shown in Figure l. When
working with huge files, this DSL allows same operations.
Also, we have an optimized file loading in memory to open
files bigger than RAM memory available in the system. The
third advantage is that this DSL is not linked with a host lan­
guage. Also, the interface is extremely approximated from the

user domain. In this case, for general dotted data visualization
maps with a simple interface.

Even we are providing all these features, our DSL also
have some limitations. It only allows the creation of already
implemented data visualization, and users have to learn a new
specification language.

A. DSL Architecture

We internally divided our DSL in three modules as fol­
lowing described. Figure 2 illustrates each module using green
arrows to demonstrate input dependencies and blue arrows to
express the generation of code or data.

• Code Analyzer: This module receives the DSL source
code as input to perform lexical analysis, parsing,
semantic analysis and code generation. These steps
are done by a compiler constructed in C/C++ using
Flex and Bison.

• Data Pre-processor: C/C++ source files are created
after input code analysis. One correspond to the data
pre-processor, which is capable to open large-scale
files, bigger than available memory, and process these
files for applying filters and classification. Then, this
pre-processor saves an output file with the data used
in the data visualization.

• Data Visualization Generator: The DSL Interface
module generates a second code that uses the output
data from data pre-processor and generates the visu­
alization using HTML, Javascript, and Google Maps
API libraries.

DSL DSL Complier
Source Code

output data
Raw Data

Fig. 2. DSL architecture.

Google
Maps API

I
I

Visualization
Output Code

Display

In the following subsections, the DSL Interface, Data Pre­
processor, and Data Visualization Generator will be described
and explained.

B. DSL Interface

This DSL contributes providing a high-level interface for
processing, filtering, classifying data and creating data visual­
izations maps. It allows to create a data visualization using few
lines of code. Being an external DSL, this is limited just to the
specifications about the data visualization. Therefore, the user
will not mind with other characteristics of host languages like
in Superconductor [17]. In contrast, we make this DSL easier
to use.

For simplifying the implementation of a new data visual­
ization using the proposed architecture, we considered creating
an external DSL. This decision was done because an external

language simplify the use since we have the freedom to create
an interface similar to natural language.

This DSL language consists of blocks and declarations,
as specified in Table I. A block contains declarations that
are formed by a property and value. Basically, we have four
block names: data, classification, structure and visualization­
settings. Declarations may always be used inside a block, with
exception for the visualization type that is created in the global
scope with data and visualization-setting blocks. In Figure 4
is demonstrated the structure of a declaration by an example
of visualization specification pointed by gray dotted lines and
in Figure 5 is presented the structure of a block with the main
declarations inside using as example a data block.

TABLE I. PROPOSED DSL RESERVED WORDS.

Keyword Description

Block Names (.a)

data This contains all the data declarations.

classification This is used to declare classification rules.

structure This names a block with data structure declarations.

visualization-settings This will detennine details for the data visualization.

Properties (b)
class. filter This specify a logic to select/classify data.

date-format This specifies the date format used in input file.

delimiter. end-register This is used to inform data delimiters.

file This receives files location.

latitude, longitude This specifies the fields containing geo-positioning.

marker-text This is considered for specifying the text of markers.

page-title This receives the value for visualization page title.

size This is used for specifying the visualization size.

visualization This receives the visualization type name.

Values (.c)

field This represents a field when used with properties.

full, medium, small Values to express sizes.

Operators (.d)

and, or Logical operators for join values (/\ and V).
contains Used to verify existence of object inside another (E).

different, equal Used to apply equality operations ('" and -).

greater, less Express a logical operation of size (> and <).
is, than Determines a relation between two objects.

In figure 3 is demonstrated the use of field value in this
interface. The manipulation of data using this interface is
done by the field value. Considering that a data set stores
registers separated in an organized way, using delimiters and
end registers characters, we can count each field localization.

Field 2

/
Field 1 '- DataseV Field 3

"'Field 1 Field 2 Field 3·

0

�

Fig. 3. Field value over data set registers.

