
Analysis of Checkpointing Overhead in
Parallel State Machine Replication

Odorico M. Mendizabal
Pontifícia Universidade

Católica do Rio Grande do Sul
Brazil

Fernando Luís Dotti
Pontifícia Universidade

Católica do Rio Grande do Sul
Brazil

Fernando Pedone
University of Lugano

Switzerland

ABSTRACT
State machine replication (SMR) is a well-established tech-
nique to fault-tolerant systems. In part, this is explained
by the simplicity of the approach and its strong consistency
guarantees. Recently, several proposals have suggested par-
allelizing the execution of state machine replicas to achieve
high throughput. Concurrent execution of commands has
many implications, including the recovery of replicas from
failures. Conventional checkpointing techniques, for exam-
ple, must be revisited in parallelized models. In this paper,
we review parallel variations of state machine replication and
discuss how checkpointing procedures apply to these models.
Moreover, we evaluate the impact caused by checkpointing
techniques on recovery through simulations.

CCS Concepts
•Computer systems organization→ Dependable and
fault-tolerant systems and networks; •Software and
its engineering → Checkpoint / restart;

Keywords
Distributed Systems, fault tolerance, checkpointing

1. INTRODUCTION
State machine replication (SMR) is a common technique

used in the design of fault-tolerant systems. The idea is
for replicas to start in the same initial state and determin-
istically execute the same sequence of clients commands.
This way, replicas traverse the same sequence of internal
states and produce the same output throughout their exe-
cution [11, 15]. Due to its simplicity and strong consistency
guarantees (i.e., linearizability [8]), SMR has been largely
studied in the last decades (e.g., [2, 3, 4, 5, 6]).

In order to improve SMR’s throughput, some recent ap-
proaches propose to execute commands in parallel at each
replica by exploiting application semantics [9, 10, 13]. In
brief, these approaches classify commands as dependent or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC 2016, April 04-08, 2016, Pisa, Italy
© 2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851879

independent. Commands are independent if they access dis-
joint portions of the replica’s state or only read shared state
and dependent otherwise. Dependent commands must be
processed in the same relative order at every replica to avoid
inconsistencies. Independent commands can be executed in
parallel and benefit from multi-core servers.

One central aspect of SMR concerns the ability to re-
cover from replica failures. Recently, Bessani et al. [2] re-
viewed the literature and discussed shortcomings of common
recovery techniques applied to SMR. In [6], performance
implications of checkpointing in SMR are discussed. Just
like sequential SMR, parallel SMR approaches must account
for replica failure and recovery. Differently from sequen-
tial SMR, however, little is known about the implications of
checkpointing and recovery on parallel SMR. While check-
points are expected to reduce the throughput of replicas, it
is not clear how they impact parallel SMR protocols.

In this paper, we review parallel SMR variations and their
checkpointing strategies, discuss how checkpointing affects
the performance of these models, and assess by means of
simulations the impact of checkpointing on performance.
We study the effects of the number of threads and the fre-
quency of checkpoints on performance. Our results show
that while checkpoints impact the performance of all tech-
niques reported, techniques are not affected equally.

The remainder of this paper is organized as follows. In
Section 2 we discuss the system model and assumptions. An
overview of existent proposals for parallel SMR appears in
Section 3. A performance evaluation of checkpointing mech-
anisms for parallel SMR is presented in Section 4. Section
5 concludes the paper.

2. SYSTEM MODEL AND ASSUMPTIONS
We assume a distributed system composed of intercon-

nected processes. There is an unbounded set C = {c1, c2, . . .}
of client processes and a bounded set R = {r1, r2, . . . , rn}
of replica processes. Clients in C send requests to replicas
in R. We make no assumptions about the relative speed of
processes or message delays, i.e., the system is asynchronous.

We assume the crash-recovery failure model and exclude
malicious or arbitrary behavior. A process can be either up
or down, and it switches between these two modes when it
fails (i.e., from up to down) and when it recovers (i.e., from
down to up). Replicas are equipped with volatile memory
and stable storage. Upon a crash, a replica loses the content
of its volatile memory, but the content of its stable storage
survives crashes.

