
Comparative Analysis of Dynamic Task Mapping Heuristics in
Heterogeneous NoC-based MPSoCs

Leandro Möller1, Leandro Soares Indrusiak2, Luciano Ost3, Fernando Moraes4, Manfred Glesner1

1 Darmstadt University of Technology - Institute of Microelectronic Systems - Darmstadt, Germany
2 Department of Computer Science - University of York - York, United Kingdom

3 LIRMM – University of Montpellier II, France
4 Faculty of Informatics - Catholic University of Rio Grande do Sul - Porto Alegre, Brazil

Abstract — Dynamic mapping heuristics can cope with dynamic
application scenarios by allocating tasks to cores of an MPSoC
during runtime. In this paper, we compare eight heuristics in
terms of the response time of application tasks - that is, the time
between the issuing of a task and the time when it completes
executing and communicating. By taking into account the task
execution, communication and waiting times, we could better
evaluate the quality of the different heuristics and show that
there is room for improvement when it comes to heterogeneous
platforms under high utilization.

Keywords — multiprocessor systems-on-chip, networks-on-chip,
embedded systems, dynamic task mapping.

I. INTRODUCTION
Applications running on Multiprocessor Systems-on-Chip

(MPSoCs) may vary dynamically at execution time, according
to user (e.g. load of new applications) and/or performance (e.g.
change the frequency operation for optimizing battery lifetime)
requirements, which leads in both time-changing processor
workload and communication patterns [1][3][4]. Thus, offline-
mapping techniques can be sub-optimal or inadequate in many
scenarios. In this context, dynamic task mapping techniques
have been used to achieve the required runtime adaptability
demanded by such multiprocessing systems [6][7]. Such
dynamic task mapping techniques are evaluated in both
homogeneous and heterogeneous platform architectures.

More than avoiding congestion and placing communicating
tasks near to each other, heterogeneous MPSoCs need to care
about the affinity of tasks with the IP cores available on the
platform. This is only true when the same task is developed for
different IP cores and trading efficiency against utilization of
these cores is left for the system to balance. The result is then a
computing system that can analyze its own resources and allow
the use of them in a more optimized manner. Therefore, smart
implementations of dynamic mapping algorithms are vital for
the MPSoC to execute applications with good performance
figures and using as few resources as possible.

Our contribution is to evaluate quantitatively and
comparatively dynamic task mapping using the affinity of tasks
to the IP cores available on the heterogeneous MPSoC. Some
of the presented algorithms are multi-objective, considering not
only the affinity of the task and the congestion of the network,
but also the utilization of the IP cores, the position on the
network and the amount of communication among tasks.

This work is divided as follows. Section II presents the
state of the art on dynamic task mapping for MPSoCs. The
joint validation model composed by platform, application and
task mapper used on this work is presented on section III.
Section IV presents the dynamic mapping algorithms compared
on this work. Section V presents the case studies and obtained
results. Section VI concludes this work.

II. STATE OF THE ART
Examples of dynamic task mapping techniques explored in

homogeneous architectures are [4][6][9]. In turn, dynamic task
mapping on heterogeneous MPSoC platforms are investigated
in [1][2][3][5][8][10][11]. Due to the distinct nature of
processing elements (PEs) that can be integrated in such
platforms, the mapping process is more complex when
compared to the homogeneous case because additional
constraints (e.g. the affinity of the task to a PE) must be
considered at run-time. In this context, Carvalho et al. [1]
proposed and evaluated the performance of six mono-task
mapping heuristics considering different application
workloads. Some of these heuristics were extended to consider
multi-tasks mapping onto the same PE, while minimizing the
commutation overhead in the same NoC-based platform [2].
Singh et al. [2] also proposed new heuristics that consider the
power consumption as the product of number of bits to be
transferred and distance between source-destination pair.

