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Abstract — Dynamic mapping heuristics can cope with dynamic 
application scenarios by allocating tasks to cores of an MPSoC 
during runtime. In this paper, we compare eight heuristics in 
terms of the response time of application tasks - that is, the time 
between the issuing of a task and the time when it completes 
executing and communicating. By taking into account the task 
execution, communication and waiting times, we could better 
evaluate the quality of the different heuristics and show that 
there is room for improvement when it comes to heterogeneous 
platforms under high utilization.  

Keywords — multiprocessor systems-on-chip, networks-on-chip, 
embedded systems, dynamic task mapping. 

I.  INTRODUCTION 
Applications running on Multiprocessor Systems-on-Chip 

(MPSoCs) may vary dynamically at execution time, according 
to user (e.g. load of new applications) and/or performance (e.g. 
change the frequency operation for optimizing battery lifetime) 
requirements, which leads in both time-changing processor 
workload and communication patterns [1][3][4]. Thus, offline-
mapping techniques can be sub-optimal or inadequate in many 
scenarios. In this context, dynamic task mapping techniques 
have been used to achieve the required runtime adaptability 
demanded by such multiprocessing systems [6][7]. Such 
dynamic task mapping techniques are evaluated in both 
homogeneous and heterogeneous platform architectures. 

More than avoiding congestion and placing communicating 
tasks near to each other, heterogeneous MPSoCs need to care 
about the affinity of tasks with the IP cores available on the 
platform. This is only true when the same task is developed for 
different IP cores and trading efficiency against utilization of 
these cores is left for the system to balance. The result is then a 
computing system that can analyze its own resources and allow 
the use of them in a more optimized manner. Therefore, smart 
implementations of dynamic mapping algorithms are vital for 
the MPSoC to execute applications with good performance 
figures and using as few resources as possible. 

Our contribution is to evaluate quantitatively and 
comparatively dynamic task mapping using the affinity of tasks 
to the IP cores available on the heterogeneous MPSoC. Some 
of the presented algorithms are multi-objective, considering not 
only the affinity of the task and the congestion of the network, 
but also the utilization of the IP cores, the position on the 
network and the amount of communication among tasks. 

This work is divided as follows. Section II presents the 
state of the art on dynamic task mapping for MPSoCs. The 
joint validation model composed by platform, application and 
task mapper used on this work is presented on section III. 
Section IV presents the dynamic mapping algorithms compared 
on this work. Section V presents the case studies and obtained 
results. Section VI concludes this work. 

II. STATE OF THE ART 
Examples of dynamic task mapping techniques explored in 

homogeneous architectures are [4][6][9]. In turn, dynamic task 
mapping on heterogeneous MPSoC platforms are investigated 
in [1][2][3][5][8][10][11]. Due to the distinct nature of 
processing elements (PEs) that can be integrated in such 
platforms, the mapping process is more complex when 
compared to the homogeneous case because additional 
constraints (e.g. the affinity of the task to a PE) must be 
considered at run-time. In this context, Carvalho et al. [1] 
proposed and evaluated the performance of six mono-task 
mapping heuristics considering different application 
workloads.  Some of these heuristics were extended to consider 
multi-tasks mapping onto the same PE, while minimizing the 
commutation overhead in the same NoC-based platform [2]. 
Singh et al. [2] also proposed new heuristics that consider the 
power consumption as the product of number of bits to be 
transferred and distance between source-destination pair. 

Faruque et al. [3] present a distributed agent-based mapping 
scheme. The proposed scheme divides the system into virtual 
clusters. A cluster agent (CA) is responsible for all mapping 
operations within a cluster. Global agents (GAs) store 
information about all the clusters of the NoC and use a 
negotiating policy with CAs in order to define to which cluster 
an application will be mapped. Another distributed approach is 
proposed in [4], which explores different implementations of a 
decentralized self-embedding algorithm, aiming to minimize 
network contention and latency while providing fault-tolerance 
support for NoC-based systems. 