This interface have three main elements: a declaration and
two blocks. These three elements are specified globally in
the source code, as illustrated in Figure 4. The first element
consists of a visualization declaration which specifies the type
of data visualization to be created. The second element is a
visualization settings block with declarations of visualization
details like required fields, sizes and titles. Concluding the
code, an input data block with data declarations like filters,
classification, data format and delimiters.

Boost this DSL with other types of data visualization in

DSL Interface Property Value

________________ ,:;q:6ilb!f!."i md§::HD
Declorotl on---+:rlFii;;U;,;;;.

r--------------------------------

Block) :'£1161,",,,.1.114',,';''1 i
B'OCk--------.r;Md I

Fig. 4. DSL interface general overview.

the future is a desired goal. Wherefore, this DSL was built
using generalizations seeking to turn easy this objective. An
example of language generalization in our DSL is the first
declaration in the beginning of code. In this declaration users
can inform the desired visualization name as a parameter
which enables to change the types of data visualization just
changing few lines of code. In Figure 4 is presented an example
of a visualization declaration element. In sequence, it is
constructed a block containing information about visualization
settings like required fields3, page title, visualization size and
any information to generate the visual elements.

Declarations of page-title and size are inserted in the block
represented in Figure 5. The page-title property will receive
a value. This value must be informed between quotes. The
visualization size is informed in the size property, which can
receive a full value for a full page display, medium value for
a 70% page visualization, and small value for a 50% page
visualization.

Block Property Value

vis ualization -settings {

}

latitude: field 4;
longitude: field 5;
size: full:
page-title: "Example";

Declaration
Declaration
Declaration
Declaration

Fig. 5. The visualization-settings block example.

The data block will contain information about input data
and how it will be loaded and processed by the data pre­
processor. This block is divided in four elements: file declara­
tions, a structure block, a filter declaration, and a classification
block, as demonstrated in Figure 6.

Block

{

}

<files>
structure { ... }
<filter>
classification { ... }

Fig. 6. Input data block tree.

Declarations
Sub-block
Declaration
Sub-block

An unlimited number of files can be declared in our DSL.
We built in this way because users can use a database separated
into many files. This attribute receives a value between quotes
that informs the path to a file. Lines 1, 2 and 3 in Listing 1
demonstrate examples of files declaration.

3Required fields can change for different types of data visualization. An
example of a required field is lal;lUde and longilUde for data visualization
maps.

The structure sub-block contains information about the file
type, delimiter, and end register character. This information
is extremely important for the data pre-processor recognize
the limits of each register. This block is demonstrated by an
example in Listing 2.

1 d a t a {
2 f i l e : <va lue>
3 <s t r u c t u r e b l o c k >

4 < f i l t e r s p e c i f i c a t i o n s >
5 <c l a s s i f i c a t i o n s p e c i f i c a t i o n s >
6 }

Listing 1. Database input specification with proposed DSL.

1 s t r u c t u r e {
2 f o r m a t : CSV; / / Type of i n p u t f i l e .
3 d e l i m i t e r : ’\ t ’ ; / / F i e l d s d e l i m i t e r c h a r .
4 end−r e g i s t e r : ’\n ’ ; / / R e g i s t e r s d e l i m i t e r c h a r .
5 da t e−f o r m a t : YYYY−MM−DD; / / D a t a s e t d a t e f o r m a t .
6 }

Listing 2. Structure block example.

This interface allows the specification of one or more files
to be processed even that it has a limitation. All informed files
may have the same format. This limitation exists because data
pre-processor uses the same delimiter separators specified in
the source code to structure and process all the data files. For
example, in a CSV file is common use comma as the delimiter
and a new line (\n) to end of the register. When working with
date, the user also must specify the format used.

An important section in our interface is the specification of
logical operations to filter and classify registers. Users can de-
clare a filter to select data and display only useful information
in the visualization. A filter declaration uses logical operators
to select one or more information of fields. A filter is declared
using a filter property which receives as parameter a logical
operation. Hereafter, a logical operation is declared that when
processing over a register add (if true) or not add (if false) this
in the output.

