A Hierarchical LST-based Task Scheduler for NoC-
based MPSoCs with Slack-Time Monitoring Support

Marcelo Ruaro'?, Guilherme Madalozzo', Fernando G. Moraes'

'PUCRS University, Computer Science Department, Porto Alegre, Brazil
’SETREM, Computer Science Department, Trés de Maio, Brazil
marceloruaro@setrem.com.br, guilherme.madalozzo@acad.pucrs.br, fernando.moraes@pucrs.br

Abstract—Emerging large-scale MPSoCs can have hundreds
of PEs (Processing Elements), and scalable real-time support is
necessary. Current proposals in MPSoCs scheduling have static
behaviors or lack accurate validation, from a clock cycle model
of the system. This paper proposes a hierarchical scheduling
algorithm. At the bottom level, each PE executes a local LST-
based scheduler algorithm with extended features to handle with
inter-task communication and interruption overheads. At the top
level, a global scheduler manages at run-time task mapping and
real-time adaptation by using task migration and monitored
information. The run-time adaptation is supported by a slack
time monitoring that notifies the global scheduler the slack time
of the PEs. The monitoring data, combined with traditional real-
time metrics, provide a powerful real-time management that, as
demonstrated by a clock cycle validation, can be implemented in
large scale MPSoCs.

Keywords—MPSoC; Real-time;
Monitoring.

Scheduling; Slack time;

L INTRODUCTION

The increasing number of PEs (Processing Elements) in modern
MPSoCs (Multiprocessor System on Chip) increases the resource
sharing among the system components. For this reason, scheduler
algorithms are fundamental to manage the processors’ usage while
satisfies RT (real-time) constraints of applications.

Differently from uniprocessor systems, a scheduling algorithm
for multiprocessor system rises in complexity [1] because the
scheduling problem is expanded from ‘when’ to ‘when and where’
execute a given task. According to the state-of-the-art section, several
proposals have addressed scheduling algorithm for multiprocessor
systems. However, the proportion of these targeting MPSoC remains
low and still have limitations. Besides the multiprocessor scheduling
be a more complex problem, MPSoCs systems increase this
complexity due its limited resources.

This paper proposes an original real-time scheduling algorithm for
NoC-based MPSoC, called HQoS. The contributions of the proposed
scheduling algorithm can be summarized as follows:

Clustered and Hybrid-based Scheduling organization: the
MPSoC is organized in clusters. Each cluster contains one manager
processor and a set of slave processors, providing scalability [2]. The
hybrid term is related to the traditional scheduling classification [1].
The algorithm has a global part, implemented at each cluster
manager, and a partitioned part implemented at each slave processor.

LST (Least Slack Time) based scheduling: HQoS is based on
LST algorithm [3]. The novelty is to use LST for MPSoCs, and
assuming task preemption, task migration, and inter-task dependency.

Support to periodic, sporadic and aperiodic tasks: HQoS is a
fully adaptive run-time scheduling algorithm. It can support variable
task periods, soft deadlines and execution times. To enable this

978-1-5090-0246-7/15/$31.00 ©2015 IEEE

support, a dynamic RT constraint method is proposed, which enable
the application’s developer to program its RT task constraints to
change, on demand, its RT constraints according to the task workload
variation.

Hierarchical slack time processor’s monitoring: as HQoS uses
the LST locally at each slave processor, the processor’s slack-time
(or idle times) can be measured and send to each cluster manager.
This information is a rich metric to enable others run-time adaptation,
as DVFS, clock gating, and employ novel concepts as the core
activation patterns [4].

Extended scheduler timer: HQoS is a priority-driven scheduler.
Instead using a constant scheduler timer, as in most of the traditional
schedulers [3], it dynamically computes the next scheduler call time
based on the RT task status and its slack time. This approach enables
to reduce the scheduler execution overhead.

II. STATE-OF-THE-ART

The literature related to task scheduling is rich, with a large
number of proposals focusing on multiprocessor systems. However,
few works address scheduling for MPSoCs.

Pfair is a state-of-the-art hard real-time scheduler for
multiprocessor systems [5]. Park et al. [5] propose HPGP, a Hybrid
scheduler for MPSoCs based on Pfair. A partitioned version runs the
Pfair algorithm. The proposal considers only periodic task with
deadlines equal to their periods and constant execution times.
Besides, the evaluation is carried out only over two cores, what not
enable to validate the algorithm in large MPSoCs.

