
Byzantine Fault-Tolerant Atomic Multicast

Paulo Coelho∗†, Tarcisio Ceolin Junior‡§, Alysson Bessani¶, Fernando Dotti§ and Fernando Pedone∗

∗Università della Svizzera italiana - Switzerland
†Universidade Federal de Uberlândia - Brazil
‡Universidade Federal de Santa Maria - Brazil

§Escola Politécnica, Pontifı́cia Universidade Católica do Rio Grande do Sul - Brazil
¶LaSIGE, Faculdade de Ciências, Universidade de Lisboa - Portugal

Abstract—Atomic multicast is an important building block in
the architecture of scalable and highly available services. Atomic
multicast reliably propagates and orders messages addressed to
one or more groups of processes. Despite the large body of
literature on atomic multicast, existing protocols target benign
failures. This paper presents ByzCast, the first Byzantine Fault-
Tolerant atomic multicast. Byzantine Fault Tolerance has become
increasingly appealing as services can be deployed in inexpensive
hardware (e.g., cloud environments) and new applications (e.g.,
blockchain) become more sensitive to malicious behavior. ByzCast
has two important characteristics: it was designed to use existing
BFT abstractions and it scales with the number of groups,
for messages addressed to a single group. We discuss the
design of ByzCast and how it can be optimized for particular
workloads. Besides proposing a novel atomic multicast protocol,
we extensively assess its performance experimentally.

I. INTRODUCTION

Modern online services are expected to be always available

and scalable. High demand for services that can tolerate

failures and sustain ever-increasing load has led to different

designs and tradeoffs. According to the guarantees provided

to service users, two classes of solutions exist. Systems that

provide weak consistency (e.g., [1], [2], [3], [4]) can typically

deliver high performance at the cost of exposing non-intuitive

application behavior to the users. Systems that focus on strong

consistency (e.g., linearizability [5]) provide more intuitive

service behavior but require requests to be ordered across the

system before they can be executed by the servers [6], [7].

Atomic multicast is a fundamental communication abstrac-

tion in the design space of strongly consistent distributed

systems. Atomic multicast abstracts the complexity involved

in reliably propagating and ordering requests, and in doing

so it provides stronger communication guarantees than “best-

effort” network-level communication (e.g., IP multicast). With

atomic multicast, processes can multicast messages to different

groups of destination processes (e.g., different shards) with the

guarantee that destinations will reliably deliver these messages

in acyclic order. Acyclic order implies that destinations deliver

common messages consistently. As a result, application pro-

grammers can focus on the inherent complexity of a service

and rely on atomic multicast to handle communication that

scales (with the number of destinations) and tolerates failures.

Although research on efficient atomic multicast protocols

is relatively mature [8], [9], [10], [11], to date all existing

protocols target benign failures (e.g., crash failures) [12],

[13], [14], [15]. In this paper, we introduce ByzCast, the

first Byzantine Fault-Tolerant (BFT) atomic multicast protocol.

Byzantine fault tolerance has become increasingly appealing

as service providers can deploy their systems in increasingly

inexpensive hardware (e.g., cloud environments) and new

applications become more and more sensitive to malicious

behavior (e.g., blockchain [16]).

ByzCast’s design was motivated by two driving forces:

(i) The desire to reuse existing BFT tools and libraries,

instead of coming up with protocols that would require an

implementation from scratch. (ii) The perception that the

usefulness of atomic multicast lies in its ability to deliver

scalable performance. On the one hand, much effort has been

put into designing, implementing, debugging and performance-

tuning BFT atomic broadcast protocols (i.e., a special case

of atomic multicast in which messages always address the

same set of destinations) [17], [18], [19], [20], [21]. We

would like to build on these solutions and thereby shorten

the development cycle of our BFT atomic multicast protocol.

On the other hand, it would not be difficult to achieve the

first goal above with a naive atomic multicast protocol that

trivially relies on atomic broadcast. For example, one could

use a fixed group of processes to order all multicast messages

(using atomic broadcast) and then relay the ordered messages

to their actual destinations. Instead, one should aim at atomic

multicast protocols that are genuine, that is, only the message

sender and the message destinations should communicate to

order multicast messages [22]. A genuine atomic multicast is

the foundation of scalable systems, since it does not depend

on a fixed group of processes and does not involve processes

unnecessarily.

ByzCast conciliates these goals with a compromise between

reusability and scalability: the resulting protocol is more

complex than the naive variant described above and partially

genuine. ByzCast is partially genuine in that messages atom-

ically multicast to a single group of processes only require

coordination between the message sender and the destination

group; messages addressed to multiple groups of processes,

however, may involve processes that are not part of the destina-

tion (i.e., these processes help order the messages though). We

motivate partially genuine atomic multicast protocols with the

observation that when sharding a service state for performance,

service providers strive to maximize the number of requests

that can be served by a single shard alone.

39

2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

2158-3927/18/$31.00 Â©2018 IEEE
DOI 10.1109/DSN.2018.00017

ByzCast is a hierarchical protocol. It uses an overlay tree

where a node in the tree is a group of processes. Each group

of processes runs an instance of atomic broadcast that encom-

passes the processes in the group. Hence, ordering messages

multicast to a single group is easy enough: it suffices to use

the atomic broadcast instance implemented by the destination

group. Ordering messages that address multiple groups is

trickier. First, it requires ordering such a message in the lowest

common ancestor group of the message’s destinations (in the

worst case the root). Then, the message is successively ordered

by the lower groups in the tree until it reaches the message’s

destination groups. The main invariant of ByzCast is that the

lower groups in the tree preserve the order induced by the

higher groups.

In addition to proposing a partially genuine atomic multicast

protocol that builds on multiple instances of atomic broadcast

(one instance per group of processes), we also consider the

problem of building an efficient overlay tree. The structure

of the overlay tree is mostly important for messages that

address multiple groups. In its simplest form, one could have

a two-level tree: any messages that address more than one

destination would be first ordered by the root group and

then by the destination groups, the leaves of the tree. In this

simple tree, however, the root could become a performance

bottleneck. More efficient solutions, based on more complex

trees, are possible if one accounts for the workload when

computing ByzCast’s overlay tree. We frame this discussion

as an optimization problem.

This paper makes the following contributions:

• We present a partially genuine atomic multicast protocol

that builds on multiple instances of atomic broadcast, a

problem that has been extensively studied and efficient

libraries exist (e.g. [23], [24], [25], [18]).

• We define the problem of building an overlay tree as an

optimization problem. Our optimization model takes into

account the frequency of messages per destination and

the performance of a group alone.

• We describe a prototype of ByzCast developed using

BFT-SMaRt [18], a well-established library that imple-

ments BFT atomic broadcast.

• We provide a detailed experimental evaluation of ByzCast

and compare it to a naive atomic multicast solution.

The rest of the paper is organized as follows. Section II in-

troduces the system model and definitions. Section III presents

ByzCast, its performance optimizer, and correctness proof.