III. JOINT VALIDATION MODEL 
Määttä et al. present in [12] the joint validation of an 

application mapped onto different platform models based on 
NoCs. This validation model enforces the use of a well-defined 
API among the main layers of the MPSoC: application, mapper 
and platform. An application is modeled by any number of 
concurrent tasks that communicate by explicitly exchanging 
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messages. The communication dependencies between tasks are 
modeled using directed graphs with tasks represented by the 
nodes and messages by the edges. Each task is characterized by 
its computation time, and each inter-task communication 
message is characterized by its source and destination tasks, 
and its data volume. Many different models of computation can 
be used to further describe the concurrent behavior of tasks and 
messages. In this paper, we reuse the model described in [12], 
where messages are sent by a task only when they finish 
execution, and tasks can only be triggered by a timer or a 
predefined combination of messages (which may have to arrive 
in a predefined sequence). The mapper is responsible to map 
tasks to PEs on the platform. In turn, a platform is composed 
of PEs interconnected by a NoC. When tasks are triggered, the 
PEs onto which they are mapped are made busy for the task’s 
execution time (or it enters a scheduling queue in case the PE 
was already busy). Once a task has finished its execution, the 
PE sends the respective messages to the NoC, which simulates 
its transmission towards the core where the destination task is 
mapped. The latency of the task execution on the PEs and the 
flit-by-flit message transmission over the NoC is then back-
annotated to the application model, allowing for an accurate 
estimation of the response time of each task of the system, 
taking into account the contention for the PEs as well as NoC 
links and routers. 

In this work, we extend all three layers described above: 
application, platform and mapper. One extension is that the 
PEs of the platform are now multi-tasking, using an Earliest 
Deadline First scheduling algorithm. Another extension that 
involved all three layers was to support the heterogeneity of the 
MPSoC. This involves setting the type of each PE (e.g. CPU1, 
DSP1, CPU2, …) and setting for each task of the application 
which are the PEs that can execute it (i.e. the system contains 
the object code of the task for a certain PE). We also extended 
the characterization of application tasks by modeling the 
interplay between computation time and affinity. Computation 
time denotes how long does it take for a task to execute all its 
functionality. Sometimes the computation time may depend on 
the inputs of the task. In such cases, it is common in real time 
systems to define it as the worst case computation time to 
guarantee that the task will always be able to execute without 
missing the deadline. Affinity is measured in percentage and it 
is a multiplicative factor to increase or reduce the computation 
time depending on which PE the task is mapped. Every task 
must have its computation time defined in relation to the PE 
over which the task has greater affinity. So, the computation 
time of a task m mapped on a PE k (CTmk) can be calculated by 

CTmk =
CTm
Afmk

 (1) 

where CTm is the computation time of the task m when mapped 
on a PE which has 100% affinity and Afmk is the affinity of the 
task m to the PE k.  

IV. DYNAMIC MAPPING ALGORITHMS 
Carvalho et al. [1] compare six dynamic mapping 

algorithms. The First Free (FF) simply selects the next 
compatible IP core to map a given task, thus walking 
sequentially through all IP cores before considering an IP core 

again. Nearest Neighbor (NN) considers first the IP cores 
located near to the requesting task, and it maps the target task 
on the first compatible IP core found. Minimum Maximum 
Channel load (MMC) considers all possible mappings for a 
given task and chooses the one that increases the least the peak 
load of a channel of the NoC. Minimum Average Channel 
load (MAC) considers all possible mappings for a given task 
and chooses the one that increases the least the average load of 
the channels of the NoC. Path Load (PL) considers all 
possible mappings for a given task and chooses the one that 
increases the least the sum of the load of the channels between 
the requesting task and the target task. Best Neighbor (BN) 
considers first the IP cores located near to the requesting task, 
and if there is more than one candidate mapping at the same 
hop distance from the requesting task, the best alternative is 
selected according the PL algorithm. 