Clients submit command requests to the replicas, which
execute the commands and reply to the clients. Command

534

execution at the replicas is deterministic: the output of a
command depends only on its input parameters and on the
state read by the command. Replicas use an agreement pro-
tocol (e.g., Paxos [12]) to order command requests submitted
by the clients.1

Our consistency criterion is linearizability : a system is lin-
earizable if there is a way to reorder the client commands in
a sequence that (i) respects the semantics of the commands,
as defined in their sequential specifications, and (ii) respects
the real-time ordering of commands across all clients [8].

3. PARALLEL APPROACHES TO SMR
In contrast to classical SMR, in parallel replication tech-

niques some commands can be executed concurrently. Next,
we present parallel approaches to SMR and discuss how
checkpointing can be handled by each of them.

3.1 The parallelizer approach
In [10] replicas are augmented with a parallelizer that

bridges the delivery and execution of commands. Based on
application semantics, the parallelizer serializes the execu-
tion of dependent commands according to the delivery order
and dispatches independent commands to be processed in
parallel by a set of working threads (see Figure 1). To un-
derstand the interdependencies between commands, assume
two commands ci and cj , where Wi and Wj indicate the
commands’ write-set and Ri and Rj indicate their read-set.
According to [10], ci and cj are dependent if any of the fol-
lowing conditions holds: (i) Wi ∩Wj 6= ∅; (ii) Wi ∩Rj 6= ∅,
or (iii) Ri∩Wj 6= ∅. Two commands are independent if they
are not dependent.

The parallelizer follows a producer-consumer model. When
a working thread asks for a command to be processed, the
parallelizer searches for a delivered command c that has not
been assigned to any working thread yet and is indepen-
dent of all commands currently in execution. If c exists,
the parallelizer assigns it to the working thread; otherwise,
it blocks the working thread until a command satisfies the
requirements described.

Checkpointing. Relying on the total order, after an
agreed number k of commands are delivered at a replica, the
parallelizer stops assigning commands to working threads.
Once all commands in execution are finished, the replica
takes a checkpoint and then resumes normal execution [10].
Replicas will produce identical checkpoints since any two
replicas take checkpoints at fixed and deterministic intervals.

Besides the costs inherent to the checkpointing itself, such
as logging and maintenance of checkpoint structures, check-
points in the parallelizer approach induce additional over-
head since at the moment a checkpoint is invoked, new
incoming commands cannot be executed and, as a conse-
quence, working threads may be idle until all threads finish
their work and the checkpoint is taken.

3.2 The Execution-Verify approach (Eve)
Another approach that allows SMR to scale to multi-core

servers is Eve (Execution–Verify) [9]. Different from other
SMR approaches, Eve replicas first execute commands and
then verify the equality of their states through a verification

1Solving agreement in the model described above requires
additional assumptions (e.g., [1, 7]) In the following, we sim-
ply assume the existence of an agreement oracle.

AgreementAgreement

Proxy

Replica

(a) Classical SMR

Agreement

Service
Execution

Application
Proxy

Proxy

Client

Proxy

AgreementAgreementAgreement

Scheduler

Replica

(b) Parallelizer

Service
Execution

Application
Proxy

Proxy

Client

Agreement and
Verification

Agreement and
Verification

Proxy

Application

Agreement and
Verification

Proxy

(c) Eve

Mixer

Replica

Service
Execution

Proxy

Client

Proxy

AgreementAgreement

Application

Agreement

Replica

Service
Execution

Proxy

(d) P-SMR

Proxy

Client

Request
Response

Figure 1: Approaches to parallel SMR.

stage. Before execution, a primary replica groups client com-
mands into batches and transmits the batched commands
to all replicas. Then, replicas speculatively execute batched
commands in parallel. After the execution of a batch, the
verification stage checks the validity of replica’s state, as
defined by the common state reached by a majority of repli-
cas. If too many replicas diverge, replicas roll back to the
last verified state and re-execute the commands sequentially.
Eve minimizes divergence through a mixer stage that applies
application-specific criteria to produce batches of commands
that are unlikely to interfere with each other [9].