We implemented eight logical operators that can be com-
bined in a filter declaration and classification. The operators
AND and OR can be used to join logical operations using the
other logical operators. We used x for field number, and y and
z to illustrate values in Figure 7, where we also demonstrate
the relation between the operators that can be combined.

Fig. 7. Logical operators for filtering and classifying.

With these operators, the user can construct filters using
logical operations. Figure 8 illustrates the structure of a filter
declaration using a simple logical operation example.

Fig. 8. Simple filter declaration example.

In some cases, the user wants to create classifications. To
do so, the sub-block classification were created to allow the
user to specify logical operations for the data that will be
classified. Listing 3 presents the syntax to create a class. Each
class will receive a logical operation, equal to that one used in
filters. This logical operation will be applied in all the registers.
When returning true, the register will be inserted in the class.

1 c l a s s i f i c a t i o n {
2 c l a s s : < l o g i c a l −o p e r a t i o n>
3 c l a s s : < l o g i c a l −o p e r a t i o n>
4 c l a s s : < l o g i c a l −o p e r a t i o n>
5 }

Listing 3. Database input specification with proposed DSL.

The classification sub-block applied in data visualization
maps allows the creation of markers with different colors for
each class. We can create classes using the logical operators.
Also, the registers inserted in each class will receive a different
marker color during visualization generation.

Listing 4 is demonstrating a code example when using
our proposed DSL for the Devices visualization type that is
generating a map with markers. This data visualization has a
device classification. The data inserted in this data visualization
map application is from YYFCC100M data set provided by
Yahoo Labs4.

1 v i s u a l i z a t i o n : marked−map
2 v i s u a l i z a t i o n −s e t t i n g s {
3 l a t i t u d e : f i e l d 1 1 ;
4 l o n g i t u d e : f i e l d 1 0 ;
5 marker−t e x t : ”” ;
6 page− t i t l e : ” 2014 Pho tos C l a s s i f i e d by Device ” ;
7 s i z e : f u l l ;
8 }
9 d a t a {

10 f i l e : ” y f c c 1 0 0 m d a t a s e t −0” ;
11 f i l e : ” y f c c 1 0 0 m d a t a s e t −1” ;
12 f i l e : ” y f c c 1 0 0 m d a t a s e t −2” ;
13 s t r u c t u r e {
14 d e l i m i t e r : ’ / t ’ ;
15 end−r e g i s t e r : ’\n ’ ;
16 da t e−f o r m a t : YYYY−MM−DD;
17 }
18 f i l t e r : f i e l d 3 IS BETWEEN 2014−01−01 AND

2014−12−30;
19 c l a s s i f i c a t i o n {
20 c l a s s : f i e l d 6 CONTAINS ” Canon ” ;
21 c l a s s : f i e l d 6 CONTAINS ” Sony ” ;
22 }
23 }

Listing 4. Devices visualization example implemented with our DSL.

4http://webscope.sandbox.yahoo.com/catalog.php

C. Data Pre-processor

We implemented the Data Pre-processor in five operations:
partitioning, structuring, filtering, classifying and output sav­
ing. As presented in Figure 9, partitioning is the first function
used in this workflow. The partitioning phase allows us to use
large data sets in low memory architectures since this separates
the entire data set in pieces of data.

Fig. 9. Data pre-processor workflow.

The pieces of data size shown in Figure 9 are divided
considering available memory using the Equation 2. For better
understanding, consider the following definition.

Definition 1:
D = do,d1, ... ,dn- a group of di (data sets)
F = fa, h, ... , fn- a group of Ii (files)
Fm(fj) = System free memory when processing fj
em(fj) = System cached memory when processing fj
Considering:

(1)

We calculate the pieces of data with the bellow function:

(2)

Our 2.5 constant is the size of memory that the pre­
processor uses during its operations. For example, whenever
1GB of data loads in memory, during the processing, this
information can become 2.5GB due the structuring, filtering
and classification processes.