Section IV details our prototype. Section V describes our

experimental evaluation. Section VI surveys related work and

Section VII concludes the paper.

II. SYSTEM MODEL AND DEFINITIONS

In this section, we detail our system model (§II-A) and recall

the definitions of atomic multicast (§II-B), atomic broadcast

(§II-C), and state machine replication (§II-D).

A. Processes, groups, and communication

We consider a distributed system with an unbounded set of

client processes C = {c1, c2, ...} and a bounded set of server

processes S = {p1, ..., pn}, where clients and servers are

disjoint. Processes communicate by exchanging messages and

do not have access to a shared memory or a global clock. The

system is asynchronous: messages may experience arbitrarily

large (but finite) delays and there is no bound on relative

process speeds.

Client and server processes can be correct or faulty. A

correct process follows its specification whilst a faulty process

can present arbitrary (i.e., Byzantine) behavior. We define Γ =
{g1, ..., gm} as the set of server process groups in the system.

Groups are disjoint, non-empty, and satisfy
⋃

g∈Γ g = S . We

assume each group contains 3f +1 processes, where f is the

maximum number of faulty server processes per group [26],

[27].

We use cryptographic techniques for authentication, and

digest calculation. We assume that adversaries (and Byzantine

processes under their control) are computationally bound so

that they are unable, with very high probability, to subvert

the cryptographic techniques used. Adversaries can coordinate

Byzantine processes and delay correct processes in order to

cause the most damage to the system. Adversaries cannot,

however, delay correct processes indefinitely.

B. Atomic Multicast

For every message m, m.dst denotes the groups to which m

is multicast. If |m.dst| = 1 we say that m is a local message;

if |m.dst| > 1 we say that m is a global message.

A process atomically multicasts a message m by invoking

primitive a-multicast(m) and delivers m with a-deliver(m). We

define the relation < on the set of messages correct processes

a-deliver as follows: m < m′ iff there exists a correct process

that a-delivers m before m′.

Atomic multicast satisfies the following properties [28]:

• Validity: If a correct process p a-multicasts a message

m, then eventually all correct processes q ∈ g, where

g ∈ m.dst , a-deliver m.

• Agreement: If a correct process p a-delivers a message

m, then eventually all correct processes q ∈ g, where

g ∈ m.dst , a-deliver m.

• Integrity: For any correct process p and any message m, p

a-delivers m at most once, and only if p ∈ g, g ∈ m.dst ,

and m was previously a-multicast.

• Prefix order: For any two messages m and m′ and any

two correct processes p and q such that p ∈ g, q ∈ h

and {g, h} ⊆ m.dst ∩ m′.dst , if p a-delivers m and q

a-delivers m′, then either p a-delivers m′ before m or q

a-delivers m before m′.

• Acyclic order: The relation < is acyclic.

An atomic multicast algorithm A is genuine if and only if

for any admissible run R of A and for any correct process p

in R, if p sends or receives a message, then some message m

is a-multicast, and either (a) p is the process that a-multicasts

m or (b) p ∈ g and g ∈ m.dst [22].

40

C. Atomic Broadcast

Atomic broadcast is a special case of atomic multicast in

which there is a single group of server processes. In this

paper, we assume that each group implements FIFO atomic

broadcast, which in addition to the properties presented above,

also ensures the following property.

• FIFO order: If a correct process broadcasts a message

m before it broadcasts a message m′, no correct process

delivers m′ unless it has previously delivered m.

D. State machine replication

State machine replication is a well-established approach to

fault tolerance [6], [7]. The idea is that by executing service

requests deterministically in the same order, correct replicas

will transition through the same sequence of state changes

and produce the same output for every request. In a system

with f Byzantine replicas, a client knows that a request was

successfully executed when it receives f+1 identical responses

from the servers. Atomic broadcast can be used to guarantee

that replicas deliver requests in the same order.

With state machine replication, every server has a full copy

of the service state. Several approaches have proposed to shard

the service state and handle each shard as a replicated state

machine (e.g., [29], [30], [31], [32]). Atomic multicast is a

natural abstraction to order requests in a sharded replicated

system. Requests that can be entirely executed within a shard

are multicast to the required shard; requests that involve data

in multiple shards must be consistently multicast to all target

shards.

State machine replication provides linearizability, a consis-

tency criteria. A system is linearizable if it satisfies the follow-

ing requirements [5]: (i) It respects the real-time ordering of

requests across all clients. There exists a real-time order among

any two requests if one request finishes at a client before the

other request starts at a client. (ii) It respects the semantics of

the requests as defined in their sequential specification.

III. BYZANTINE FAULT TOLERANT ATOMIC MULTICAST

In this section, we explain the rationale behind the design of

ByzCast (§III-A), present the protocol in detail (§III-B), show

how to optimize ByzCast for different workloads (§III-C), and

then argue about its correctness (§III-D).

A. Rationale

The design of ByzCast was guided by two high-level goals:
1) Building on existing solutions: Research on Byzantine

Fault Tolerant agreement protocols is mature (see §VI). One

of our main goals was to devise an atomic multicast protocol

that could reuse existing BFT software, instead of designing

a protocol that would require an implementation completely

from scratch.
2) Striving for scalable protocols: Genuineness is the prop-

erty that best captures scalability in atomic multicast. By

requiring only the groups in the destination of a message to

coordinate to order the message, a genuine atomic multicast

protocol can scale with the number of groups while saving

resources.

B. Protocol

For clarity, we describe a version of ByzCast that uses

additional groups of servers to help order messages. Hereafter,

we refer to the groups in Γ = {g1, ..., gm} as target groups and

the additional server groups in Λ = {h1, ..., hn} as auxiliary

groups. As with target groups, each auxiliary group has 3f+1
processes, with at most f faulty processes.

Each group x in ByzCast (both target and auxiliary) im-

plements a FIFO atomic broadcast. The atomic broadcast in

group x is implemented by x’s members and independent from

the atomic broadcast of other groups. We distinguish between

the primitives of atomic multicast, denoted as a-multicast and

a-deliver, and the primitives of the atomic broadcast of group

x, denoted as x-broadcast and x-deliver.

ByzCast arranges groups in a tree overlay where the leaves

of the tree are target groups and the inner nodes of the tree are

auxiliary groups. We define the reach of a group x, reach(x),
as the set of target groups that can be reached from x by walk-

ing down the tree. In Fig. 1 (a), reach(h1) = {g1, g2, g3, g4},
reach(h2) = {g1, g2}, and reach(h3) = {g3, g4}. We denote

the children of a group x in the tree as children(x).
To a-multicast a message m to a set of target groups in

m.dst (see Algorithm 1), a process first x0-broadcasts m in the

lowest common ancestor group x0 of (the groups in) m.dst,

denoted lca(m.dst).