Checkpointing. Even though checkpointing and recov-
ery are not explicitly described in [9], taking checkpoints
along a sequence of bounded batches is straightforward. Af-
ter the execution of a batch, replicas check the equality of
their states and diverging replicas assume the state reached
by the majority of the replicas. The verification stage causes
replicas to reach identical states. For this purpose, every
replica should periodically create a checkpoint right after
the n-th batch since the last checkpoint has been created
and verified. This strategy is similar to that presented in
the previous section, but instead of taking checkpoints ev-
ery k commands have been processed, in Eve checkpoints
are taken after commands in n batches have been executed.

3.3 The Parallel SMR approach (P-SMR)
In [13], the authors propose a variation of parallel SMR,

where the execution and the delivery of commands occur in
parallel. Instead of using a single sequence of consensus exe-
cutions to order commands, multiple sequences of consensus
are used. For each sequence of consensus γi, there is a work-
ing thread ti responsible for processing commands decided in
γi. Independent commands proposed in different sequences
of consensus are executed concurrently. Commands decided
in a given sequence of consensus γi are processed in the same
relative order across replicas. Another consensus sequence,
γall, shared among all threads, allows threads to order com-
mands across sequences. In short, multiple consensus se-
quences, one per thread, result in commands ordered and
executed concurrently. Dependent commands are proposed
either in the same sequence or in the sequence shared among
all threads; in both cases, dependent commands are executed
in the same order across replicas.

The mapping of commands onto consensus sequences is
application-dependent and the responsibility of clients. Cli-
ents propose commands by choosing the consensus sequence
that guarantees ordered execution of dependent commands
while maximizing parallelism of independent commands.

Checkpointing. In [13] not only the execution, but also

535

the delivery of messages occur in parallel. Thus, solutions
analogous to the ones described are not possible in P-SMR
since replicas evolve through different states. In [14], two
checkpointing and recovery algorithms for P-SMR are pro-
posed, called coordinated and uncoordinated checkpoints.

The coordinated checkpointing algorithm makes use of a
special checkpoint message CHK that depends on all com-
mands. In order to generate new checkpoints, a coordinator
replica periodically proposes a CHK message. Upon de-
ciding on a CHK message, the execution model provided
by P-SMR ensures that every replica processes exactly the
same set of messages before processing the checkpoint, which
takes place in the same order in every replica. One conse-
quence of coordinated checkpointing is that replicas build
the same sequence of checkpoints.

In the uncoordinated algorithm replicas evolve indepen-
dently with possibly different checkpoints, enhancing con-
currency and throughput. Periodically, one coordinator thre-
ad in each replica takes a checkpoint, which contains the
most recent state modifications. To take a checkpoint, thre-
ads in a replica must coordinate their execution, but no coor-
dination across replicas is needed. Since the k-th checkpoint
taken by any pair of replicas is possibly different, together
with a checkpoint, replicas keep a vector with the number
of commands processed by each thread at the moment the
checkpoint was taken. Uncoordinated checkpointing is ex-
pected to introduce less overhead in a replica’s normal ex-
ecution than coordinated checkpointing. On the downside,
with uncoordinated checkpoints, replicas create different se-
quences of checkpoints and therefore cannot benefit from
collaborative state transfer [2].

4. PERFORMANCE EVALUATION
In this section, we evaluate the impact of checkpointing

in parallel SMR approaches. Our analysis aims to quantify
the cost of synchronization due to checkpoints.

We implemented a discrete-event simulation model in C++
and run each experiment until the average value measured
for the service latency lies in a 98% confidence interval. We
built simulation models for parallel variations of SMR pro-
posed by Kotla et al. [10], Kapritsos et al. [9], and Marandi
et al. [13], respectively called Parallelizer, Eve, and P-SMR.
The classical SMR model is a special case of parallel SMR
where just one thread executes commands.

