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Abstract—State Machine Replication (SMR) is a well-known
technique to implement fault-tolerant systems. In SMR, servers
are replicated and client requests are deterministically executed
in the same order by all replicas. To improve performance
in multi-processor systems, some approaches have proposed
to parallelize the execution of non-conflicting requests. Such
approaches perform remarkably well in workloads dominated
by non-conflicting requests. Conflicting requests introduce ex-
pensive synchronization and result in considerable performance
loss. Current approaches to parallel SMR define the degree of
parallelism statically. However, it is often difficult to predict
the best degree of parallelism for a workload and workloads
experience variations that change their best degree of parallelism.
This paper proposes a protocol to reconfigure the degree of
parallelism in parallel SMR on-the-fly. Experiments show the
gains due to reconfiguration and shed some light on the behavior
of parallel and reconfigurable SMR.

I. INTRODUCTION

State Machine Replication (SMR) is a well-known tech-

nique to implement fault-tolerant systems [1], [2]. The idea

is to replicate servers and execute client requests determinis-

tically and in the same order at all replicas. SMR’s execution

model provides strong consistency (i.e., linearizability [3]) but

limits performance since in order to ensure determinism, repli-

cas usually execute requests sequentially. This performance

limitation is particularly important if replicas are equipped

with multiple processors.

To improve the performance of state machine replication,

some approaches have proposed to parallelize the execution

of non-conflicting requests (e.g., [4]–[7]). Two requests are

non-conflicting if they access different objects or only read

shared objects, otherwise they are conflicting. The idea behind

parallel SMR approaches is to optimize the execution of

non-conflicting requests: while conflicting requests must be

executed sequentially, by a single thread at each replica, non-

conflicting requests can be executed in parallel at replicas, by

multiple threads.

Transitioning from parallel to sequential execution requires

expensive synchronization among threads (e.g., typically a

barrier), whose cost usually increases with the number of

threads involved. This situation creates a performance tradeoff

that involves the degree of parallelism of a replica (i.e., its

number of execution threads). A high degree of parallelism

increases performance in workloads with predominantly non-

conflicting requests, but negatively impacts performance if

conflicting requests are the norm, due to the need for addi-

tional synchronization. Conversely, a low degree of parallelism

excels in workloads dominated by conflicting requests, but

underperforms in the presence of non-conflicting requests.

This performance dilemma is exacerbated by the fact that

existing approaches to parallel SMR define the degree of

parallelism statically, at system startup. Therefore, although

parallel SMR is promising, its performance hinges on the

“right” degree of parallelism, which is difficult to configure

a priori. In addition, many workloads undergo variations

during the execution [8], which affect their ideal degree of

parallelism. Motivated by these limitations, in this paper we

propose protocols to reconfigure parallel SMR on-the-fly. In

brief, the idea is to monitor the execution and reconfigure the

degree of parallelism based on the workload. The challenge

is to achieve replica reconfiguration without violating SMR’s

strong consistency guarantees.

More precisely, the paper makes the following contributions:

• We propose a way to express concurrency of a service

by means of classes of requests. Requests in a class may

conflict with other requests in the class or with requests

in other classes. Modeling concurrency with classes of

requests simplifies the scheduling of requests.

• We present a parallel SMR protocol that uses the notion

of classes of requests.

• We show that one can deploy a hybrid replicated system

in which replicas are configured with different degrees of

parallelism, in an attempt to optimize for workloads with

different characteristics.

• We present a protocol that supports reconfiguration in the

degree of parallelism, making it possible for replicas to

adapt to the workload.

• We experimentally evaluate the proposed systems using

two applications, a tuple space and a linked list. The main

conclusions of our evaluation are twofold: (a) the hybrid

system cannot sustain high performance, an inherent lim-

itation, not an artifact of our implementation; and (b) the

reconfigurable system outperforms static configurations.

The remainder of this paper is organized as follows. Sec-

tion II defines the system model. Section III discusses the

related work. Section IV presents our approach to expressing

concurrency through classes of requests. Section V provides

protocols for parallel, hybrid and reconfigurable SMR. Section

VI reports on an experimental evaluation. Finally, Section VII

concludes the paper.
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II. SYSTEM MODEL AND CONSISTENCY

We assume a distributed system composed of interconnected

processes that communicate by exchanging messages. There

is an unbounded set of clients and a bounded set of service

replicas. The system is asynchronous: there is no bound on

message delays and on relative process speeds. We assume

the crash failure model and exclude malicious and arbitrary

behavior. A process is correct if it does not fail, or faulty
otherwise. There are f faulty replicas, out of n = 2f + 1.

Processes have access to an atomic broadcast communi-

cation abstraction, defined by primitives broadcast(m) and

deliver(m), where m is a message. Atomic broadcast ensures

the following properties [9], [10]1: (i) Validity: If a correct

process broadcasts a message m, then it eventually delivers

m. (ii) Uniform Agreement: If a process delivers a message m,

then all correct processes eventually deliver m. (iii) Uniform
Integrity: For any message m, every process delivers m at most

once, and only if m was previously broadcast by a process.

(iv) Uniform Total Order: If both processes p and q deliver

messages m and m′, then p delivers m before m′, if and only

if q delivers m before m′.
Our consistency criterion is linearizability. An execution is

linearizable if it satisfies the following requirements [3]:

1) It respects the real-time ordering of requests across all

clients. There exists a real-time order among any two

requests if one request finishes at a client before the

other request starts at a client.