Alg. 1 ByzCast

1: Initialization

2: T is an overlay tree with groups Γ ∪ Λ
3: A-delivered← ∅

4: To a-multicast message m:

5: x0 ← lca(m.dst) {lowest common ancestor of m.dst}

6: x0-broadcast(m)

7: Each server process p in group xk executes as follows:

8: when xk-deliver(m)
9: if k = 0 or xk-delivered m (f + 1) times then

10: for each xk+1 ∈ children(xk) such that

m.dst ∩ reach(xk+1) �= ∅ do

11: xk+1-broadcast(m)
12: if xk ∈ m.dst and m �∈ A-delivered then

13: a-deliver(m)
14: A-delivered← A-delivered ∪ {m}

When m is xk-delivered by processes in xk, each process

xk+1-broadcasts m in xk’s child group xk+1 if xk+1’s reach

intersects m.dst. This procedure continues until target groups

in m.dst xk-deliver m, which triggers the a-deliver of m.

To account for Byzantine processes in group xk, processes

in xk+1 only handle m once they xk+1-deliver m f+1 times.

This ensures that m was xk+1-broadcast by at least one correct

process in xk and, by inductive reasoning, m was a-multicast

by a client (and not fabricated by a malicious server).

Intuitively, ByzCast atomic order is a consequence of two

invariants:

41

g1

auxiliary
groups

target
groups

h1

h2 h3

g2 g3 g4
(a) (b)

g1

g2

g3

g4

h1

h2

h3

timem2 m1

a-multicast(m)

m3

m

a-deliver(m)m

m2

m2

m1

m3

m1

x-broadcast

x-deliver

Fig. 1: (a) An overlay tree used in ByzCast with four target groups and three auxiliary groups. (b) An execution of ByzCast with three
messages: m1 is a-multicast to {g1, g2}, m2 to {g2, g3}, and m3 to g3. For clarity, each group has one (correct) process.

1) Any two messages m and m′ atomically multicast to

common destinations are ordered by at least one inner

group xk in the tree.

2) If m is ordered before m′ in xk, then m is ordered before

m′ in any other group that orders both messages (thanks

to the FIFO atomic broadcast used in each group).

We illustrate an execution of ByzCast in Fig. 1 (b) with

messages m1, m2 and m3 a-multicast to groups {g1, g2},
{g2, g3}, and {g3}, respectively. Assuming the overlay tree

shown in Fig. 1 (a), m1 is first h2-broadcast in group h2.

Upon h2-delivering m1, processes in h2 atomically broadcast

m1 in g1 and in g2. Message m2 is first h1-broadcast, and

then it continues down the tree until it is delivered by g2 and

g3, its destination target groups. Message m3 is g3-broadcast

in g3 directly since it is addressed to a single group. The order

between m1 and m2 is determined by their delivery order at

h2 since h2 is the highest group to deliver both messages.

ByzCast is a partially genuine atomic multicast protocol.

While messages addressed to a single group are ordered by

processes in the destination group only, messages addressed

to multiple groups may involve auxiliary groups. For example,

in Fig. 1, the atomic multicast of m1 (resp., m2) involves h2
(resp., h1, h2 and h3), which is not a destination of m1 (resp.,

m2). Since m3 involves a single destination group, only m3’s

sender and g3, m3’s destination, must coordinate to order the

message. The performance of messages multicast to multiple

groups largely depends on the overlay tree, as we discuss in

the next section.

Finally, even though we described ByzCast with auxiliary

groups as inner nodes of the tree, Algorithm 1 does not need

this restriction: target groups can be inner nodes in the overlay

tree, or we can have a tree that contains target groups only.

C. Optimizations

Laying out ByzCast overlay tree is an optimization problem

with conflicting goals: on the one hand, we aim at short trees to

reduce the latency of global messages; on the other hand, when

laying out the tree, we must avoid overloading groups. For

example, in Fig. 1, the height of the lowest common ancestor

of m1 and m2 are two and three, respectively. A two-level

tree where the four target groups descend directly from one

auxiliary group would improve the latency of global messages.

However, in a two-level tree all global messages must start at

the root group, which could become a performance bottleneck.

We now formulate the problem of laying out an optimized

ByzCast tree. The following parameters are input:

• Γ and Λ as already defined, and N = Γ ∪ Λ;

• D ⊆ P(Γ): all possible destinations of a message, where

P(Γ) is the power set of Γ;

• F (d): maximum load in messages per second multicast

to destinations d in the workload, where d∈D; and

• K(x): maximum performance in messages per second

that group x can sustain, ∀x ∈ N .

Given this input, the problem consists in finding the directed

edges E ⊆ N ×N of the optimized overlay tree T = (N , E).
To more precisely state the optimization function with con-

straints, we introduce additional definitions.

• P(T , d): the set of groups involved in a multicast to d

(i.e., groups in the paths from lca(d) to all groups in d);

• H (T , d): the height of the lowest common ancestor of

groups in d;

• T (T , x) = {d | d ∈ D and x ∈ P(T , d)}: set of

destinations that involve group x; and

• L(T , x) =
∑

d∈T(T ,x) F (d): load imposed on group x.

Among the candidate overlay trees, respecting the above

restrictions, we are interested in those that minimize the height

of the various destinations.

minimize
∑

d∈D

H(T , d)

In addition to topological constraints, we have that the load

imposed to each group respects its capacity.

subject to ∀x : L(T , x) ≤ K(x)

D. Correctness

In this section, we prove that ByzCast satisfies all the

properties of atomic multicast (§II-B).

Lemma 1: For any message m atomically multicast to

multiple groups, let group x0 be the lowest common ancestor

42

of m.dst. For all xd ∈ m.dst, if correct process p in x0 x0-

delivers m, then all correct processes in the path x1, ..., xd,

xk-deliver m (f + 1) times, where 1 ≤ k ≤ d.

PROOF: By induction. (Base step.) Since p x0-delivers m, x1
is a child of x0, and reach(x1)∩m.dst �= ∅, p x1-broadcasts

m. The claim follows from the validity of atomic broadcast

and the fact that there are 2f + 1 correct processes in x0.

(Inductive step.) Assume each correct process r in xk xk-

deliver m at least (f + 1) times. From Alg.1, and the fact

that xk+1 is a child of xk and reach(xk+1) ∩m.dst �= ∅, r
xk+1-broadcasts m. From the validity of atomic broadcast and

the fact that there are 2f + 1 correct processes in xk, every

correct process in xk+1 xk+1-delivers m. �

Lemma 2: For any atomically multicast message m, let

group x0 be the lowest common ancestor of m.dst. For all

xd ∈ m.dst, if correct process p in xd xd-delivers m, then all

correct processes in the path x0, ..., xd, xk-deliver m, where

0 ≤ k ≤ d.

PROOF: By backwards induction. (Base step.) The case for

k = d follows directly from agreement of atomic broadcast in

group xd. (Inductive step.) Assume that every correct process

r ∈ xk xk-delivers m. We show that correct processes in xk−1

xk−1-deliver m. From Alg.1, r xk-delivered m (f +1) times.