We ran simulations with and without checkpointing, and
considered different requests execution time: fixed-duration;
uniformly distributed, and exponentially distributed. We
report results using exponentially distributed command du-
ration. Our conclusions apply to the other distributions.

To focus the analysis on the impact of synchronization due
to checkpointing, we generate only independent commands
in the workload, removing the possibility of thread idleness
due to the synchronization needed by dependent commands.

4.1 The effects of the number of threads
The maximum normalized throughput (Figure 2) for x

threads, norm tput(x), was calculated as the ratio between
the value measured with x threads, measured tput(x), and
the ideal throughput in a perfectly scalable system, that is:
norm tput(x) = measured tput(x)/(norm tput(1)× x)
In the graphs, command durations follow an exponential

distribution with an average command execution time of
0.5. We evaluate executions without and with checkpoints,

Table 1: Maximum throughput with instantaneous
checkpoints, in commands per time unit

th
re
a
d
s Parallelizer Eve P-SMR

no cp w cp no cp w cp no cp coord
cp

uncoord
cp

1 2 2 1.98 1.98 2 2 2
2 4 3.97 3.89 3.89 3.9 3.79 3.9
4 8 7.89 7.61 7.61 7.81 6.92 7.73
8 16 15.6 14.43 14.43 15.92 12.22 15.09

16 31.94 30.35 25.57 25.57 31.94 20.39 28.08
32 63.95 56.93 39.27 39.27 63.68 31.59 48.08
64 127.86 97 39.43 39.43 126.77 45.67 73

in which case they are taken every 400 commands. Table 1
presents the throughput for each technique.

We first consider executions where, if enabled, checkpoints
are instantaneous. By ignoring the time taken to create a
checkpoint, the results reveal the overhead caused exclu-
sively by checkpointing synchronization. As can be seen in
Figure 2 (top), the synchronization overhead increases with
the number of threads. When replicas are configured with
one single thread there is no synchronization costs, a behav-
ior that corresponds to classical SMR.

When checkpoints are disabled (i.e., “no cp”in the graphs),
the throughput of Parallelizer and P-SMR scales proportion-
ally to the number of threads (not seen in the graphs due
to normalization). Eve presents lower throughput than the
other techniques due its verification stage, forcing thread
synchronization. When checkpoints are enabled, the over-
head added by P-SMR coordinated checkpointing and Eve
are the most impacting among the evaluated approaches.
Moreover, the overhead grows as the number of threads in-
creases. The overhead caused by checkpoints in the Paral-
lelizer is smaller than in P-SMR uncoordinated because it
can perform a more efficient scheduling than P-SMR, where
clients decide which thread should execute a command. P-
SMR is more advantageous than the Parallelizer in execu-
tions where the scheduler becomes the bottleneck, and the
technique cannot scale with additional threads [13].

Figure 2 (bottom) depicts the maximum throughput for
scenarios in which checkpoints take 5 time units. Again, per-
formance degrades with the number of threads. In the Par-
allelizer, the most efficient technique, with 64 threads, repli-
cas spend 65% of the time executing commands and 35%
executing checkpoints. In Eve, with configurations with 64
threads, replicas spend 75% and 25%, respectively. This is a
consequence of the fact that checkpoints happen more often
with the Parallelizer since it has higher throughput than
Eve. Practical implementations can consider the tradeoff
between checkpoint duration and checkpoint frequency (i.e.,
number of commands processed per checkpoint) to tune the
use of resources with command and checkpoint execution.

4.2 The effects of the checkpoint frequency
We evaluate checkpoint frequency in 16-core replicas, vary-

ing checkpoint interval from 400 to 6400 requests. Figure 3
shows the throughput and latency for workloads where re-
quest duration follows an exponential distribution with av-
erage 0.5 and checkpoints take 5 time units. We configured
the workload in this experiment to reach 75% of the maxi-
mum throughput reachable by each model.