2) It respects the semantics of the requests as defined in

their sequential execution.

III. RELATED WORK

The performance of state machine replication is bounded

by the rate at which replicas can order and execute requests.

Many works in the literature have proposed protocols to order

messages efficiently (e.g., [13]–[19]). Less attention, however,

has been paid to increasing the rate of requests that replicas

can execute. In fact, in light of the requirement that command

execution must be deterministic, most systems based on state

machine replication execute requests sequentially. It has been

early observed, however, that requests do not have to be

executed in the same order if they do not content for the same

data items [2]. As a result, some proposals have exploited

the semantics of applications to introduce concurrency in the

execution of requests (e.g., [4]–[6], [8], [20], [21]).
In [4], the authors present CBASE, a parallel SMR where

replicas are augmented with a deterministic scheduler. Based

on application semantics, the scheduler serializes the execution

of conflicting requests according to the delivery order and

dispatches non-conflicting requests to be processed in parallel

by a pool of worker threads. Consistency is ensured since

requests are delivered in the same order at replicas and the

scheduler adopts deterministic policies to establish a partial

order for request processing.

1Atomic broadcast needs additional assumptions about the system in order
to be implemented [11], [12]. Hereafter, we simply assume the existence of
an atomic broadcast oracle.

In Rex [22], a single server receives requests and processes

them in parallel. While executing, the server logs a trace of

dependencies among requests based on the shared variables

locked by each request. The server periodically proposes the

trace for agreement to the pool of replicas. The other replicas

receive the traces and replay the execution respecting the

partial order of commands.

CRANE [23] implements a parallel SMR by deploying

deterministic versions of POSIX socket and the Pthreads

synchronization interfaces. To this aim, CRANE combines the

input determinism of Paxos and the execution determinism of

deterministic multi-threading (DMT) [24].

In [5], the authors propose a parallel SMR approach that

uses multiple multicast groups to partially order commands

across replicas, where each group leads to a different stream

of commands delivered at each replica. In this approach, non-

conflicting commands are not delivered by a single component

(e.g., the scheduler) and then scheduled for parallel execution.

Instead, non-conflicting commands can be directly delivered

by multiple worker threads by mapping command streams to

multiple sockets. Therefore, the overhead associated with a

parallelizer mechanism is minimized by this approach.

Speculative strategies are implemented by Eve [25] and

Storyboard [26]. In Eve, before execution, a primary replica

groups client commands into batches and transmits the batched

commands to all replicas. Then, replicas speculatively execute

batched commands in parallel. After the execution of a batch,

the verification stage checks the validity of replica’s state.

If too many replicas diverge, replicas roll back to the last

verified state and re-execute the commands sequentially. In

Storyboard [26], a forecasting mechanism is used. Based on

application-specific knowledge, Storyboard predicts the same

ordered sequence of locks across replicas. While forecasts are

correct, commands can be executed in parallel. If the forecast

made by the predictor does not match the execution path of

a command, then the replica has to establish a deterministic

execution order in cooperation with other replicas.

Analogously to [4], our approach implements a scheduler

that dispatches commands to worker threads: non-conflicting

commands are executed in parallel while conflicting com-

mands are serialized. In addition, our approach is independent

of the ordering protocol, which can order batches of requests

in a single instance of consensus [27]–[29], or use several

instances of consensus in parallel, in the same manner as P-

SMR [5]. Differently from all previous approaches to parallel

state machine replication, we propose to reconfigure the num-

ber of threads at run time. By changing the number of worker

threads on-the-fly, our approach is able to adapt to variations

in the workload.

Other forms of reconfiguring a state machine replication

have been proposed in the literature. For example, [30],

[31] discuss techniques to dynamically change the set of

replicas while [8], [21] propose protocols to reconfigure par-

titions and the location of objects in a scalable state machine

replication [20], respectively. These techniques are orthogonal

to the ones presented in this paper.
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IV. PARALLELISM IN STATE MACHINE REPLICATION

Parallel SMR exploits the fact that strong consistency does

not require all requests to be executed in the same order at all

replicas. In this section, we formalize this idea and provide

examples of applications that can exploit parallelism.

A. Conflicts, classes and correctness

To argue about the correctness of our parallel SMR algo-

rithms, we introduce next some basic definitions.

Definition 1 (Request conflict). Let ri and rj be application

requests in R, and Rri and Rrj , and Wri and Wrj the re-

quests’ readset and writeset, respectively. The conflict relation

#R ⊆ R × R among requests is given by: (ri, rj) ∈ #R if

(Wri ∩Wrj �= ∅) ∨ (Wri ∩ Rrj �= ∅) ∨ (Rri ∩Wrj �= ∅).
Requests ri and rj conflict if (ri, rj) ∈ #R. We refer to pairs

of requests not in #R as non-conflicting or independent.

Definition 2 (Request sequence). A request sequence is a pair

(R,<R) where R is a set of requests and <R⊆ R ×R is an

irreflexive total order. We assume that (R,<R) represents the

requests and their total delivery order resulting from atomic

broadcast.

Definition 3 (Request dependency relation). Given a request

sequence (R,<R) and the conflict relation #R ⊆ R × R
among requests, the derived request dependency relation ≺R

is the transitive closure of <R ∩ #R. This means that for

any two conflicting requests in R, their relation specified in

<R is in ≺R while independent requests are not related. The

transitive closure is needed to relate any two requests whose

order is induced indirectly.