For filtering, we did a study of search algorithms to choice
an optimal to perform the registers selection. In this analysis,
our study based on Big 0 notation [18] of each algorithm.
Three search algorithms were selected for this analysis: Linear
Search, Binary Tree, and Interpolation Search.

For the comparison of the algorithms, we used the time and
space complexity considering worst time. As these algorithm
may process a huge data set, consider the worst case is
appropriate to evaluate them. The comparison of algorithms
for data selection was made using the sum of the results of
each algorithm. Them, considering that when combining two
o values the greater is the result. We used the greater value
to compare each combination with Linear Search algorithm.

Space complexity was considered when comparing these
algorithm because the memory space used for them is an
important issue to consider. If we are processing a huge data
set with a size of 1024 Giga Bytes, an O(n) space complexity
algorithm will load on memory 1048576 Giga Bytes. Obvi­
ously, on the actual multicore computer architectures, it can
present a memory problem. Then, for this evaluation we seek
an algorithm that present a minimum O(n) for worst time­
space, maintaining the same quantity of data.

In our analysis, we found that Linear Search have the
greater worst running time of O(n) since this verify all the
elements of the array during the search. On the other hand, this
algorithm does not require a sorted array. That choice allows
its usage for any input data. Differently, Binary Search and
Interpolation Search with O(n log n) and O(log log n) need a
sorted array to find an element, respectively.

Through this analysis, we can highlight that for ordered
arrays the better alternative is an Interpolation Search. For
disordered arrays, the Linear Search is more convenient. To
certify this, we analyzed this algorithms combining them with
some sorting algorithms.

As verified, the time complexity of Binary and Interpo­
lation Search are increased with sorting operations with the
minimal complexity time of O(k + N) using Radix Sort
algorithm. The implementation of a binary or interpolation
search is harder than the linear search algorithm since it needs
the development of a sorting algorithm. We choose a linear
search algorithm for executing the filtering step because it will
process unsorted data sets in our data pre-processor.

D. Visualization Generator

This DSL have a data visualization generator which pro­
duces data visualization code according to the specifications
declared in DSL source code. The output file of this module
is a HTML file with data visualization done.

Our visualization generator receives specifications from
the code analyzer. After, it attaches data-preprocessor output
into a HTMLlJavascript template to generate the visualization
file. Finally, it creates an output file containing a HTML and
Javascript skeleton code with the Google Maps API call, the
information about title, sizes, and markers, and the data in the
Google Maps API required format.

Our DSL does not generate the visual elements of the data
visualization. Therefore, we used libraries like Google Maps
API in the HTML generated code. We choose this library
to simplify code generation because it provides a high-level
interface for manipulate maps details and insert data. It also
will allow the implementation of other visualizations types
without changing the DSL architecture and data pre-processor
output. It is possible since the input data format of Google
Maps API is the similar used in Google Charts and D35.

V. MET HODOLOGY

We evaluated code productivity and programming effort
using the SLOCCount tool. We created four data visualizations
with our DSL comparing to three different libraries: Google
Maps API, OpenLayers, and Leaflet. We do not included
DSLs presented in Section III in this comparison because they
do not offer the creation of data visualization maps. Each
data visualizations created for this comparison we describe as
follows:

• War - 2014 photos tagged with "war" word.

• Manifestation - 2014 photos tagged with "manifesta­
tion" word.

5http://d3js.org/

• Devices - general photos classified by device used.

• WorldCup - 2014 photos with "world cup" words in
tags.

For code productivity measurement, we used the SLOC­
Count suite, also used by [19] for the evaluation of a DSL
interface and by a set of other researches (e.g., [9], [20]).
SLOCCount3 is a software measurement tool, which counts
the physical source lines of code (SLOC), ignoring empty
lines and comments. It also estimates development time, cost
and effort based on the original Basic COCOM06 model.
The suite supports a wide range of both old and modern
programming languages (e.g., C++, Javascript, HTML, and
CSS), which are naturally inferred by SLOCCount and thus
used for measurement. For our DSL, we selected CSS because
it has similar syntax.