Tafesse et al. [6] propose two scheduling algorithms for
MPSoCs: Performance Driven Scheduling (PDS), for bus-based
MPSoCs, and Traffic Aware Scheduling (TAS), for NoC-based
MPSoCs. The PDS algorithm is based on the Simulated Annealing
(SA) technique and searches for the best RT task mapping
considering temperature thresholds. The TAS algorithm is a design-
time algorithm that performs the task scheduling and mapping also
using the SA technique: the tasks are randomly mapped into PEs
until they achieve a temperature threshold without violating task
deadlines.

The LST algorithm is proved non-optimal to multiprocessor
systems [3]. Hwang et al. [7] propose the LSTR, a scheduling
algorithm based on LST with additional features to be optimal for
multiprocessor systems. The Authors enable task migration and
preemption. The LSTR was designed to support only periodic tasks,
do not considering task migration and task preemption overheads and
requires a high frequency of task migration. Those features are not
adequate to generic purpose MPSoCs, where applications are
downloaded on-the-fly and can change its real-time constraints at
run-time according to external inputs for example.

To the best of Authors knowledge, this paper is the first proposal
that addresses a scheduling algorithm for MPSoC with the
originalities detailed in the Introduction combined with an evaluation
employing a clock cycle accurate platform model.

III. SYSTEM MODEL

Section IIILA describes the MPSoC Model.
describes the task model, a contribution of this work.

A. MPSoC Model

Fig. 1 presents the distributed memory MPSoC overview. An
MPSoC consists of a set of homogeneous PEs interconnected by a
given network topology. This work adopts a cluster-based MPSoC,
with manager and slave PEs. A Cluster Manager (CM) PE does not
execute user tasks. It executes a management pkernel and the top-
level part of the HQoS algorithm. A specialized version of CM called
Global Manager also implements the access to an application
repository that simulates the insertion of a new application. The Slave
PE executes user tasks. It runs a pkernel with the bottom level part of
the HQoS scheduling algorithm.

Multiprocessor System on Chip

Section III.B

20 Networkon Chip
Slave || Slave |||| Slave | Slave
(Locat Scnecuien) | | (Locat schocute) || || (Locat soneauie) [| (Locat scnecuten
T T T T
Cluster Slave Cluster Slave
Manager H HH Manager H
(Local Scheduler) {Local Scheduler)
(Global Scheduler) (Global Scheduler)
T T T T
I T T I T
t 1 1 i |
I Plasma
Slave || Slave |||| Slave || Slave |
(tocat schedutn) | | (ocatschecuten) | |[| tocetschecuin | | (Locat scheduier |
NI
= o
Sz T T T T
EE Global Clust ‘
< = jobal uster
o8 Slave Slave
Z & 7 Manager | Manager H
] (Local Scheduer) (Local Schedue)
< (Global Scheduler) {(Global Scheduler)

Fig. 1 - Cluster-based MPSoC architecture, with HQoS Scheduler.

Processors may handle two external interruptions: NoC
interruption: signalizing a received packet from the NoC; Scheduler
interruption: signalizing the end of scheduler timer. The manager PEs
handle only NoC interruption. Slave PEs handle both interruptions.
In the occurrence of an interruption, the executing task is preempted,
and the pkernel handles the interruption.

B. Task Model

A directed task graph models the applications. Task communicate
using Send and Receive MPI-based primitives. Send is non-blocking,
and Receive is blocking. A given task can be at four different states:
waiting, ready, running, and sleeping. Waiting state mean that the
task is blocked, waiting for a producer task to send it a message.
Ready state means that task already achieved its release time, and it is
ready to be scheduled. Running state mean that the task is executing
in the CPU, only one task can stay in running state. Sleeping state
(for RT tasks only) means that task already achieved its execution
time and its period does not end yet, so the task must be suspended.

The system supports two task types: best-effort (BE) and real-
time (RT). BE tasks have not time bound and explore the slack time
of RT tasks executions. RT task has temporal requirements. Fig. 2
details the RT task constraints model. The time is computed in clock
cycles.

- ————m———— - Period: p cm === ===
[--=-- Deadline: d - = === ===
% --- Exec. time: e -——>|<---I———
. Slack time: s | | time
Ready time: r

Fig. 2 — Real-time constraints model.