Faruque et al. [3] present a distributed agent-based mapping
scheme. The proposed scheme divides the system into virtual
clusters. A cluster agent (CA) is responsible for all mapping
operations within a cluster. Global agents (GAs) store
information about all the clusters of the NoC and use a
negotiating policy with CAs in order to define to which cluster
an application will be mapped. Another distributed approach is
proposed in [4], which explores different implementations of a
decentralized self-embedding algorithm, aiming to minimize
network contention and latency while providing fault-tolerance
support for NoC-based systems.

III. JOINT VALIDATION MODEL
Määttä et al. present in [12] the joint validation of an

application mapped onto different platform models based on
NoCs. This validation model enforces the use of a well-defined
API among the main layers of the MPSoC: application, mapper
and platform. An application is modeled by any number of
concurrent tasks that communicate by explicitly exchanging

978-1-4673-2896-8/12/$31.00 c©2012 IEEE

messages. The communication dependencies between tasks are
modeled using directed graphs with tasks represented by the
nodes and messages by the edges. Each task is characterized by
its computation time, and each inter-task communication
message is characterized by its source and destination tasks,
and its data volume. Many different models of computation can
be used to further describe the concurrent behavior of tasks and
messages. In this paper, we reuse the model described in [12],
where messages are sent by a task only when they finish
execution, and tasks can only be triggered by a timer or a
predefined combination of messages (which may have to arrive
in a predefined sequence). The mapper is responsible to map
tasks to PEs on the platform. In turn, a platform is composed
of PEs interconnected by a NoC. When tasks are triggered, the
PEs onto which they are mapped are made busy for the task’s
execution time (or it enters a scheduling queue in case the PE
was already busy). Once a task has finished its execution, the
PE sends the respective messages to the NoC, which simulates
its transmission towards the core where the destination task is
mapped. The latency of the task execution on the PEs and the
flit-by-flit message transmission over the NoC is then back-
annotated to the application model, allowing for an accurate
estimation of the response time of each task of the system,
taking into account the contention for the PEs as well as NoC
links and routers.

In this work, we extend all three layers described above:
application, platform and mapper. One extension is that the
PEs of the platform are now multi-tasking, using an Earliest
Deadline First scheduling algorithm. Another extension that
involved all three layers was to support the heterogeneity of the
MPSoC. This involves setting the type of each PE (e.g. CPU1,
DSP1, CPU2, …) and setting for each task of the application
which are the PEs that can execute it (i.e. the system contains
the object code of the task for a certain PE). We also extended
the characterization of application tasks by modeling the
interplay between computation time and affinity. Computation
time denotes how long does it take for a task to execute all its
functionality. Sometimes the computation time may depend on
the inputs of the task. In such cases, it is common in real time
systems to define it as the worst case computation time to
guarantee that the task will always be able to execute without
missing the deadline. Affinity is measured in percentage and it
is a multiplicative factor to increase or reduce the computation
time depending on which PE the task is mapped. Every task
must have its computation time defined in relation to the PE
over which the task has greater affinity. So, the computation
time of a task m mapped on a PE k (CTmk) can be calculated by

CTmk =
CTm
Afmk

 (1)

where CTm is the computation time of the task m when mapped
on a PE which has 100% affinity and Afmk is the affinity of the
task m to the PE k.

IV. DYNAMIC MAPPING ALGORITHMS
Carvalho et al. [1] compare six dynamic mapping

algorithms. The First Free (FF) simply selects the next
compatible IP core to map a given task, thus walking
sequentially through all IP cores before considering an IP core

again. Nearest Neighbor (NN) considers first the IP cores
located near to the requesting task, and it maps the target task
on the first compatible IP core found. Minimum Maximum
Channel load (MMC) considers all possible mappings for a
given task and chooses the one that increases the least the peak
load of a channel of the NoC. Minimum Average Channel
load (MAC) considers all possible mappings for a given task
and chooses the one that increases the least the average load of
the channels of the NoC. Path Load (PL) considers all
possible mappings for a given task and chooses the one that
increases the least the sum of the load of the channels between
the requesting task and the target task. Best Neighbor (BN)
considers first the IP cores located near to the requesting task,
and if there is more than one candidate mapping at the same
hop distance from the requesting task, the best alternative is
selected according the PL algorithm.