Based on the definitions presented above, we now develop

a strategy to argue about the correctness of our parallel state

machine protocols.

Definition 4 (Execution). An execution of ≺R is any total

order that is compatible with ≺R.

Proposition 1. Any execution of ≺R respects linearizability.
Proof: Regarding the first strong consistency condition (Sec-

tion II), whether sequential or parallel SMR, i.e., execution

respectively according to <R or ≺R, this holds if a request

is answered only after executed. If ri is answered before

rj is issued, it implies that ri certainly executed before rj
which did not exist when ri was decided to execute. The real-

time ordering of requests is respected. If both ri and rj are

submitted and not responded, they are concurrent. In such case

the ordering protocol decides a uniform delivery order to be

followed.

Regarding the second condition (Section II), it has to be

shown that the parallel execution (i.e., any execution respect-

ing ≺R) is equivalent to a sequential one both from the clients

perspective and from the possible intermediate SMR states.

Due to the determinism of SMR requests, the resulting state

and output of a request are completely determined by the input

parameters and state. When two requests are independent,

according to Def. 1 they will read the same SMR state contents

irrespective of the order of their execution. Also, their write

sets are disjoint. Therefore, both requests will compute the

same output to the clients and state updates irrespective of the

relative orders of these requests. This means that the semantics

of such requests are the same as in their sequential execution.

Also, after both requests have executed, the SMR reaches the

same state irrespective of their order. When two requests are

dependent, then ≺R is followed. Since ≺R⊆<R, the total

order of conflicting requests is respected. �

The above definition of conflict is minimal in the sense

that it represents the exact conflicts among requests. We

now introduce the notion of classes of requests, which group

requests and their interdependencies. In the following sections,

we show how one can use request classes to schedule requests

in a simple manner. Each class has a descriptor and conflict

information. Requests belonging to conflicting classes have

to be serialized according to the ordering relation; requests

belonging to non-conflicting classes can be executed concur-

rently. Thus, requests in a class that conflicts with itself must

be serialized.

Definition 5 (Request classes). Let R = {r1, .., rnr} be the

set of request descriptors, where nr is the number of requests;

and C = {c1, .., cnc} be the set of class descriptors, where nc
is the number of request classes. We define request classes

as RC = C → P(C) × P(R),2 that is, any class in C may

conflict with any subset of classes in C, and is associated to

a subset of requests in R.

A request class set RC is correct with respect to a request

conflict #R if every conflict in #R is captured in RC, as

formally defined next.

Definition 6 (Correct request classes). Given a request conflict

relation #R, request classes RC is correct with respect to #R

if for all (ri, rj) ∈ #R, it follows that ∃Ci → (CCi, CRi) ∈
RC and ∃Cj → (CCj , CRj) ∈ RC such that: (a) ri ∈ CRi,

(b) rj ∈ CRj , (c) Cj ∈ CCi, and (d) Ci ∈ CCj .

B. Applications and request classes

We illustrate the use of classes of requests with three

applications. In Section VI we assess these applications ex-

perimentally with parallel SMR protocols.

1) Simple Tuple Space: Consider a tuple space with four

types of requests: out(t) to insert tuple t in the space, rdp(t)
to read a tuple that matches template t from the space; inp(t)
to remove a tuple that matches t from the space; and cas(t, t)
that inserts t and returns true if there is no tuple that matches

t on the space, or otherwise returns false.

We define: C = {cr, cw}, R = {rdp, out, inp, cas}, and

RC = {(cr → ({cw}, {rdp})), (cw → ({cr, cw}, {out, inp,
cas})). This states a concurrency model where rdp requests

do not conflict with each other while out, inp and cas requests

conflict with each other and with rdp.

2We denote the power set of set S as P(S).
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2) Extended Tuple Space: Now we consider that a tuple

space may store tuples with different number of fields and

model concurrency according to this information.

We define C = {ci, ci,j |1 ≤ i, j ≤ n} where n is

the maximum number of fields that tuples or templates can

have, R = {rdpi, outi, inpi, casi,j |1 ≤ i, j ≤ n}, and

RC = {(ci → ({ci, ci,j , cj,i}, {outi, inpi, rdpi}))|1 ≤ i, j ≤
n} ∪ {(ci,j → ({ci, cj , ci,k, ck,i, cj,k, ck,j}, {casi,j}))|1 ≤
i, j, k ≤ n}, where subscripts i and j in outi, inpi, rdpi, and

casi,j mean the number of fields in the tuple or template. With

this concurrency model, out, inp, and rdp requests to tuples

with different number of fields are concurrent, but conflict

otherwise; and a cas request and any other request conflict if

they refer to a tuple with the same number of fields.

3) Linked List: As another example consider a linked list

used to store and retrieve integers through the following

requests: add(i), which includes i in the list and returns true if

i is not in the list, otherwise returns false; remove(i), which

removes i from the list and returns true if i is in the list,

otherwise returns false; get(p), which returns the element at

position p; and contains(i), which returns true if i is in the

list, otherwise returns false.

We specify a concurrency model where C = {cr, cw},
R = {get, contains, add, remove}, and RC = {(cr →({cw},
{get, contains})), (cw → ({cr, cw}, {add, remove}))}. With

this concurrency model, get and contains requests do not

conflict with each other but conflict with add and remove
requests, which conflict with all requests.