From integrity of atomic broadcast in xk, at least one correct

process s in xk−1 xk-broadcasts m. Therefore, s xk−1-delivers

m, and from agreement of atomic broadcast in xk−1 all correct

processes xk−1-deliver m. �

Proposition 1: (Validity) If a correct process p a-multicasts a

message m, then eventually all correct processes q ∈ g, where

g ∈ m.dst , a-deliver m.

PROOF: Let group x0 be the lowest common ancestor of m.dst

and xd a group in m.dst. From Alg.1, p x0-broadcasts m and

from validity of atomic broadcast, all correct processes in x0
x0-deliver m. From Lemma 1, all correct processes in xd, xd-

deliver m (f + 1) times. Hence, every correct process in xd

a-delivers m. �

Proposition 2: (Agreement) If a correct process p in group

xd a-delivers a message m, then eventually all correct pro-

cesses q ∈ g, where g ∈ m.dst , a-deliver m.

PROOF: From Lemma 2, all correct processes in x0, x0-deliver

m. Thus, from Lemma 1, all xd ∈ m.dst xd-deliver m (f+1)
times. It follows from Alg.1 that all q ∈ xd a-deliver m. �

Proposition 3: (Integrity) For any correct process p and any

message m, p a-delivers m at most once, and only if p ∈ g,

g ∈ m.dst , and m was previously a-multicast.

PROOF: From Alg.1, it follows immediately that a correct

process p ∈ g a-delivers m at most once, only if g ∈ m.dst

and m is a-multicast. �

Lemma 3: If m and m′ are two messages atomically

multicast to one or more destination groups in common, then

lca(m) ∈ subtree(m′) or lca(m′) ∈ subtree(m).

PROOF: Assume group x is a common destination in m and

m′ (i.e., x ∈ m.dst∩m′.dst). Let path(x) be the sequence of

groups in the overlay tree T from the root until x. From Alg.1,

in order to reach x, lca(m) (resp., lca(m′)) must be a group

in path(x). Without loss of generality, assume that lca(m) is

higher than lca(m′) or at the same height as lca(m′). Then,

lca(m′) ∈ subtree(m), which concludes the lemma. �

Lemma 4: If a correct process in group x0 x0-delivers m

before m′, then for every ancestor group xd of x0, where

xd ∈ m.dst ∩m′.dst, every correct process in xd xd-delivers

m before m′.

PROOF: By induction on the path x0, ..., xk, ..., xd. (Base

step.) Trivially from the properties of atomic broadcast in

group x0. (Inductive step.) Let p ∈ xk xk-deliver m before

m′. Thus, p xk+1-broadcasts m before m′ and from the FIFO

guarantee of atomic broadcast in xk+1, every correct process

q ∈ xk+1 xk+1-delivers m before m′. �

Proposition 4: (Prefix order) For any two messages m and

m′ and any two correct processes p and q such that p ∈ g,

q ∈ h and {g, h} ⊆ m.dst ∩ m′.dst , if p a-delivers m and

q a-delivers m′, then either p a-delivers m′ before m or q

a-delivers m before m′.

PROOF: The proposition holds trivially if p and q are in the

same group, so assume that g �= h. From Lemma 3, and

without loss of generality, assume that lca(m′) ∈ subtree(m).
Thus, lca(m′) will order m and m′. From Lemma 4, both p

and q a-deliver m and m′ in the same order as lca(m′). �

Proposition 5: (Acyclic order) The relation < is acyclic.

PROOF (SKETCH): For a contradiction, assume there is an

execution of ByzCast that results in a cycle m0 < ... < md <

m0. Since all correct processes in the same group a-deliver

messages in the same order, the cycle must involve messages

a-multicast to multiple groups. Let x be the highest lowest

common ancestor of all messages in the cycle. We define

subtree(x, 1), subtree(x, 2), ... as the subtrees of group x in

T . Since the cycle involves groups in the subtree of x, there

must exist messages m and m′ such that (a) m is a-delivered

before m′ in groups in subtree(x , i) and (b) m′ is a-delivered

before m in groups in subtree(x , j), i �= j. From Lemma 4,

item (a) implies that processes in x x-deliver m and then m′,

and item (b) implies that processes in x x-deliver m′ and then

m, a contradiction. �

IV. IMPLEMENTATION

We implemented ByzCast on top of BFT-SMaRt, a well-

known library for BFT replication [18]. This library has been

used in many academic projects and a few recent blockchain

systems (e.g., [16], [33]).

BFT-SMaRt message ordering is implemented through the

Mod-SMaRt algorithm [34], which uses the Byzantine-variant

of Paxos described in [35] to establish consensus on the i-

th (batch of) operation(s) to be processed by the replicated

state machine. The leader starts a consensus instance every

43

BFT
Atomic

Multicast

p1

p2

p3

p4

c

f+1 identical
responses

request

BFT
Atomic

Multicast
h

p1

p2

p3

p4

c
request

g

p5

p6

p7

p8

BFT
Atomic

Multicast

f+1 identical
responses

(a) (b)

Fig. 2: Executions of ByzCast with (a) a local message and (b) a global message. Each group has four processes, one of which may be
Byzantine. For clarity, the execution of ByzCast shows a single target group only.

time there are pending client requests to be processed and

there are no consensus being executed. Consensus follows a

message pattern similar to PBFT [17]: the leader proposes

a batch of messages to be processed, the replicas validate

this proposal by writing the proposal in the other replicas;

the replicas accept the proposal if a Byzantine quorum of

n − f replicas perform the write. When a replica learns that

n−f replicas accepted the proposal, it executes the operation

and sends replies to the clients. In case of leader failure

or network asynchrony, a new leader is elected. BFT-SMaRt

also implements protocols for replica recovering (i.e., state

transfer), and group reconfiguration [18].

In ByzCast, each group (either target or auxiliary) corre-

sponds to a BFT replicated state machine. Each replica in

auxiliary groups connects to all the replicas in the next level.

We implemented two overlay trees. A three-level tree, as the

one presented in Fig. 1 and a two-level tree that uses a single

auxiliary group to order global messages.

Replicas only process messages from a higher-level group

when they (FIFO) a-deliver them f + 1 times. Target groups

execute a-delivered messages and reply either to clients or to

auxiliary groups whether the message is local or global. Both

clients and auxiliary groups wait for f + 1 correct replies.

Fig. 2 depicts the described logic in executions of a request

from a client in a local and a global message. Except for client

requests, which are single messages, all messages exchanges

between groups need f + 1 equal responses before they

can be processed. Even though multiple processes in group

invoke the broadcast of a message in another group, thanks to

BFT-SMaRt’s batching optimization, it is likely that all such

invocations are ordered in a single instance of consensus.

Clients run in a closed loop (i.e., only send a new message

after the previous message reply) and forward messages to

every replica in the lowest common ancestor group of the

message. ByzCast was implemented in Java and the source

code is publicly available.1

1https://github.com/tarcisiocjr/byzcast.

V. PERFORMANCE EVALUATION

In this section, we describe the main motivations that guided

the design of our experiments (§V-A), detail the environments

in which we conducted the experiments (§V-B), and then

present and discuss the results (§V-C–V-H).