Two dynamic mapping algorithms were developed in the
frame of this work. Minimum Data Exchange (MDE)
considers all possible mappings for a given task and computes
for each of them the total amount of data that must be
sent/received by the already mapped tasks. The PE with less
communication load receives the target task. If more than one
PE returns the same communication load (very likely to happen
in the beginning of the execution of the system), the PE with
minimum hops distance to the requesting task is selected. If
again there is more than one candidate PE, the first candidate
of an array of final candidates is selected. The Cost Based
(CB) dynamic mapping algorithm considers all possible
mappings for a given task and chooses the one with minimum
cost according to the following equation

Cost =Uk ×Hst ×Lst
Aftk

 (2)

where Uk is the current utilization of the PE under
consideration for mapping k, Hst is the number of hops between
the source task s and the target task t (considering t mapped on
k), Lst is the load between s and t measured by the amount of
bytes exchanged by them, and Aftk is the affinity of the target
task t to k. The utilization of a PE can be calculated by

Uk =
CTmk
Pmm=0

q

∑ (3)

where CTmk is the computation time of task m when mapped to
the PE under consideration k, Pm is the period of task m and q
is the number of tasks mapped onto k.

Table 1 presents the metrics used by the cost functions of
the dynamic mapping algorithms introduced on this work. FF is
for sure the fastest algorithm, since it requires only to find the
next compatible PE for a task. NN is also fast and tries to put
the communicating tasks near to each other. BN comes next in
terms of speed since it searches for possible PEs according to
NN and only uses PL when more than one candidate PE is
found. All the other algorithms consider all PEs for making a
mapping decision, therefore, they become slower with the
increase of the number of PEs. On the other hand, other
algorithms can consider the channels of the NoC and the
communication load of the tasks for preventing congestions.
The computation load of the tasks mapped on a PE is also an

important metric for avoiding the overload of the PE, and is
considered by the CB algorithm.

All dynamic mapping algorithms, except the FF, require a
requesting task to perform their mapping decision accurately.
As the tasks that start the application do not dispose of a
requesting task and such a decision can affect all subsequent
decisions of the dynamic mapper, two initial mapping
algorithms were developed to deal with this situation. One is
the FF that was already presented, and the other is the Cluster
(CL) initial mapping algorithm. This algorithm divides the PEs
in clusters and maps each initial task to a different cluster. The
size of the cluster depends on the amount of initial tasks and
PEs the system contains. The goal of this algorithm is to
separate the initial tasks, allowing tasks mapped later to be near
to their corresponding initial tasks.

Table 1. Metrics used by the cost functions of different dynamic mapping
algorithms used on this work.

 Network
position

Channel
load

Comm.
load

Task
affinity

PE
utilization

FF 
NN 

MMC  
MAC  

PL  
BN  

MDE  
CB    

V. CASE STUDY
In order to evaluate the different dynamic mapping

algorithms, one synthetic application was developed and
executed over a 4x4 and a 5x5 heterogeneous platforms based
on the HERMES NoC [12]. These heterogeneous platforms are
configured with 2 DSPs, one on the upper left corner and
another on the lower right corner. All the other PEs are GPPs,
and both platforms reserve the PE on the lower left corner for
the mapper. The application is composed by 30 tasks, where 12
use the initial mapper and 18 are dynamically mapped. These
30 tasks are used and reused by a total of 15 task graphs which
describe different functionalities of the application. The
computation time of the tasks range from 1,000 to 70,000
simulation cycles and the period of the tasks range from
200,000 to 500,000 simulation cycles. Each simulation cycle
corresponds to one clock cycle of the real platform. The
message sizes communicating the tasks range from 1,000 to
50,000 bytes. Six tasks are compatible to the 2 DSPs available
on the platform, where these tasks have an affinity of 100% to
them, while they have an affinity of 20% to the GPPs. Each
platform-mapper combination was simulated for 10,000,000
simulation cycles and every time a task is mapped to a certain
PE it remains there until the end of the simulation.