Checkpoints have an impact on the throughput and re-

536

Figure 2: Max. normalized throughput with instan-
taneous checkpoints and 5-time unit checkpoints.

sponse time of replicas (top and bottom of Figure 3, respec-
tively), although the overhead caused by checkpoints de-
creases as checkpoints become more infrequent. The Paral-
lelizer and uncoordinated P-SMR present the higher through-
put rates. Regarding latency, the Parallelizer outperforms
P-SMR, presenting lower command’s response time. This
happens due to thread scheduling. While in the Parallelizer
approach incoming commands can be dispatched to any free
working thread, in P-SMR clients send commands directly
to a given thread which may be busy even if some other
thread is available. Although the Parallelizer and Eve sched-
ule commands more efficiently within replicas, they are sub-
ject to a single point of contention, the scheduler in the
Parallelizer and the mixer in Eve. By relying on clients
to distribute commands across threads, P-SMR avoids this
potential bottleneck, although it becomes exposed to sub-
optimal scheduling. In our simulation we do not associate
scheduling costs to any of the models.

5. CONCLUSION
We reviewed and evaluated the performance of check-

pointing in existing parallel SMR approaches. Our analy-
sis focused mostly on the synchronization overhead. The
proposed simulation models capture the inherent differences
between existing approaches and allowed us to measure the
way checkpoints affect performance in each case.

Checkpoints reduce the performance of all considered tech-
niques and the overhead due to checkpoints increases with
the number of threads, even though techniques are not af-
fected equally. Both the Parallelizer and P-SMR experi-
ence a reduction in performance with checkpoints, but P-
SMR is more vulnerable to checkpoints. Since Eve requires
coordination even in the absence of checkpoints, instanta-
neous checkpoints do not affect its performance, although
real checkpoints do reduce its throughput.

The frequency of checkpoints has a bigger impact on the
latency of the various approaches than on their throughput.
When the checkpoint frequency varies from 400 to 800 com-
mands, the Parallelizer experiences a throughput improve-
ment from 18.79 to 21.04 commands per time unit, while
latency is reduced from 3.86 to 2.36 time units. P-SMR’s
latency is particularly vulnerable to checkpoint overhead due
to its sub-optimal scheduling of commands.

Acknowledgements: This work was supported in part
by CAPES PVE project 88881.062190/2014-01.

Figure 3: Throughput and latency of various tech-
niques. Replicas configured with 16 threads.

6. REFERENCES
[1] M. K. Aguilera, W. Chen, and S. Toueg. Failure

detection and consensus in the crash-recovery model.
Distributed computing, 13(2):99–125, 2000.

[2] A. Bessani, M. Santos, J. Felix, N. F. Neves, and
M. Correia. On the efficiency of durable state machine
replication. In USENIX ATC, 2013.

[3] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P.
Kusters, and P. Li. Paxos replicated state machines as
the basis of a high-performance data store. In NSDI,
2011.

[4] M. Burrows. The chubby lock service for
loosely-coupled distributed systems. In OSDI, 2006.

[5] M. Castro and B. Liskov. Practical byzantine fault
tolerance. In OSDI, volume 99, 1999.

[6] T. Chandra, R. Griesemer, and J. Redstone. Paxos
made live-an engineering perspective (2006 invited
talk). In PODC, 2007.

[7] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM
(JACM), 35(2):288–323, 1988.

[8] A. D. Fekete and K. Ramamritham. Consistency
models for replicated data. In Replication, pages 1–17.
Springer, 2010.

[9] M. Kapritsos, Y. Wang, V. Quema, A. Clement,
L. Alvisi, and M. Dahlin. All about eve: execute-verify
replication for multi-core servers. In OSDI, 2012.

[10] R. Kotla and M. Dahlin. High throughput byzantine
fault tolerance. In DSN, 2004.

[11] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[12] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems (TOCS),
16(2):133–169, 1998.

[13] P. J. Marandi, C. E. B. Bezerra, and F. Pedone.
Rethinking state-machine replication for parallelism.
In ICDCS, 2014.

[14] O. M. Mendizabal, P. J. Marandi, F. L. Dotti, and
F. Pedone. Checkpointing in parallel state-machine
replication. In OPODIS, 2014.

[15] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computing Surveys (CSUR), 22(4):299–319, 1990.

537