In the performance experiment, we used YFCC100M data
set [21] as input, which is available from Yahoo Labs. This
data set has 54GB of data, divided in 10 files. This is a public
multimedia data set with 99.3 million images and 0.7 million
videos, all from Flickr and all under Creative Commons
licensing. We did a preliminary evaluation of execution time
when processing huge quantities of data. For this tests, we
replicated the YFFCC100M data set to achieve 100GB of data.
We did a measurement of 10GB, 50GB and 100GB to verify
the time it takes for processing.

VI. RESULTS

Table II presents the Source Lines of Code (SLOC) values
generated by SLOCCount. Consequently, we can verify that
even with data pre-processing specification in our DSL, the
lines of code necessary to develop a map visualization does not
increase. In this analysis, we removed the data from traditional
libraries that usually is inserted into the source code using
Javascript (as previously demonstrated in Section II). The
insertion of a new marker inside the visualization can generate
until three or four lines of code because it needs to attend the
required format, which generates a bigger file. In the proposed
DSL, we avoid this issue by using of Data block. In this block,
we offer features for selecting, filtering and cleaning the data
through the use of logical operators, as demonstrated in Section
IV. This simplification also reflects in the code productivity
measurement, presented in Figure 10.

TABLE II. CODE PRODUCTIVITY (PHYSICAL SOURCE LINES OF CODE).

Application DSL Google Maps API OpenLayers Leaflet

Devices 22 74 25 79

War 15 20 27 25

Manifestation 15 20 17 25

World Cup 15 20 18 25

Even with the additionally features for data pre-processing,
we maintain the code productivity in the four applications
when using the proposed DSL. In Figure 10, we can observe
that development time are very similar in War, World Cup and
Manifestation applications. However, we have an exception in
Devices application. This occurs because the application has a
classification that change icons colors according to the data that

6http://www.dwheeler.com/sloccountlsloccount.html#cocomo

will be displayed. OpenLayers require fewer lines of code to
implement it, presenting a lower time. The difference between
the libraries is due to the javascript implementation to create
a new map which configure initial positions and display it.

In this analysis, we measured just the code productivity
when creating the visualization applications. The transforma­
tion and manual insertion of data in Javascript code, required
by traditional libraries, were not considered in our results.
In the proposed DSL, we abstract from the user any data
transformation due to the high-level interface usage and an
automatic data pre-processor. Thus, the code productivity in
developing a visualization reduces much more if we consider
the user will not handle data manually or look for external
tools to automatize this.

YFCC100M Data Set

9 �----�------�------�----�------�

8
7
6
5
4
3
2
1

Devices

-
GOOGLEAPI =

Open Layers =
Leaflet EZ:2ZZI

War WCup Man

Applications

Fig. 10. SLOCCount programming effort results.

We also measured the completion time of data pre­
processor. The goal was to verify how long it takes to process
a huge quantity of data and generate an output. We could
not compare this with traditional libraries once the data pre­
processing is done using different approaches, or in some
cases, manually. Table III presents this results for data transfor­
mation and visual mapping. Data transformation comprehends
the total execution time to open, structure, filter, classify the
input data, and save the output file. Visual Mapping compre­
hends the total execution time to generate the visualization and
display for the user. We variate the input data in 10GB, 50GB
and 100GB of data.

TABLE III. COMPLETION TIMES (SECONDS).

Size Data Transformation Visual Mapping - Google Maps API

10GB 110.4948 (Std. 0.9763) 2.910 (Std. 1.6084)

50GB 544.0506 (Std. 9.4225) 3.2738 (Std. 2.0663)

100GB 1098.9284 (Std. 19.0383) 3.8536 (Std. 2.7584)

If we consider the complexity time of linear search, which
is O(n) like demonstrated in Section IV-C, we can verify a
similar behaviour of the completion time in the data transfor­
mation as it grows in a linear way according to the input size.
Consequently, it is possible to observe an increasing order of
approximate 11 times (11.0494 x 10GB, 10.88l0x50GB, and
10.9892 x 100G B). We can conclude that as the input data size
modifies, the execution time to process the data will keep a
relation between completion time and input size, keeping the
time complexity in a linear order.