A. Evaluation rationale

In the following, we explain our choices for environments,

benchmarks, and protocols.

1) Environments: We consider a local-area network (LAN)

and a wide-area network (WAN). The LAN provides a con-

trolled environment, where experiments run in isolation; the

WAN represents a more challenging setting.

2) Benchmarks: We use a microbenchmark with 64-byte

messages to evaluate particular scenarios in isolation. We vary

the number of groups (up to 8 groups, the largest configuration

we can accommodate in our local infrastructure) and the

number of message destinations. We assess two layouts for

the ByzCast tree: a 2-level and a 3-level tree. We consider

executions with a single client to understand the performance

of ByzCast without queueing effects, and with multiple clients

to evaluate our solution under stress. Finally, we consider

workloads with and without locality (i.e., skewed access).

3) Protocols: We compare ByzCast to BFT-SMaRt and to

a non-genuine 2-level atomic multicast protocol, which we

call Baseline. BFT-SMaRt uses a single group and provides a

reference to the performance of ByzCast with local messages.

The Baseline protocol has one auxiliary group that orders

all messages regardless of the message destination. After the

message is ordered, it is forwarded to its destinations. Each

process in the target group waits until it receives the message

from f + 1 processes in the auxiliary group. Although the

non-genuine protocol does not scale, it provides a performance

reference for global messages.

B. Environments and configuration

We now detail the environments where we performed the

evaluation of the three protocols.

44

1) Local-area network (LAN): This environment consisted

of a set replica nodes with an eight-core Intel Xeon L5420

processor working at 2.5GHz, 8GB of memory, SATA SSD

disks, and 1Gbps ethernet card; and clients nodes with a

four-core AMD Opteron 2212 processor at 2.0GHz, 4GB of

memory, and 1Gbps ethernet card. Each node runs CentOS

7.1 64 bits. The RTT (round-trip time) between nodes in the

cluster is around 0.1ms.

2) Wide-area network (WAN): We used Amazon EC2, a

public wide-area network. All nodes are c4.xlarge instances,

with 4 vCPUs and 7.5GB of memory. We allocated nodes in

four regions: California (R1), North Virginia (R2), Frankfurt

(R3) and Tokyo (R4). Table I summarizes the latency between

pairs of regions in milliseconds.

EU CA VA JP

CA 165 − 70 112
VA 88 70 − 175
JP 239 112 175 −

TABLE I: Latencies within Amazon EC2 infrastructure.

3) Configuration: In all experiments, groups contain four

processes, each process running in a different node. The

number of groups depends on the tree layout. In the 2-level

tree we have from 2 to 8 target groups and 1 auxiliary for

global messages. In the 3-level tree we fix the number of

target groups to 4 and the number of auxiliary groups to 3,

as depicted in Fig. 1. In the WAN setup, we distribute clients

along all the regions and deploy each process of a group in

a different region. Consequently, the system can tolerate the

failure of a whole region.

C. Overlay tree versus workload

We start by assessing how the workload and the perfor-

mance of groups affect the overlay tree. We consider a system

with four target groups and up to three auxiliary groups

subject to two workloads. In both workloads we assume global

messages only since local messages are multicast directly to

target groups and do not affect the tree layout. In the uniform

workload, clients multicast messages to two groups and all

combinations of destinations have an equal probability of be-

ing chosen. In the skewed workload, clients multicast messages

to either groups {g1, g2} or to {g3, g4}. Moreover, we inject

higher load in the skewed workload. Table II details the two

workloads. Based on the experiments reported in §V-D, an

auxiliary group can sustain approximately 9500 messages/sec

(i.e., K(hi) = 9500 m/s).

Table III shows outcomes for the two workloads with two-

level (T2) and three-level (T3) trees (for the three-level tree

depicted in Fig. 1). For the uniform workload, a two-level

Uniform workload

Du = {{gi, gj}|1 ≤ i, j ≤ 4 ∧ i �= j} ∀d ∈ Du : Fu(d) = 1200 m/s

Skewed workload

Ds = {{g1, g2}, {g3, g4}} ∀d ∈ Ds : Fs(d) = 9000 m/s

TABLE II: Uniform and skewed workloads.

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

Uniform workload Skewed workload

T
hr

ou
gh

pu
t [

m
es

sa
ge

s
/ s

ec
] 2-level tree

3-level tree

 0

 20

 40

 60

 80

 100

Uniform workload

[%
]

2-level tree
3-level tree

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120

Skewed workload

[%
]

Latency [msec]

2-level tree
3-level tree

Fig. 3: ByzCast global messages throughput and latency CDF with
2-level and 3-level trees. Whiskers show 95% confidence interval.

tree is the best option since the root can sustain the load

(i.e., Lu(T2, h1) < K(h1)) and the sum of heights is lower

than in the three-level tree (12 instead of 16). For the skewed

workload, a two-level tree would impose too high a load on

the root (i.e., Ls(T2, h1) > K(h1)) and therefore it is not a

viable solution. In this case, in a three-level tree the traffic is

divided among the two branches of the tree (h2 and h3).

Fig. 3 exhibits the experimental results in terms of through-

put and latency Cumulative Distribution Function (CDF) for

each scenario. For the uniform workload, the average latency

with a two-level tree is lower than with a three-level tree,

although about 55% of messages have lower latency. This

happens because the three-level tree distributes the load more

uniformly among inner groups. In the skewed workload, the

high load on the root of the two-level tree leads to much higher

latencies than the three-level tree. The experiments presented

next (both LAN and WAN) use the 2-level tree.

D. Scalability of ByzCast in LAN

This experiment assesses the performance of ByzCast and

compares it to BFT-SMaRt (using a single group) and to Base-

line, a non-genuine atomic multicast approach. Fig. 4(a) shows

the throughput in messages per second versus the number of

groups, when 200 clients per group multicast local messages

only (except for the 8-group setup where there are 100 clients

per group since we do not have enough client nodes to deploy

45

Uniform workload

Tu(T2, h1) = Du Lu(T2, h1) = 7200 m/s
∑

d∈Du

H(T2, d) = 12 Best choice (lowest heights)

Tu(T3, h1) = Du \ {{g1, g2}, {g3, g4}} Lu(T3, h1) = 4800 m/s
Tu(T3, h2) = Du \ {{g3, g4}} Lu(T3, h2) = 6000 m/s

∑
d∈Du

H(T3, d) = 16 Poor choice

Tu(T3, h3) = Du \ {{g1, g2}} Lu(T3, h3) = 6000 m/s

Skewed workload

Ts(T2, h1) = Ds Ls(T2, h1) = 18000 m/s
∑

d∈Ds

H(T2, d) = 4 Not viable (load exceeds capacity)

Ts(T3, h1) = ∅ Ls(T3, h1) = 0 m/s
Ts(T3, h2) = {{g1, g2}} Ls(T3, h2) = 9000 m/s

∑
d∈Ds

H(T3, d) = 4 Best choice

Ts(T3, h3) = {{g3, g4}} Ls(T3, h3) = 9000 m/s

TABLE III: Optimization model outcomes for uniform and skewed workloads.