V. PARALLEL AND RECONFIGURABLE SMR

This section presents our proposal for a parallel and re-

configurable SMR. We first show how concurrency expressed

using request classes is mapped to worker threads and then

present different approaches to parallelism in state machine

replication.

A. From request classes to threads

In parallel SMR, performance is impacted by the workload

and the number of worker threads. The workload is defined

by the application semantics and usage profile, which may

induce a higher or lower number of conflicting commands.

The number of worker threads is a consequence of replica con-

figuration, that is, a high number of worker threads increases

the parallelism in predominantly non-conflicting workloads.

To benefit from the potential parallelism of an application, both

aspects should be considered while tracking dependencies.

In our approach, interdependencies among requests are

captured by request classes. Once interdependencies among

classes are defined, parallelism is expressed by mapping

request classes to worker threads. Note that the request classes

definition is problem-oriented and architecture-independent,

while the association of request classes to worker threads is

particular to the architecture (e.g., number of processors or

cores in a replica).

We represent the mapping of request classes to threads with

function CtoT (see Def. 7 below). The CtoT mapping must

respect all interdependencies between classes. Moreover, a

condition for consistency is that if two classes conflict, then

they must be assigned to at least one thread in common.

Although in our prototype the application developer must

provide the CtoT , we believe one could automate the creation

of CtoT for a given request class.

Definition 7 (Classes to threads, CtoT). If T = {t0, .., tn−1}
is the set of replica thread identifiers, where n is the number

of threads, and C is the set of class names as in Def. 5, then

CtoT = C → P(T ).
In the Simple Tuple Space and Linked List, we can define

the mapping as CtoT (cr) = ∅ (i.e., requests can be concur-

rently executed by any threads) and CtoT (cw) = {t0, .., tn−1}
(i.e., all threads must synchronize before a request is executed).

In the Extended Tuple Space, considering tuples with at

most n fields, we can define CtoT (ci) = CtoT (ci,j |i =
j) = {ti−1} (i.e., a single thread executes a request without

synchronization) and CtoT (ci,j |i �= j) = {ti−1, tj−1} (i.e.,

two threads must synchronize for the execution).

B. A protocol for parallel SMR

Whenever a request is delivered by the atomic broadcast

protocol, the scheduler (Algorithm 1) assigns it to one or

more worker threads, according to the request class. Each

thread executes its requests (Algorithm 2), synchronizing the

execution of conflicting requests to preserve consistency.

Scheduler. The communication between the scheduler and

worker threads takes place through synchronized queues. Re-

quests that could be concurrently executed are associated to a

unique thread in a round-robin policy (putAny), otherwise

all threads involved receive the request to synchronize the

execution (putOnConflicting).

Algorithm 1 Scheduler.

variables: Variables used by the scheduler.
// used definitions: C (classes), CtoT (class to conflicting threads)
n // the number of worker threads
queues[0, ..., n− 1]← ∅ // queue per thread (see Alg. 2)
nextThread← 0 // thread to exec next non-conflicting request
barriers = barrier[C] // one barrier for each class

auxiliary functions:
putAny(req)
1) queues[nextThread].fifoPut(req) // assigns req to a thread...
2) nextThread← (nextThread+ 1)%n //...in round-robin policy
putOnConflicting(req)
3) ∀t ∈ CtoT (req.classId) // all conflicting threads ...
4) queues[t].fifoPut(req) // ... synchronize to exec req

on initialization:
5) ∀c ∈ C, barriers(c)← new barrier for |CtoT (c)| threads

on deliver(req):
6) if CtoT (req.classId) = ∅ then // no conflicts
7) putAny(req)
8) else // a conflict
9) putOnConflicting(req)

10) end if

Worker Threads. Upon receiving a request that could be con-

currently executed, the thread simply executes it. Otherwise,

the thread uses the corresponding barriers to synchronize with

the involved threads (execWithBarrier).
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Algorithm 2 Worker Threads.

variables: Variables used by each worker thread.
// used definitions: C (classes), CtoT (class to conflicting threads)
n // the number of worker threads
myId← id ∈ {0, ..., n− 1} // thread id, n is the number of threads
queue // the synchronized queue with requests for this thread
barriers = barrier[C] // one barrier for each class (see Alg. 1)

auxiliary functions:
execWithBarrier(req,barrier, threadIds)
1) if myId = min(threadIds) then // thread with smallest id ...
2) barrier.await() // ... waits for other threads to stop ...
3) exec(req) // ... executes the request ...
4) barrier.await() // ... and resumes other threads
5) else
6) barrier.await() // thread signalizes ok to execute ...
7) barrier.await() // ... and waits for the execution
8) end if

on thread run:
9) while true do

10) req ← queue.fifoGet() // awaits until a request is available
11) if CtoT (req.classId) = ∅ then // no conflict
12) exec(req) // executes request and replies to client
13) else // conflict: synchronizes with involved threads
14) execWithBarrier

(req, barriers(req.classId), CtoT (req.classId))
15) end if
16) end while

1) Why it works: Here we argue that the above described

execution model respects ≺R as discussed in Section IV.