Figure 1 presents boxplots with the response times of 5 task
graphs of the application mapped to the 4x4 platform (graphs
A-E) and the 5x5 platform (graphs F-J). The numbers 1 and 2
used on the label of the plots indicate respectively the use of
the CL and FF initial mappers. The plots aligned on the same
row indicate the task graph. Each plot presents on the X-axis
the dynamic mapping algorithm used by the application. The
Y-axis refers to the response time of a complete task graph (i.e.
the time between triggering the execution of the first task and

the time when the last task finishes executing and
communicating). Boxplots show minimum, lower quartile,
median, upper quartile and maximum response times of all
executions of each task graph, measured on simulation cycles.

On the first glance to any of the graphs, it is possible to see
that the worse response time of a task graph can be more than
the double of the best response time, indicating that the
mapping algorithm really influences the timing of the
application. One expectation was that the dynamic mapping
algorithm CB would always present better timing results, since
it considers both communication and computation of the
application. However, CB provided the best timing results on
only 40% of the cases presented on

Figure 1. While it is enough to know that the CB was the
dynamic mapping algorithm that performed better on most of
the times, it cannot be forgotten that the CB is also the one that
costs more in terms of communication overhead (i.e.
information about communication load, task affinity and PE
utilization, which are information that need to be transmitted
through the network from all PEs to the mapper). This costs in
terms of time and network usage for transferring this mapping
information is currently not considered on this work.

Another expectation was that the initial mapping algorithm
CL would always present better timing results, since it creates
clusters to keep the initial tasks of different task graphs apart
from each other, thus giving space for the subsequent tasks
mapped with the dynamic mapping algorithm to be grouped
together with their corresponding initial task. While this is true
and visible when compare graph G1 with G2 and graph H1
with H2, the CL was only better than FF on 42.5% of the cases
on the 4x4 platform and 82.5% of the cases on the 5x5
platform.

VI. CONCLUSIONS
Eight dynamic mapping algorithms for heterogeneous

MPSoCs were compared on two platform configurations.
These dynamic mapping algorithms consider different cost
functions like the position of the task on the platform, the
congestions of the network, the amount of data transmitted by
the tasks, the affinity of the tasks to the different types of PEs
available on the platform and the utilization of the PEs. Hence,
the timing characteristics of computation and communication
of the application and platform were taken into account on the
presented case studies.

From the results obtained we could see that in most of the
cases the variance w.r.t. the timing to execute the application
task graphs is enormous. This is mainly due to the fact that the
baseline HERMES NoC is employed, which does not contain
any mechanism that can enable Quality-of-Service (QoS)
guarantees. The results also showed that the initial mapper CL
was better than the FF on 42.5% of the times over the 4x4
platform and 82.5% of the times over the 5x5 platform. The
dynamic mapping algorithm CB provided the best timing
results on 40% of the cases. The main future work is to
consider NoC architectures that provide QoS and to consider in
a lightweight manner the costs of the mapper in terms of
computation time and communication through the network to
deliver the information required for the mapper. Another future

work is to allow the definition of deadlines for each message
and keep control if the deadlines are missed during simulation.
Further comparisons regarding the dynamic mapping
algorithms will then be performed to extract a more solid
evaluation.

REFERENCES
[1] E. Carvalho, N. Calazans, and F. Moraes, “Dynamic Task Mapping for

MPSoCs,” IEEE Design & Test of Computers, vol. 27(5), 2010.
[2] Singh, A. K., at al. Communication-aware heuristics for run-time task

mapping on NoC-based MPSoC platforms. Journal of Systems
Architecture, 56(7), 2010.

[3] Faruque, M.A.; et al. ADAM: Run-time Agent-based Distributed
Application Mapping for on-chip Communication. In: DAC'08, 2008.

[4] Weichslgartner, A., et al. "Dynamic Decentralized Mapping of Tree-
Structured Applications on NoC Architectures". In: NoCS’11, 2011.