These execution time results demonstrated that as the
input data size is modified, the times in visual mapping have
a minimal difference. However, data transformation process
express a huge difference between the different input sizes.

As a consequence, it is important to consider that data trans­
formation process have a higher computational cost when the
input size increases. We also observe that the automatic data
pre-processing optimizes the visualization implementation. If
users develop using traditional libraries, the needing of handle
manually a huge quantity of data can take much more time.

VII. CONCLUSIONS

This paper introduced the data visualization map problem
and provided a new domain-specific language for the geospa­
tial data, supporting big raw data sets. Therefore, we described
our description-based language and how we implemented it.
During the text, it was possible to point out how much
simpler and friendly is our approach with respect to the current
scenario. Also, we used a real-world data set to evaluate our
DSL, comparing in different visualization types.

Overall, the results demonstrated that our DSL may help
data visualization users for gaining insights and extracting
information from big data sets. Also, even that we did not
measure the effort when users have to prepare the data set,
we can highlight that it increases the user's productivity by
the possibility of automaticaIly handling raw input data. This
abstraction avoids much legwork and complexities on data
manipulation such as partitioning, structuring, filtering, and
classification.

Moreover, the performance experiments show that we
achieved an efficient implementation of the raw data proces­
sor as expected by the algorithm analysis (time and space
complexities). Also, we identify the opportunity for reducing
the completion time. Consequently, we plan as future work to
investigate alternatives for taking advantage of the parallelism
available on the multi-core architectures, speeding the pre­
processing performance.

As mentioned in the paper, we also have in mind to provide
more features in our language interface. For example, new
visualization types (graphs, treemaps, column and area charts),
new logical operators for data selection precision, and offer
support for hierarchical data formats such as JSON and XML.
Meanwhile, also to include some advanced classification data
mining algorithms in our data processor.

ACKNOWLEDGMENT

Authors wish to thank the research support of FAPERGS
(Funda9ao de Amparo a Pesquisa do Estado do Rio Grande do
Sui) and CAPES (Coordena9ao de Aperfei90amento Pessoal
de Nfvel Superior). Additionally, authors would like to thank
the financial support of FACIN (Faculdade de Informatica)
and PPGCC (Programa de P6s-Gradua9ao em Ciencia da
Computa9ao) .

REFERENCES

[II P. Lyman and H. Varian. "How Much Informa-
tionT Berkeley. CA. October 2004. [Online]. Available:
http://groups.ischool.berkeley.edu/archive/how-much-info-2003/

[2] J. Manyika. M. Chui. B. Brown. J. Bughin. R. Dobbs.
C. Rox burgh, and A. H. Byers, "Big Data: The Next
Frontier for Innovation. Competition, and Productivity," McKinsey
Global Institute, Tech. Rep., May 20l l . [Online]. Available:
http://www.mckinsey.com/insights/business_technology/

[3] J. Zhang and M. L. Huang, "5Ws Model for Big Data Analysis and
Visualization," in Proceedings of the 16th International Conference on

Computational Science and Engineering. ser. CSE. Sydney. NSW:
IEEE. Dec 2013. pp. 1021-1028.

[4] M. O. Ward, G. Grinstein. and D. Keim. Inleractive Data Visualization:

Foundations, Techniques, and Applications. Massachusetts, USA: CRC
Press, 2010.

[5] M. Ghanbari, "Visualization Overview," in Proceedings of the Thirty­

Ninlh Soltlheastern Symposium on System Theory, ser. SSST 07. Ma­
con, GA: IEEE, Dec 2007, pp. 115-119.