Definition 8 (Replica). Given a request sequence (R,<R), a

replica Rp is a finite set of worker threads that execute this

request sequence, that is Rp = {WTi|0 ≤ i ≤ n − 1, n ∈
N,WTi = (Ri, <Ri) is also a request sequence} such that

(see Algorithm 1):

i) All requests in R are enqueued at some worker thread:⋃
0≤i≤n−1 Ri = R; which is granted since every delivered

request is assigned either to one thread (no conflict case); or

to a subset of conflicting threads.

ii) The queues of the worker threads are compatible with the

request sequence order: <Ri
=<R |Ri

; <R is represented by

the total delivery order. Since on deliver is performed in the

delivery order, the scheduler appends requests to threads in the

correct sequence. The total order of each <Ri is compatible

with <R.

iii) A request is in multiple threads if and only if it depends

on items on those threads: r ∈ Ri and r ∈ Rj with i �= j ⇔
(∃ri ∈ Ri, rj ∈ Rj , ri ≺R r and rj ≺R r). This is ensured

by on deliver. It identifies conflicts with all involved threads

and enqueues the request to all of them.

Considering that each replica has the same conflict classes,

requests will be enqueued to the same threads and thus induce

the same dependencies. Note that since <Ri
is an image of

<R, the dependency relation on requests of Ri, ≺Ri
, must be

≺R restricted to the items in Ri.

Definition 9 (Replica run). Given a Rp with n worker threads

WT over a request sequence (R,<R), a complete run π of
replica Rp is a list defined inductively as follows (• denotes

the inclusion of an element in front of a list):

i) π is the empty list if all worker threads are empty;

ii) π = r • π′ if

a) r is the first request of a set of m worker threads of

Rp and r does not appear in any other worker thread.

b) π′ is the replica run of the replica R′ obtained by

removing r from all worker threads in which it appeared.

This behavior is implemented in Algorithm 2. In case r
appears in only one queue the thread executes it. Other-

wise every involved worker thread eventually dequeues

r and enters a barrier with other threads in classId.

Only one thread executes r and all other threads wait

for it to complete.

Given the formalization above of a replica run, now we have

to discuss that such a run is an execution of ≺R which has

been argued to be linearizable.

Proposition 2. Replica run is an execution of ≺R.
Proof: The run π of a replica is:

i) the empty list: the empty execution satisfies ≺R;

ii) π = r•π′, in which case we have to show that the choice

of executing r respects ≺R. r is the first request of a

set of m worker threads of Rp and r does not appear in

any other worker thread. In this case r conflicted with

requests of threads in m, according to Def. 8.iii. For each

thread WTi in m, r respects ≺Ri
, as discussed. Since⋃

0≤i≤n−1 Ri = R (Def. 8.i) and since a request r is in

multiple threads iff it depends in items on those threads

(Def. 8.iii), each dependency relation ≺Ri is compatible

with ≺R and all dependencies of r on other requests

in (R,≺R) are accordingly mapped to ≺Ri
∈ m. This

ensures that the execution r • π′ respects ≺R. The case

where r appears in a single thread is a particular case

where m has only one thread. Either r conflicted with

prior requests for the thread or r is independent. The

first case is correct due to the Fifo execution. In the

second case, independent requests are assigned to some

Ri, having a valid order since any order would suffice.

Since a replica run is an execution of ≺R, according to

Proposition 1 a replica run is safe. �

C. Replicas with different configurations

In an attempt to optimize for workloads with predominance

for both conflicting and non-conflicting requests, replicas

could be configured with different degrees of parallelism,

ranging from sequential to a predefined maximum threshold.

The idea is that sequential replicas execute faster conflicting

requests while parallel replicas provide high performance for

non-conflicting requests. Consequently, the system will present

good perfomance in both scenarios.

The modified scheduler is presented in Algorithm 3 while

the new algorithm for worker threads is shown in Algorithm 4.

The main difference from the previous protocol is that we

must handle the case of replicas that have fewer threads than

the target number of threads in the CtoT mapping. These

requests are mapped to all threads, which must synchronize

their execution to ensure linearizability.
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1) Why it works: The general argument is that Proposition

2 is independent of the number of threads. In more detail,

Algorithms 3 and 4 only differ from Algorithms 1 and 2,

respectively, in that they verify if the set of conflicting threads

returned by function CtoT is supported by the replica’s con-

figuration. If it is, Algorithms 3 and 4 behave as Algorithms 1

and 2. Otherwise, Algorithms 3 and 4 synchronize all threads

to execute the request. This preserves safety since this enforces

the total delivery order in such cases, which is always correct.

All executions will preserve the total order of conflicting

requests, which satisfies ≺R.

Algorithm 3 Scheduler for different configurations.

variables: // Same as in Alg. 1, adding:
bAll // new: barrier to synchronize all threads

auxiliary functions: // Same as in Alg. 1, adding:
putAll(req)
1) ∀q ∈ {0, ..., n− 1} // all threads ...
2) queues[q].fifoPut(req) // ... synchronize to exec req

on initialization: Same as in Alg. 1, adding:
bAll← new barrier for n threads

on deliver(req):
3) if CtoT (req.classId) = ∅ then // no conflict
4) putAny(req) // Same as in Alg. 1
5) else // conflicts
6) if ∀tId ∈ CtoT (req.classId), tId < n then // a valid set of threads
7) putOnConflicting(req) // Same as in Alg. 1
8) else
9) putAll(req) // New behavior

10) end if
11) end if

Algorithm 4 Worker Threads for different configurations.

variables: // Same as Alg. 2, adding:
bAll // new: barrier to synchronize all threads (see Alg. 3)

auxiliary functions: // Same as Alg. 2
on thread run:

1) while true do
2) req ← queue.fifoGet() // Same as Alg. 2
3) if CtoT (req.classId) = ∅ then
4) exec(req)
5) else // conflict
6) if ∀tId ∈ CtoT (req.classId), tId < n then
7) // a valid set of threads, do the same as in Alg. 2
8) execWithBarrier

(req, barriers(req.classId), CtoT (req.classId))
9) else // otherwise: new behavior

10) execWithBarrier(req, bAll, {0, ..., n− 1})
11) end if
12) end if
13) end while

D. Reconfiguration

In the protocols discussed so far, the number of worker

threads of a replica (i.e., the replica’s degree of parallelism) is

defined statically, at system startup. The degree of parallelism

of a replica is important and directly affects the performance

of the system [5]. A large number of threads tends to increase

performance in workloads with many non-conflicting requests,

but performance decreases with the increase in the number

of conflicting requests. A small number of threads hurts

performance in workloads with few conflicting requests.

Since the workload may change during the execution, and

given the constraints described above, setting an ideal number

of worker threads a priori is a difficult task, although fun-

damental to achieving good performance. We now present a

reconfiguration protocol that changes the number of threads

during the execution, adapting to the current workload.
The main idea of the protocol is to divide threads into

active and inactive. A thread is active if it is able to execute

requests, otherwise it is considered inactive. Only the active

threads will participate in parallel SMR execution and thus

impact system performance. The reconfiguration takes place

by activating and deactivating threads. At system startup, in

addition to specifying the initial number of active threads,

the system administrator must also set the minimum and

maximum threads that can be active at the same time and

provide a policy with the rules to be followed for activating

and deactivating threads.

Algorithm 5 Reconfigurable Scheduler.

variables: // Same as in Alg. 3, with following additions/redefinitions:
minThreads // new: the minimum number of active worker threads
maxThreads // new: the maximum number of active worker threads
bMax // new: barrier for maxThreads number of threads
n // redef: not all threads but number of threads in use (active)
n′ // new: next number of active threads
queues[0, ...,maxThreads− 1]← ∅ // redef: queues to all threads

auxiliary functions: // Same as in Alg. 3, overwriting to n’:
putAny(req)
1) queues[nextThread].fifoPut(req) // assigns req to an active thread
2) nextThread← (nextThread+ 1)% n’ //in roud-robin policy
putAll(req) =
3) ∀q ∈ {0, ...,n’−1} // all active threads ...
4) queues[q].fifoPut(req) // ... synchronize to exec req

checkForReconfiguration(req)
5) num← reconfigPolicy(req,minThreads, n′,maxThreads)
6) if num �= 0 ∧ (minThreads ≤ n′ + num ≤ maxThreads) then
7) n′ ← n′ + num
8) nextThread← 0
9) ∀q ∈ {0, ...,maxThreads− 1}

10) queues[q].put(RECONFIG(n’)) // all threads have it
11) end if
on initialization: // Same as in Alg. 3, adding:

bMax← new barrier for maxThreads number of threads
n = n′ ← number of active threads

on deliver(req): // lines 3 to 11 of Alg. 3 changing n by n′
12) if CtoT (req.classId) = ∅ then // no conflict
13) putAny(req)
14) else // conflicts
15) if ∀tId ∈ CtoT (req.classId), tId < n′ then
16) putOnConflicting(req)
17) else
18) putAll(req)
19) end if
20) end if
21) checkForReconfiguration(req)

Scheduler. The scheduler (Algorithm 5) performs similarly to

the previously described schedulers. However, it adds behavior

to reconfigure the number of active threads, described in

checkForReconfiguration. First, the reconfiguration policy

is used to verify the need for reconfiguration, which should

return the number of threads to activate (a positive number) or

deactivate (a negative number). Activated/deactivated threads

will always be the ones with the highest identifiers. If it

is necessary to reconfigure the system, a special request
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(RECONFIG) is added in the queue of all threads (even the

inactive ones, which also participate in the reconfiguration).
Worker Threads. The additional behavior in the worker

threads (Algorithm 6) is that they need to execute RECONFIG
requests to update the number and barrier for all active threads.

Algorithm 6 Worker Threads for reconfigurable replicas.

variables: // Same as in Alg. 4, with following additions/redefinitions::
maxThreads // new: the maximum number of active worker threads
myId← id ∈ {0, ...,maxThreads− 1} // redef: to maxThreads
bMax // new: barrier to synchronize maxThreads number of threads
n // redef: not all threads but number of threads in use (active)
bAll // redef: barrier to synchronize not all threads but all active threads

auxiliary functions: // Same as Alg. 4, adding:
exec(RECONFIG(newN)) = // add: definition of exec for reconfiguration
1) bAll← new barrier for newN threads // redefine barrier with the

// newN calculated in checkForReconfiguration
2) n← newN // switch worker threads to work with next value

on thread run:
3) while true do
4) req ← queue.fifoGet()
5) if req �= RECONFIG then // Same as Alg. 4
6) lines 3 to 12 of Alg. 4
7) else // new behavior - reconfiguration
8) execWithBarrier(req, bMax, {0, ...,maxThreads− 1})
9) end if

10) end while

1) Reconfiguration Policies: The definition of the new sys-

tem configuration and when to adopt it follows a reconfigura-

tion policy which is specified by the user. The policy considers

the request being scheduled, the current number of active

threads, in addition to the minimum and maximum number

of active threads for the replica. Replicas could use different

policies since they can run with different configurations.