 0

 15000

 30000

 45000

 60000

 75000

 90000

1 Group 2 Groups 4 Groups 8 Groups*

T
hr

ou
gh

pu
t [

m
es

sa
ge

s
/ s

ec
] Baseline

BFT-SMaRt
ByzCast

(a) Local messages.

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

1 Group 2 Groups 4 Groups 8 Groups

T
hr

ou
gh

pu
t [

m
es

sa
ge

s
/ s

ec
] Baseline

BFT-SMaRt
ByzCast

(b) Global messages.

Fig. 4: Throughput in a LAN. Whiskers show 95% confidence interval.

200 clients per group without saturating the nodes). The results

show that the genuineness of ByzCast with respect to local

messages pays off. The throughput scales linearly with the

number of groups with respect to BFT-SMaRt (single group),

delivering more than 83000 messages/sec with 4 groups and

200 clients per group and the same with 8 groups and 100

clients per group. This happens because, for single-group

messages, ByzCast only involves the sender of a message and

the destination target group. Since a single group must order

all the messages with the Baseline protocol, it becomes nearly

saturated with 400 clients. Thus, the performance with four

groups is only slightly higher than with two groups, from

11000 to 12000 messages/sec), and even smaller with eight

groups. Fig. 4(b) shows that ByzCast’s throughput when all

the clients multicast global messages only is at most half

the throughput of BFT-SMaRt: 9700 messages/sec against

19500 messages/sec in the best case. Differently from BFT-

SMaRt, a global message in ByzCast has to be ordered by

both the auxiliary group and the target groups, impacting

the message latency and the overall throughput. The same

observation holds for the Baseline protocol, which behaves

similarly to ByzCast.

E. Throughput versus latency in LAN

In Fig. 5(a) we can observe how the mean latency behaves

as the number of clients increase. ByzCast (top) is at least

twice as fast and has half the Baseline’s latency even with

only 2 groups. In executions where all request are global

messages, even for small number of clients, BFT-SMaRt has

always the best performance, as depicted in Fig. 5(b). This

results reinforces the observation that an atomic broadcast

(BFT-SMaRt) is preferable over an atomic multicast when

most messages are global [36]. ByzCast and Baseline for 2,

4 and 8 groups perform very alike and the latency saturates

with less than half BFT-SMaRt’s throughput.

F. Latency without contention in LAN

The next experiments assess latency with a single client.

This setup aims to check how the protocols perform in the

absence of contention or queuing effects. We consider config-

urations with an increasing number of groups with both local

and global messages. We can see in Fig. 6 that regarding local

messages ByzCast performs as well as BFT-SMaRt no matter

the number of groups, with latency around 4 msec. The fact

that groups do not interact with each other when ordering local

messages guarantees this expected latency. Global messages

have twice the latency of local messages in ByzCast because

they go through the auxiliary group before reaching the target

groups. Besides, global messages latency increases slightly

as we add more target groups as replicas in the auxiliary

group need to perform multiple broadcasts to all the groups

in message destination.

G. Performance with mixed workload in LAN

The last experiment in LAN assesses the performance of

ByzCast with both local and global messages. In a 2-level

overlay tree with 4 target groups, 160 equally distributed

clients multicast local and global messages in a proportion of

10:1. Fig. 7 shows the latency CDF for both Baseline and Byz-

Cast. Since in the Baseline protocol (Fig. 7(a)) all messages

are ordered in the same auxiliary group before reaching the

target group(s), the latency for both local and global messages

46

 0

 5

 10

 15

 20

 0 10 20 30 40 50 60 70 80 90

La
te

nc
y

[m
se

c]

Throughput [x1000 messages / sec]

BFT-SMaRt
ByzCast 2G
ByzCast 4G
ByzCast 8G

 0

 10

 20

 30

 40

 50

 0 3 6 9 12 15 18 21 24

La
te

nc
y

[m
se

c]

Throughput [x1000 messages / sec]

BFT-SMaRt
Baseline 2G
Baseline 4G
Baseline 8G

(a) Local messages: ByzCast (top) and Baseline (bottom).

 0

 10

 20

 30

 40

 50

 60

 70

 0 3 6 9 12 15 18 21 24

La
te

nc
y

[m
se

c]

Throughput [x1000 messages / sec]

BFT-SMaRt
ByzCast 2G
ByzCast 4G
ByzCast 8G

 0

 10

 20

 30

 40

 50

 60

 70

 0 3 6 9 12 15 18 21 24

La
te

nc
y

[m
se

c]

Throughput [x1000 messages / sec]

BFT-SMaRt
Baseline 2G
Baseline 4G
Baseline 8G

(b) Global messages: ByzCast (top) and Baseline (bottom).

Fig. 5: Throughput vs. latency in a LAN.

 0

 4

 8

 12

 16

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]

Baseline (Local)
ByzCast (Local)

BFT-SMaRt
ByzCast (Global)
Baseline (Global)

Fig. 6: Single-client latency in a LAN. Bars show median

latency and whiskers show 95-th percentile.

are similar. ByzCast, on the contrary, is genuine for local

messages, which have a considerably smaller latency up to

the 99.5-th percentile, as exhibited in Fig. 7(b). For global

messages, ByzCast and Baseline have similar performance. It

is worth noticing that in ByzCast local messages do not suffer

from the “convoy effect”, a phenomenon in which the slower

ordering of global messages can impact the latency of local

ones [37]. In fact, the local-message latency CDF for ByzCast

with 10% of global messages is very similar to the latency for

100% local messages.

H. Latency without contention in WAN

The first experiment in WAN measures the latency of

ByzCast without any queuing effect or resources overload.

A single client from each region multicasts local and global

messages in a closed loop. The conclusions, shown in Fig. 8,

are similar to those we drew in a LAN. ByzCast has latency as

good as a single group (BFT-SMaRt) for local messages and

twice the value for global ones. In ByzCast, clients multicast

global messages via an auxiliary group that totally orders

all messages before broadcasting them to target groups, what

explains the doubled latency. The Baseline protocol pays this

double ordering for every message.

I. Performance with mixed workload in WAN

The last experiment evaluates ByzCast with a mix of local

and global messages in a proportion of 10:1, which we

believe would represent a more realistic workload. The setup

comprehends 4 target groups, 1 auxiliary group to order global

messages, and 40 clients per target group equally distributed

among the 4 geographical regions. The results presented in

Fig. 9 shows that ByzCast is 2x to 3x faster than the Baseline

protocol in terms of throughput. Fig. 10 shows the latency

CDF for global and local messages. As expected, ByzCast

has local latency 2x to 4x smaller than the values for the

Baseline protocol. Regarding global messages, both protocols

behave similarly as exposed by previous experiments in LAN

and WAN. The latency CDF also confirms that ByzCast does

not suffer from the convoy effect, as the local latency is stable

even in the presence of global messages.