[5] Hölzenspies, P.K.F.; et al. Run-time Spatial Mapping of Streaming
Applications to a Heterogeneous Multi-Processor System-on-Chip
(MPSoC). In: DATE'08, 2008.

[6] Wildermann, S.; et al. Run time Mapping of Adaptive Applications onto
Homogeneous NoC-based Reconfigurable Architectures. In: FPT'09,
2009.

[7] Molnos, A.; et al. Composable, energy-managed, real-time MPSOC
platform. In: OPTIM'10, 2010.

[8] Smit, L.T.; et al. Run-time mapping of applications to a heterogeneous
SoC. In: SoC'05, 2005.

[9] Chou, C-L. and Marculescu, R. "Run-time task allocation considering
user behavior in embedded multiprocessor networks-on-chip". IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 29(1), 2010.

[10] Ferrandi, F.; et al. “Ant colony heuristic for mapping and scheduling
tasks and communications on heterogeneous embedded systems”. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 29(6), 2010.

[11] Huang, L., et al. “Customer-Aware Task Allocation and Scheduling for
Multi-Mode MPSoCs”. In: Design Automation Conference, 2011.

[12] Määttä, S.; et al. “Joint Validation of Application Models and Multi-
Abstraction Network-on-Chip Platforms”. Int. J. of Embedded and Real-
Time Communication Systems (IJERTCS), vol. 1(1).

150000$

250000$

350000$

450000$

550000$

650000$

750000$

FF$ NN$ MMC$ MAC$ PL$ BN$ MDE$ CB$

150000$

250000$

350000$

450000$

550000$

650000$

750000$

FF$ NN$ MMC$ MAC$ PL$ BN$ MDE$ CB$

150000$

250000$

350000$

450000$

550000$

650000$

750000$

FF$ NN$ MMC$ MAC$ PL$ BN$ MDE$ CB$

150000$

250000$

350000$

450000$

550000$

650000$

750000$

FF$ NN$ MMC$ MAC$ PL$ BN$ MDE$ CB$

50000#

100000#

150000#

200000#

250000#

300000#

350000#

400000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

50000#

100000#

150000#

200000#

250000#

300000#

350000#

400000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

50000#

100000#

150000#

200000#

250000#

300000#

350000#

400000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

50000#

100000#

150000#

200000#

250000#

300000#

350000#

400000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

200000#

250000#

300000#

350000#

400000#

450000#

500000#

550000#

600000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

200000#

250000#

300000#

350000#

400000#

450000#

500000#

550000#

600000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

200000#

250000#

300000#

350000#

400000#

450000#

500000#

550000#

600000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

200000#

250000#

300000#

350000#

400000#

450000#

500000#

550000#

600000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

50000#
70000#
90000#

110000#
130000#
150000#
170000#
190000#
210000#
230000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

50000#
70000#
90000#
110000#
130000#
150000#
170000#
190000#
210000#
230000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

50000#
70000#
90000#

110000#
130000#
150000#
170000#
190000#
210000#
230000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

50000#
70000#
90000#

110000#
130000#
150000#
170000#
190000#
210000#
230000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

50000#

100000#

150000#

200000#

250000#

300000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

50000#

100000#

150000#

200000#

250000#

300000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

50000#

100000#

150000#

200000#

250000#

300000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

50000#

100000#

150000#

200000#

250000#

300000#

FF# NN# MMC# MAC# PL# BN# MDE# CB#

Figure 1. Response time of 5 application task graphs for the 4x4 platform (A-E) and the 5x5 platform (F-J). Graphs labeled with 1 use the CL initial mapper and
graphs labeled with 2 use the FF initial mapper. The X-axis presents the dynamic mapping algorithm and the Y-axis presents the response times of all executed

instances of each task graph in cycles (minimum, lower quartile, median, upper quartile and maximum response times).

A1 J A2

B1 B2

F1 F2

G1 G2

C1 C2

D1 D2

H1 H2

I1 I2

E1 E2 J1 J2