Algorithm 7 Reconfiguration Policy.

variables: Variables and sets used.
counter ← 0 // counter for the number of received requests
conflict← 0 // counter for the number of conflict requests
period← 2000 // number of requests to check for reconfigurations

int reconfigPolicy(request, minThreads, currentThreads, maxThreads)
1) counter ← counter + 1
2) if | CtoT (request.classId) | �= 0 then
3) conflict← conflict+ 1
4) end if
5) if counter = period then
6) p← conflict ∗ 100/period; conflict← 0; counter ← 0
7) if (p ≤ 20) ∧ ((currentThreads+ 1) ≤ maxThreads) then
8) return 1
9) else if (p > 20) ∧

((currentThreads− 1) ≥ minThreads) then
10) return -1
11) end if
12) end if
13) return 0

Algorithm 7 presents an example policy, which states that

for every 2000 requests the percentage of conflicting requests

is calculated. If the workload has an amount of up to 20% of

conflicting requests, an additional thread is activated, until the

maximum number of threads is reached. Otherwise, a thread is

deactivated until the minimum number of threads is reached.

With a workload of over 20% conflicting requests, a lot of

synchronization is needed and generally better performance is

obtained with a sequential execution [5].

2) Why it works: To keep the execution safe it has to be

shown that the replica run satisfies ≺R even if the replica

is reconfigured to a different number of working threads. As

already argued in Section V-C1, replicas with different number

of threads subject to the same request sequence (R,<R)
generate the same results (satisfy ≺R). Since the number of

threads is not important to keep safety, correctly switching

the number of active threads will generate safe executions.

We substantiate this claim by showing that the computation

before and after the reconfiguration is generated correctly.

When the scheduler decides to change the number of threads

(i.e., update n′), a reconfig(n′) request is appended to all

(maxThreads) threads. At this moment it is the last request

of all queues and all threads synchronize to execute it. With

this we have a point of reference in the concurrent execution of

worker threads. Now we argue that requests before this point

of reference are processed correctly. Any request processed

before reconfig is enqueued is assumed correct by previous

argumentation (algorithms without reconfiguration) since the

logic is the same. Any request prior to an enqueued reconfig
was enqueued considers the previous value of n. Since the

barrier bAll is only modified when reconfig is executed (and

not when it is enqueued), bAll accords to the value of n previ-

ous to reconfiguration and thus involves the correct number of

active threads before reconfig. By previous argumentation,

the prefix before reconfig is correct.

Now we argue about the correct processing after reconfig.

reconfig is executed in mutual exclusion. It changes the

value of bAll and n according to the new number of threads

informed in the request reconfig(n′). According to the sched-

uler, any request enqueued after reconfig considered the new

number of active threads n′. When reconfig takes place it

updates bAll and n (which is used in worker threads) to the

new value n′. Therefore after the point of reference provided

by reconfig, the number of active threads considered n
accord to the barrier bAll and to n′ (i.e., the number of

active threads considered by the scheduler after the respective

reconfig(n′) was issued). This establishes a correct execution

after reconfig. Since n′ is only used at the scheduler and the

new n for worker threads is informed in the reconfig(n′)
message, one can observe that several enqueued reconfig
messages with different number of active threads are possible

and the service requests enqueued between any two reconfigs
are processed with the correct values of n and bAll at worker

threads. It is also clear that the reconfig process does not

lose, insert, or change the order of requests in the queues.

VI. EXPERIMENTAL EVALUATION

In order to assess the performance of parallel state machine

replication, we implemented the proposed protocols in the

BFT-SMART environment [27] and conducted experiments

in Emulab [32]. BFT-SMART was developed in Java and its

atomic broadcast protocol executes a sequence of consensus

instances, where each instance orders a batch of requests.

Experimental Setup: The Emulab environment was config-

ured with 5 d710 machines (2.4 GHz 64-bit Intel Quad Core
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Xeon E5530 with 2 CPU threads per core, 12GB of RAM

and 1 Gbps network cards) and a 1Gbps switched network.

The software installed on the machines was Ubuntu 14 64-bit

and a 64-bit Java virtual machine version 1.8.0 121. For all

experiments, BFT-SMART was configured with three replicas

hosted in separate machines to tolerate up to one replica crash,

while 90 clients were distributed uniformly across another two

machines. We evaluated the raw throughput of the system at

the servers and the latency perceived at the clients over the

course of 300 seconds.

Goals: Our main goal is to analyze the differences among

the previously discussed approaches and show how reconfig-

urations could increase the performance. The first set of ex-

periments shows the expressiveness of the classes of requests

proposed to model concurrency (Section VI-A). The second

set of experiments depicts the behavior of the system under

different replica configurations (Section VI-B). Finally, the last

set of experiments shows how reconfigurations could improve

performance (Section VI-C).

Notation: We use the notation xPyS to represent the con-

figuration with x parallel and y sequential replicas. Except

for the execution with reconfiguration, parallel replicas were

configured with 10 working threads.

A. Modeling concurrency with classes of requests

To show how concurrency modeling impacts performance,

we implemented a tuple space and analyzed the two models

defined in Section IV-B using the thread mappings (CtoT )

presented at Section V-A. The tuple space was initialized with

100k tuples, with the number of fields uniformly distributed

from 1 to 10 at each replica. As for the workload, each client

submits one of the possible requests at a time, rdp, inp, out
and cas, and all request types appear in equal proportion in

the workload. The number of fields for a tuple or template in

each operation was uniformly distributed from 1 to 10.