VI. RELATED WORK

ByzCast is at the intersection of two topics: atomic multicast

(§VI-A) and BFT protocols (§VI-B).

A. Atomic Multicast

Several multicast and broadcast algorithms have been pro-

posed [38]. Moreover, many systems use “ad hoc” ordering

47

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

[%
]

Latency [msec]

Local only
Global only

Local w/ 10% global

(a) Baseline

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

[%
]

Latency [msec]

Local only
Global only

Local w/ 10% global

(b) ByzCast

Fig. 7: Latency CDF with 10% of global messages.

 0

 150

 300

 450

 600

 750

 900

 1050

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]

(CA)

Baseline (Local)
ByzCast (Local)

BFT-SMaRt

ByzCast (Global)
Baseline (Global)

 0

 150

 300

 450

 600

 750

 900

 1050

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]

(EU)

 0

 150

 300

 450

 600

 750

 900

 1050

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]

(JP)

 0

 150

 300

 450

 600

 750

 900

 1050

1 Group 2 Groups 4 Groups 8 Groups

La
te

nc
y

[m
se

c]

(VA)

Fig. 8: Latency with single client in WAN. Bars show median latency and wihiskers represent the 95-th percentile.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

CA EU JP VA

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Baseline
ByzCast

36.8
(msgs/sec)

38.8
(msgs/sec)

34.6
(msgs/sec)

38.3
(msgs/sec)

Fig. 9: Normalized throughput with mixed workload in a WAN.

protocols that do not implement all the properties of atomic

multicast (e.g., [29], [39], [40]). We focus next on atomic

multicast algorithms that tolerate benign failures, since no

atomic multicast algorithm exists for Byzantine failures.

Existing atomic multicast algorithms fall into one of three

categories: timestamp-based, round-based, and ring-based.

Algorithms based on timestamps (i.e., [8], [9], [15], [36])

are genuine and variations of an early atomic multicast

algorithm [41], designed for failure-free systems. In these

algorithms, processes assign timestamps to messages, ensure

that destinations agree on the final timestamp assigned to

each message, and deliver messages following this timestamp

order. The algorithm in [9] ensures another property besides

genuineness called message-minimality. This property states

that the messages of the algorithm have a size proportional

to the number of destination groups of the multicast message,

and not to the total number of processes. Although ByzCast

is not genuine with respect to global messages, it satisfies this

48

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

ByzCast[%
]

Latency [msec]

CA - Local
EU - Local
JP - Local
VA - Local

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

Baseline[%
]

Latency [msec]

CA - Local
EU - Local
JP - Local
VA - Local

(a) Local messages.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

ByzCast[%
]

Latency [msec]

CA - Global
EU - Global
JP - Global
VA - Global

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600

Baseline[%
]

Latency [msec]

CA - Global
EU - Global
JP - Global
VA - Global

(b) Global messages.

Fig. 10: Latency CDF with 40 clients per group and 10% of global messages.

property for local messages which can be delivered as fast as

the underlying atomic broadcast algorithm.

In round-based algorithms, processes execute an unbounded

sequence of rounds and agree on messages delivered at the end

of each round. A round-based atomic multicast algorithm that

can deliver messages in 4δ is presented in [36]. Differently

from ByzCast, this algorithm may penalize local messages, as

they may be slowed down by global messages.

Ring-based algorithms propagate messages along a prede-

fined ring overlay and ensure atomic multicast properties by

relying on this topology. An atomic multicast algorithm in this

category is proposed in [10], where consensus is run among the

members of each group. The time complexity of this algorithm

is proportional to the number of destination groups. Multi-

Ring Paxos [12], Spread [11], [14], and Ridge [13] are ring-

based non-genuine atomic multicast protocols. On the one

hand, to deliver a message m, they require communication

with processes outside of the destination groups of m and

local messages may also suffer from convoy effect. On the

other hand, these protocols do not require disjoint groups.

B. Scalable BFT

Despite the large amount of work on BFT replication in

the last two decades (e.g., [17], [18], [19], [20], [21], [42],

[43], [44], [45], [46]), the scalability of BFT protocols is still

a relatively unexplored topic, which we discuss in this section.

A common observation of BFT protocols is that their perfor-

mance degrades significantly as the number of faults tolerated

increase [43]. This lack of fault-scalability comes mostly from

the all-to-all communication used in these protocols, which

implies in a quadratic amount of messages. This limitation

can be mitigated either by using protocols with linear message

pattern [42], [43], [44], by using protocols with a smaller ratio

between n and f [45], [46], or by exploring erasure codes and

large message batches [21]. Independently on the trade-offs

explored by these protocols, all of them lose performance as

the number of replicas increase, contrary to ByzCast.

There are few BFT protocols that target wide-area net-

works [19], [20]. These protocols tend to use more replicas

to decrease the relative quorum size or the distance between

replicas in the quorums. Similarly to the scalable protocols

described before, the performance of these protocols tends to

decrease with the number of replicas.

The natural way of scaling replicated systems is sharding the

state in multiple replica groups and running ordering protocols

only in these groups. To the best of our knowledge, there

are only three works that consider partitionable replication for

BFT systems. Augustus [47] and Callinicos [48] introduces

protocols for executing transactions in multiple shards of a

key-value store implemented on top of multiple BFT groups.

A recent work by Nogueira et al. [49] introduces protocols for

splitting and merging replica groups in BFT-SMaRt, without

discussing ways to disseminate messages to more than one of

these groups with Byzantine failures. ByzCast complements

these works by providing a protocol for disseminating requests

on multiple partitions, enabling thus the efficient support for

services that require multi-partition operations.

VII. CONCLUSION

Atomic multicast is a fundamental communication abstrac-

tion in the design of scalable and highly available strongly

consistent distributed systems. This paper proposes ByzCast,

49

the first Byzantine Fault-Tolerant atomic multicast, designed

to build on top of existing BFT abstractions. ByzCast is

partially genuine, i.e., it scales linearly with the number of

groups, for messages adressed to a single group. In addition

to introducing a novel atomic multicast algorithm, we also

assessed its performance in two different environments. The

results show that ByzCast outperforms BFT-SMaRt in most

cases, as well as a non-genuine BFT atomic multicast protocol.

ACKNOWLEDGEMENTS

We thank the reviewers for the constructive suggestions.

This work is supported in part by the Swiss Government

Excellence Scholarships, Hasler Foundation, CNPq

(GDE Project 204558/2014-0), CAPES (PVE Project

88887.124751/2014-00), and FCT through projects

LaSIGE (UID/CEC/00408/2013) and IRCoC (PTDC/EEI-

SCR/6970/2014).

REFERENCES

[1] J. Baker, C. Bond, J. Corbett, J. J. Furman, A. Khorlin, J. Larson, J.-
M. Leon, Y. Li, A. Lloyd, and V. Yushprakh, “Megastore: Providing
scalable, highly available storage for interactive services,” in CIDR,
2011.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Trans. on Computer Systems,
vol. 26, no. 2, 2008.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in SOSP, 2007.