Two dynamic mapping algorithms were developed in the 
frame of this work. Minimum Data Exchange (MDE) 
considers all possible mappings for a given task and computes 
for each of them the total amount of data that must be 
sent/received by the already mapped tasks. The PE with less 
communication load receives the target task. If more than one 
PE returns the same communication load (very likely to happen 
in the beginning of the execution of the system), the PE with 
minimum hops distance to the requesting task is selected. If 
again there is more than one candidate PE, the first candidate 
of an array of final candidates is selected. The Cost Based 
(CB) dynamic mapping algorithm considers all possible 
mappings for a given task and chooses the one with minimum 
cost according to the following equation 

Cost =Uk ×Hst ×Lst
Aftk

 (2) 

where Uk is the current utilization of the PE under 
consideration for mapping k, Hst is the number of hops between 
the source task s and the target task t (considering t mapped on 
k), Lst is the load between s and t measured by the amount of 
bytes exchanged by them, and Aftk is the affinity of the target 
task t to k. The utilization of a PE can be calculated by 

Uk =
CTmk
Pmm=0

q

∑  (3) 

where CTmk is the computation time of task m when mapped to 
the PE under consideration k, Pm is the period of task m and q 
is the number of tasks mapped onto k. 

Table 1 presents the metrics used by the cost functions of 
the dynamic mapping algorithms introduced on this work. FF is 
for sure the fastest algorithm, since it requires only to find the 
next compatible PE for a task. NN is also fast and tries to put 
the communicating tasks near to each other. BN comes next in 
terms of speed since it searches for possible PEs according to 
NN and only uses PL when more than one candidate PE is 
found. All the other algorithms consider all PEs for making a 
mapping decision, therefore, they become slower with the 
increase of the number of PEs. On the other hand, other 
algorithms can consider the channels of the NoC and the 
communication load of the tasks for preventing congestions. 
The computation load of the tasks mapped on a PE is also an 



important metric for avoiding the overload of the PE, and is 
considered by the CB algorithm. 

All dynamic mapping algorithms, except the FF, require a 
requesting task to perform their mapping decision accurately. 
As the tasks that start the application do not dispose of a 
requesting task and such a decision can affect all subsequent 
decisions of the dynamic mapper, two initial mapping 
algorithms were developed to deal with this situation. One is 
the FF that was already presented, and the other is the Cluster 
(CL) initial mapping algorithm. This algorithm divides the PEs 
in clusters and maps each initial task to a different cluster. The 
size of the cluster depends on the amount of initial tasks and 
PEs the system contains. The goal of this algorithm is to 
separate the initial tasks, allowing tasks mapped later to be near 
to their corresponding initial tasks.  

Table 1. Metrics used by the cost functions of different dynamic mapping 
algorithms used on this work. 

 Network 
position 

Channel 
load 

Comm. 
load 

Task 
affinity 

PE 
utilization 

FF      
NN      

MMC      
MAC      

PL      
BN      

MDE      
CB      

V. CASE STUDY 
In order to evaluate the different dynamic mapping 

algorithms, one synthetic application was developed and 
executed over a 4x4 and a 5x5 heterogeneous platforms based 
on the HERMES NoC [12]. These heterogeneous platforms are 
configured with 2 DSPs, one on the upper left corner and 
another on the lower right corner. All the other PEs are GPPs, 
and both platforms reserve the PE on the lower left corner for 
the mapper. The application is composed by 30 tasks, where 12 
use the initial mapper and 18 are dynamically mapped. These 
30 tasks are used and reused by a total of 15 task graphs which 
describe different functionalities of the application. The 
computation time of the tasks range from 1,000 to 70,000 
simulation cycles and the period of the tasks range from 
200,000 to 500,000 simulation cycles. Each simulation cycle 
corresponds to one clock cycle of the real platform. The 
message sizes communicating the tasks range from 1,000 to 
50,000 bytes. Six tasks are compatible to the 2 DSPs available 
on the platform, where these tasks have an affinity of 100% to 
them, while they have an affinity of 20% to the GPPs. Each 
platform-mapper combination was simulated for 10,000,000 
simulation cycles and every time a task is mapped to a certain 
PE it remains there until the end of the simulation.  