Figure 1 presents the results for sequential and parallel

executions for both concurrency models. The Simple Tuple

Space (TS) concurrency model allows reduced concurrency,

resulting in a workload with 75% of conflicting requests. This

significantly impacts performance, which is worse than in a

sequential execution (0P3S) due to the need for additional

synchronization.
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Fig. 1. Sequential vs. parallel executions for two concurrency models.

The Extended Tuple Space (TS) concurrency model, how-

ever, results in performance that is more than twice the

performance of the sequential execution. In this model, out,
rdp and inp requests handling tuples or templates with the

same number of fields are mapped and sequentially executed

by a single thread, but are executed concurrently with other

requests for tuples or templates with different number of fields.

cas requests may be mapped to one or two threads, depending

on the request parameters. This model improves performance

since it only needs to synchronize groups of two threads in cas
executions. No other expensive synchronization among threads

is necessary. These results show that classes of requests can

precisely capture the concurrency of an application.

B. Replicas with different degrees of parallelism

We use a linked list implementation, the concurrency model

defined at Section IV-B, and the thread mapping (CtoT )

presented at Section V-A to analyze the performance of

deployments in which replicas are statically configured with

different degrees of parallelism. The list was initialized with

100k entries at each replica and we used add and contains
to represent operations of classes cw and cr, respectively. The

parameter for these operations was always the last element in

the list. Consequently, operations in an execution have similar

cost, leading to more stable measurements.

Figure 2 presents the results for different replica config-

urations under workloads composed of contains requests

only, add requests only, and mixed requests, where clients

cycle through 60-second periods during which one request

type is submitted only, starting with contains. Recall that

while contains requests do not conflict with each other, any

two add requests conflict. The throughput presented is the

average obtained throughout the execution. For workloads with

only contains or add requests, there was little variation in

throughput and latency during the execution, while for the

mixed workload throughput and latency fluctuate over time

(more details about the mixed workload in the next section).

For the mixed workload, we also show the results for the

reconfiguration technique (REC).
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Fig. 2. Different replica configurations.

The system with different replica configurations (1P2S and

2P1S) presented better performance for both contains or

add workloads, while parallel (3P0S) and sequential (0P3S)
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Fig. 4. Throughput for the mixed workload and reconfigurations.

configurations outperform each other in the presence of non-

conflicting and conflicting requests, respectively. This means

that, unlike a traditional P-SMR [5], [6], hybrid approaches

that mix replicas with different degrees of parallelism provide

good performance for both workloads. Unfortunately, how-

ever, the hybrid approach has two serious drawbacks: (i) the

resources of the replicas that lag behind could exhaust rapidly,

making the replicas crash or drop requests; and (ii) it does not

provide the best performance for mixed workloads.

Figure 3 depicts the behavior of a parallel and a sequential

replica of configuration 1P2S for the mixed workload. The

figure shows the sequential replica became substantially de-

layed while executing contains requests and only executed

the first add request at time 250 while the parallel replica

executed the first add request at time 60 seconds. From second

60 to 250, the sequential replica stored approximately 650k
operations in its buffer, the number of operations executed by

the parallel replica in this period. For workloads with enough

non-conflicting requests, this situation would eventually lead

to a buffer overflow. Ironically, due to the delay, the sequential

replica does not help improve performance when requests

conflict and the system will run at the pace of the parallel

replica, even though the parallel replica is not the best choice

for conflicting requests. We conclude that one cannot optimize

performance of state machine replication by mixing replicas

with different degrees of parallelism.
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C. Reconfiguration in action

We used the same linked list implementation, configurations

and the mixed workload of the previous experiments to show

how reconfiguration can boost performance. Figure 4 presents

the throughput for sequential (0P3S), parallel (3P0S) and re-

configurable (REC) executions. The hybrid systems (1P2S and

2P1S) presented a behavior similar to the parallel execution

since the performance was determinated by parallel replicas

(see previous discussion about Figure 3). In the reconfigurable

execution, the system started with only 1 active thread and

used the policy of Algorithm 7 to activate/deactivate threads,

ranging from 1 to 10 active threads. Figure 2 (mixed columns)

shows the average throughput and latency perceived by clients.

Reconfiguration improves system performance and, at the

same time, saves resources since threads are deactivated when

they are unnecessary and their presence may negatively impact

performance. For example, at time 60 seconds when clients

start to invoke only dependent requests, performance drops to

approximately 0.8 Kops/sec and the system starts to deactivate

threads. After approximately 10 seconds, it remains with only

one active thread and the throughput becomes similar to a

sequential execution (approximately 1.8 Kops/sec). Notice that

the policy will define the time to react after a workload change.

VII. CONCLUSIONS

This paper reports on our efforts to increase the performance

of parallel state machine replication by dynamically adapting

the degree of parallelism of replicas. Dynamic reconfiguration

is important since when it comes to setting the ideal degree

of parallelism for a workload, there is no “one-size-fits-all”

solution. Configurations with few threads perform well with

conflicting operations, but cannot reach high performance in

the absence of conflicts; conversely, configurations with many

threads maximize performance in the absence of conflicts,

but introduce too much overhead when handling conflicting

requests. Moreover, we show that combining replicas with dif-

ferent degrees of parallelism introduces important drawbacks.
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