[4] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional storage
for geo-replicated systems,” in SOSP, 2011.

[5] M. P. Herlihy and J. M. Wing, “Linearizability: A correctness condition
for concurrent objects,” Trans. on Programming Languages and Systems,
vol. 12, pp. 463–492, July 1990.

[6] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” CACM, vol. 21, pp. 558–565, July 1978.

[7] F. Schneider, “Implementing fault-tolerant services using the state ma-
chine approach: A tutorial,” ACM Computing Surveys, vol. 22, pp. 299–
319, Dec. 1990.

[8] U. Fritzke, P. Ingels, A. Mostéfaoui, and M. Raynal, “Fault-tolerant total
order multicast to asynchronous groups,” in SRDS, 1998.

[9] L. Rodrigues, R. Guerraoui, and A. Schiper, “Scalable atomic multicast,”
in IC3N, 1998.

[10] C. Delporte-Gallet and H. Fauconnier, “Fault-tolerant genuine atomic
multicast to multiple groups,” in OPODIS, 2000.

[11] D. A. Agarwal, L. E. Moser, P. M. Melliar-Smith, and R. K. Budhia,
“The totem multiple-ring ordering and topology maintenance protocol,”
ACM Trans. on Computer Systems, vol. 16, pp. 93–132, May 1998.

[12] P. J. Marandi, M. Primi, and F. Pedone, “Multi-ring paxos,” in DSN,
2012.

[13] E. Bezerra, D. Cason, and F. Pedone, “Ridge: high-throughput, low-
latency atomic multicast,” in SRDS, 2015.

[14] A. Babay and Y. Amir, “Fast total ordering for modern data centers,” in
ICDCS, 2016.

[15] P. Coelho, N. Schiper, and F. Pedone, “Fast atomic multicast,” in DSN,
2017.

[16] C. Cachin and M. Vukolic, “Blockchain consensus protocol in the wild
(invited paper),” in DISC, 2017.

[17] M. Castro and B. Liskov, “Practical Byzantine fault-tolerance and
proactive recovery,” ACM Trans. on Computer Systems, vol. 20, no. 4,
pp. 398–461, 2002.

[18] A. Bessani, J. Sousa, and E. Alchieri, “State machine replication for the
masses with BFT-SMaRt,” in DSN, 2014.

[19] J. Sousa and A. Bessani, “Separating the WHEAT from the chaff: An
empirical design for geo-replicated state machines,” in SRDS, 2015.

[20] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru,
and D. Z. Josh Olsen, “STEWARD: Scaling Byzantine fault-tolerant
replication to wide area networks,” IEEE Trans. on Dependable and

Secure Computing, vol. 7, no. 1, 2010.
[21] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger

of BFT protocols,” in CCS, 2016.
[22] R. Guerraoui and A. Schiper, “Genuine atomic multicast in asyn-

chronous distributed systems,” Theoretical Computer Science, vol. 254,
no. 1-2, pp. 297–316, 2001.

[23] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more consensus
in egalitarian parliaments,” in SOSP, 2013.

[24] D. Ongaro and J. K. Ousterhout, “In search of an understandable
consensus algorithm.,” in USENIX ATC, 2014.

[25] A. Turcu, S. Peluso, R. Palmieri, and B. Ravindran, “Be general and
don’t give up consistency in geo-replicated transactional systems,” in
OPODIS, 2014.

[26] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals prob-
lem,” ACM Trans. on Programming Languages and Systems (TOPLAS),
vol. 4, no. 3, pp. 382–401, 1982.

[27] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. on Computer Systems (TOCS), vol. 20,
no. 4, pp. 398–461, 2002.

[28] V. Hadzilacos and S. Toueg, “A modular approach to fault-tolerant
broadcasts and related problems,” tech. rep., Cornell University, 1994.

[29] J. C. C. et al., “Spanner: Google’s globally distributed database,” in
OSDI, 2012.

[30] C. E. Bezerra, F. Pedone, and R. van Renesse, “Scalable state-machine
replication,” in DSN, 2014.

[31] B. Li, W. Xu, M. Z. Abid, T. Distler, and R. Kapitza, “SAREK:
optimistic parallel ordering in Byzantine fault tolerance,” in EDCC,
2016.

[32] L. L. Hoang, C. E. B. Bezerra, and F. Pedone, “Dynamic scalable state
machine replication,” in DSN, 2016.

[33] J. Sousa, A. Bessani, and M. Vukolic, “A Byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform,” in DSN,
2018.

[34] J. Sousa and A. Bessani, “From Byzantine consensus to BFT state
machine replication: A latency-optimal transformation,” in EDCC, 2012.

[35] C. Cachin, “Yet another visit to Paxos,” Tech. Rep. RZ 3754, IBM
Research Zurich, 2009.

[36] N. Schiper and F. Pedone, “On the inherent cost of atomic broadcast
and multicast in wide area networks,” in ICDCN, 2008.

[37] N. Schiper, P. Sutra, and F. Pedone, “P-Store: Genuine partial replication
in wide area networks,” in SRDS, 2010.

[38] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM Computing Surveys,
vol. 36, no. 4, pp. 372–421, 2004.

[39] J. Cowling and B. Liskov, “Granola: Low-overhead distributed transac-
tion coordination,” in USENIX ATC, 2012.

[40] D. Sciascia, F. Pedone, and F. Junqueira, “Scalable deferred update
replication,” in DSN, 2012.

[41] K. Birman and T. Joseph, “Reliable communication in the presence of
failures,” Trans. on Computer Systems, vol. 5, pp. 47–76, Feb. 1987.

[42] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative Byzantine fault tolerance,” ACM Trans. on Computer Sys-

tems, vol. 27, no. 4, 2009.
[43] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie,

“Fault-scalable Byzantine fault-tolerant services,” in SOSP, 2005.
[44] P.-L. Aublin, R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić,

“The next 700 BFT protocols,” ACM Trans. on Computer Systems,
vol. 32, no. 4, pp. 12:1–12:45, 2015.

[45] S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolic, “XFT: practical
fault tolerance beyond crashes,” in OSDI, 2016.

[46] G. S. Veronese, M. Correia, A. Bessani, L. C. Lung, and P. Veris-
simo, “Efficient Byzantine fault-tolerance,” IEEE Trans. on Computers,
vol. 62, no. 1, 2013.

[47] R. Padilha and F. Pedone, “Augustus: Scalable and robust storage for
cloud applications,” in EuroSys, 2013.

[48] R. Padilha, E. Fynn, R. Soulé, and F. Pedone, “Callinicos: Robust
transactional storage for distributed data structures,” in USENIX ATC,
2016.

[49] A. Nogueira, A. Casimiro, and A. Bessani, “Elastic state machine
replication,” IEEE Trans. on Parallel and Distributed Systems, vol. 28,
no. 9, 2017.

50