A given RT task has four real-time constraints: (i) period, (if)
deadline, (iii) execution time, (iv) utilization. The period is the time
between the task’s release times. The execution time is the amount of
time that task must execute at each period. The deadline mean the

309

time that task have to complete it execution time, for simplicity, this
work handle with absolute deadlines [3]. The utilization is the
percentage that task uses the processor. It is computed by the
following equation: utilization = (execution time * 100)/period.

To make the system aware of an RT task, the task must call a
system call (syscall) named RealTime. Fig. 3 presents an example of
an RT task code that configures RT constraints dynamically. At line
3 the taskA calls the RealTime syscall, notifying to the pkernel its RT
constraints. At lines 4-8 the task executes some code. Due previously
RT constraints configuration, the scheduler can execute task4
according to the real-time loop requirements. Next, at line 10, the
task changes its RT constraints due a new RT workload profile that
will be executed in lines 11-15. The task then calls the RealTime
syscall again to notify to the scheduler its new constraints. As
observed, this system call enables the task to change its real-time
constraints dynamically, characterizing a periodic or aperiodic
behavior [3].

int main(){
int period = 60000, deadline = 10000, execution_time = 8000;
RealTime(period, deadline, execution_time);
for (i iterations) {
Receive (msg from producer task);
process1(msg);
Send (msg to consumer task);
}
deadline = 30000; period = 45000; execution_time = 20000;
RealTime (period, deadline, execution_time);
for (k iterations) {
Receive (msg from producer task);
process2(msg);
Send (msg to consumer task);
}

return 0;

Slave

(Local Scheduler,

TASK A

1.
2
3
4
5.
6.
7
8,

17.}

Fig. 3 - Example of a task code with run-time RT configuration. TaskA is an
RT task with different constraints according its code workload. It calls 2 times
the RealTime syscall to configure its constraints into the local scheduler (lines
3 and 10).

To handle the inter-task dependencies, this work assumes that
each application's iteration fits into a hyper period, i.e., each task of
the same application must configure a period that covers all its
iteration periods. This hyper period includes the communication
overhead observed for each application’s iteration. Let take as an
example the MPEG decoder in Fig. 4. Assuming in a worst case that
each task is allocated into a different PE, it is possible to define the
RT tasks behavior by observing the application iteration pattern. All
tasks have the same period. However, each task has its individual
execution time and deadline according to task dependency order.
Task input is the first to execute at each iteration. Hence, its deadline
must be the first to ends.

MPEG -Task Communication Graph

(=)

4+-------- mpeg periord --------- >
input [

ivlc Communication
iquant Task :'J'(::lllion

e [—

Communication
output ovaend L1
>
time

Fig. 4 — MPEG real-time constraints configuration.

IV. HQOS SCHEDULER

Table 1 describes the classification of the proposed scheduler
according to the most adopted literature concepts [1][3][8]. The
scheduler is hierarchical (Fig. 1), divided into Global Scheduler (GS),
implemented at each manager PE, and Local Scheduler (LS),
implemented at each slave PE.

Table 1 — Proposed HQoS scheduler classification.

Concept

Classification

Organization (Global, Partitioned)

Hybrid and clustered (Mixes Global and
Partitioned)

Scheduling decision (Static, Dynamic)

Dynamic

Allocation (Clock, Table, Priority)

Priority-driven approach (LST-based)

Migration (Job level, Task level)

Task-level Migration

Processor Number (Uni., Multi.)

Multiprocessor (on chip)

Preemption (Yes, No)

Yes

Supported task

Periodic, sporadic, aperiodic

Real-time (Hard, Firm, Soft)

Soft real-time

A. Local Scheduler (LS)

Assuming the task model described in Section IIL.B, the
partitioned LST scheduler executes at each slave PE as a traditional
LST scheduler, or as some works define: assuming a partitioned
behavior. In an LST scheduler, the RT tasks have scheduling priority
over BE task. RT tasks are scheduled according to their least slack
time. If there are two or more RT tasks with the same slack time, a
Round-Robin algorithm is used to selects the next scheduled task.
This same algorithm is used to schedule BE tasks if the processor
does not have RT tasks or all RT tasks are sleeping or waiting.