[6] J. Zhang, Y. Chen, and T. Li, "Opportunities of Innovation under
Challenges of Big Data," in Proceedings of the 10th International

Conference on Fuzzy Systems and Knowledge Discovery, ser. FSKD.
Shenyang, China: IEEE, July 2013, pp. 669-673.

[7] M. Fowler, Domain-Specific Languages. Massachusetts, USA: Pearson
Education, 2010.

[8] D. Griebler and L. G. Fernandes, "Towards a Domain-Specific Lan­
guage for Patterns-Oriented Parallel Programming," in Programming

Languages - 17th Brazilian Symposium - SBLP, ser. Lecture Notes
in Computer Science, vol. 8129. Brasilia, Brazil: Springer Berlin
Heidelberg, October 2013, pp. 105-119.

[9] D. Adornes, D. Griebler, C. Ledur, and L. G. Fernandes, "A Unified
MapReduce Domain-Specific Language for Distributed and Shared
Memory Architectures," in The 27th International Conference on

Software Engineering & Knowledge Engineering. Pittsburgh, USA:
Knowledge Systems Institute Graduate School, July 2015, p. 6.

[10] G. Svennerberg, Beginning Google Maps API 3. Berkely, CA, USA:
Apress, 2010.

[II] Open Layers, "Open Layers Documentation," June 2015. [Online]. Avail­
able: http://openlayers.org/en/v3.6.0/doc/tutorials/introduction.html

[12] Leaflet, "Leaflet Documentation," June 2015. [Online]. Available:
http://Ieafletjs.com/reference.html

[13] H. Choi, W. Choi, T. Quan, D. G. Hildebrand, H. Pfister, and w.-K.
Jeong, "Vivaldi: A Domain-Specific Language for Volume Processing
and Visualization on Distributed Heterogeneous Systems," IEEE Trans­

actions on Visualization and Compltler Graphics, vol. 20, no. 12, pp.
2407-2416, 2014 Dec.

[14] P. Rautek, S. Bruckner, M. Groller, and M. Hadwiger, "ViSlang: A
System for Interpreted Domain-Specific Languages for Scientific Visu­
alization," IEEE Transactions on Visualization and Compltler Graphics,

vol. 20, no. 12, pp. 2388-2396, Dec 2014.

[15] C. Chiw, G. Kindlmann, J. Reppy, L. Samuels, and N. Seltzer, "Diderot:
A Parallel DSL for Image Analysis and Visualization," in Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDl 12, vol. 47. New York, USA:
ACM, Jun 2012, pp. 111-l20.

[16] M. Hasan, J. Wolfgang, G. Chen, and H. Pfister, "Shadie: A
Domain-Specific Language for Volume Visualization," 2010. [Online].
Available: http://miloshasan.net/Shadie/shadie. pdf

[17] L. A. Meyerovich, M. E. Torok, E. Atkinson, and R. Bodk, "Supercon­
ductor: A Language for Big Data Visualization." Feb 2013. [Online].
Available: https://engineering. purdue.edu/ milind/lashc 13/meyerovich­
superconductor. pdf

[18] T. H. Cormen and C. E. Leiserson, Inlroduction to Algorithms. London,
England: The MIT Press, 20 II.

[19] D. Griebler, D. Adornes, and L. G. Fernandes, "Performance and Us­
ability Evaluation of a Pattern-Oriented Parallel Programming Interface
for Multi-Core Architectures," in The 26th Inlernational Conference on
Software Engineering & Knowledge Engineering. Vancouver, Canada:
Knowledge Systems Institute Graduate School, July 2014, pp. 25-30.

[20] N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones,
"Refinement Types for Haskell," in Proceedings of the 19th ACM

SIGPLAN International Conference on Functional Programming, ser.
ICFP , 14. New York, NY, USA: ACM, August 2014, pp. 269-282.

[21] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland,
D. Borth, and L. Li, "The New Data and New Challenges in Multimedia
Research," CoRR arXiv eprint, vol. absIl503.01817, 2015.