Figure 1 presents boxplots with the response times of 5 task 
graphs of the application mapped to the 4x4 platform (graphs 
A-E) and the 5x5 platform (graphs F-J). The numbers 1 and 2 
used on the label of the plots indicate respectively the use of 
the CL and FF initial mappers. The plots aligned on the same 
row indicate the task graph. Each plot presents on the X-axis 
the dynamic mapping algorithm used by the application. The 
Y-axis refers to the response time of a complete task graph (i.e. 
the time between triggering the execution of the first task and 

the time when the last task finishes executing and 
communicating). Boxplots show minimum, lower quartile, 
median, upper quartile and maximum response times of all 
executions of each task graph, measured on simulation cycles.  

On the first glance to any of the graphs, it is possible to see 
that the worse response time of a task graph can be more than 
the double of the best response time, indicating that the 
mapping algorithm really influences the timing of the 
application. One expectation was that the dynamic mapping 
algorithm CB would always present better timing results, since 
it considers both communication and computation of the 
application. However, CB provided the best timing results on 
only 40% of the cases presented on 

Figure 1. While it is enough to know that the CB was the 
dynamic mapping algorithm that performed better on most of 
the times, it cannot be forgotten that the CB is also the one that 
costs more in terms of communication overhead (i.e. 
information about communication load, task affinity and PE 
utilization, which are information that need to be transmitted 
through the network from all PEs to the mapper). This costs in 
terms of time and network usage for transferring this mapping 
information is currently not considered on this work.  

Another expectation was that the initial mapping algorithm 
CL would always present better timing results, since it creates 
clusters to keep the initial tasks of different task graphs apart 
from each other, thus giving space for the subsequent tasks 
mapped with the dynamic mapping algorithm to be grouped 
together with their corresponding initial task. While this is true 
and visible when compare graph G1 with G2 and graph H1 
with H2, the CL was only better than FF on 42.5% of the cases 
on the 4x4 platform and 82.5% of the cases on the 5x5 
platform. 

VI. CONCLUSIONS 
Eight dynamic mapping algorithms for heterogeneous 

MPSoCs were compared on two platform configurations. 
These dynamic mapping algorithms consider different cost 
functions like the position of the task on the platform, the 
congestions of the network, the amount of data transmitted by 
the tasks, the affinity of the tasks to the different types of PEs 
available on the platform and the utilization of the PEs. Hence, 
the timing characteristics of computation and communication 
of the application and platform were taken into account on the 
presented case studies. 

From the results obtained we could see that in most of the 
cases the variance w.r.t. the timing to execute the application 
task graphs is enormous. This is mainly due to the fact that the 
baseline HERMES NoC is employed, which does not contain 
any mechanism that can enable Quality-of-Service (QoS) 
guarantees. The results also showed that the initial mapper CL 
was better than the FF on 42.5% of the times over the 4x4 
platform and 82.5% of the times over the 5x5 platform. The 
dynamic mapping algorithm CB provided the best timing 
results on 40% of the cases. The main future work is to 
consider NoC architectures that provide QoS and to consider in 
a lightweight manner the costs of the mapper in terms of 
computation time and communication through the network to 
deliver the information required for the mapper. Another future 



work is to allow the definition of deadlines for each message 
and keep control if the deadlines are missed during simulation. 
Further comparisons regarding the dynamic mapping 
algorithms will then be performed to extract a more solid 
evaluation.   
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Figure 1. Response time of 5 application task graphs for the 4x4 platform (A-E) and the 5x5 platform (F-J). Graphs labeled with 1 use the CL initial mapper and 
graphs labeled with 2 use the FF initial mapper. The X-axis presents the dynamic mapping algorithm and the Y-axis presents the response times of all executed 

instances of each task graph in cycles (minimum, lower quartile, median, upper quartile and maximum response times). 
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