The proposed LST-based scheduler must consider inter-task
communication. As the system uses an MPI-based communication,
some tasks can be in a waiting state. When this happen, BE tasks are
blocked. However, when an RT task goes to the waiting state, the
scheduler handles the RT task as a sleeping task, i.e., the scheduler
verifies the end of task period, but not update its remaining execution
time neither schedules the task. When the task received the requested
message by a NoC interruption, the pkernel change the state of the
task to ready and calls the LST scheduler. The scheduler then updates
the slack time and the remaining execution time for all its RT ready
and running tasks, scheduling the ready task with LST priority.

To enable a hierarchical scheduling support, the LS
communicates with the GS. Three messages are defined: (i) real-time
request, generated when a task calls the RealTime syscall. This
message is responsible for informing the GS of the new RT task or
RT parameters change; (i7) deadline miss, generated when an RT task
executes beyond its deadline; (iii) slack time report, a message send
periodically to update the GS's slave slack time, this message is
detailed in IV.D.

B. Extended Scheduler Trigger Time

In the proposed LS, a hardware scheduling interruption timer is
used, being dynamically programmed by using a memory mapped
register. After the programming, it is decremented at each clock cycle
until the configured value reaches 0. At this point, a scheduler
interruption is generated to the pkernel.

When an RT task is scheduled, the appropriated scheduler timer
is the RT task remaining execution time (RT,.), however, other RT
task can need a scheduler call before the end of the RT,, with the
purpose to avoid a deadline miss, caused by a lack of scheduler
verification. For this reason, the scheduler needs to verify if there is
any other RT task with a slack time lower than RT,. Further, the
scheduling also needs to verify if there is any other RT task with the
end of period lower than RT,. In the presence of a scheduling point
lower than RT,, this point is selected as being the next scheduler
trigger timer.

C. Global Scheduler

The Global Scheduler (GS) executes at each manager PE. The
GS has two main functions: (i) schedule tasks into slave PEs (in fact
it acts as a mapper); (i7) handle report messages from LS.

When a new application is requested to execute in the system,
the global manager PE (Fig. 1) executes a heuristic to select the
cluster to execute the application — cluster selection. The main goal

of the cluster selection heuristic [9] is to distribute the workload
evenly in the system. Once a cluster is selected, the application
description is sent to a cluster manager (note that the global manager
is also a cluster manager, and can receive the application
description).

The GS starts when a new application description is received. To
map the tasks of the new application the GS searches a slave PE (SP)
according to the GS task scheduling heuristic presented in Fig. 5.
The algorithm receives as input the cluster ID. Then, a set containing
all slaves PEs in the cluster is created (lines 1-4). Next, a set of
functions removes slaves PEs from the set, according to a group of
criteria (lines 5-8). Finally (line 9), the first element of the set is
returned, that makes the selected PE the PE that will receive the task.
Fig. 5 uses as main information the slack time obtained by
monitoring. The slack time implicitly carries the RT execution, BE
execution, interruption handling overhead, scheduler overhead and
switch context overhead.

GS_task_scheduling(cluster cpp) {
1L Ce€ {}

2. for all sp; of c;p do // build the set Cye will all SPs of the cluster

3. Cpe € Cpe U spy

4. end for

5. // leaves in the set Cpe the SPs with the highest average slack time
Cpe € avg_slack_time(Cpe)

6. // leaves in the set Cpe the SPs with the smaller number of allocated RT tasks
Cpe € min_rt_task(Cpg)

7. // leaves in the set Cpg the SPs with the highest absolute slack time
Cpe € abs_slack_time(Cpg)

8. // leaves in the set Cpe the SPs with the smaller number of allocated BE task
Cpe € allocated_tasks(Cpe)

9. return(first(Cpg)) // return the first element in the set Cpg

10.}

310

Fig. 5 - Global Scheduler Heuristic to select a SP to execute a task.

After scheduling the task into the selected SP, the task is locally
scheduled by the LS. During system execution, the GS handles
messages sent from the LSs. For slack time report messages, the GS
update the absolute PE slack time and average slack time. For real-
time request messages, the GS verifies if it does not exceed 100% of
the processor utilization. If this is the case, the GS start a real-time
adaptation. For deadline miss messages, the GS directly starts a real-
time adaptation.

The real-time adaptation is a heuristic that uses task migration to
select an SP to receive the RT task with deadline misses. To select
the SP to receive the task, a similar heuristic to Fig. 5 is used. The
difference is the first criterion to remove elements in Cpg: utilization.
All SPs that remain in the set Cpr must have a remaining utilization
higher or equal than the task utilization.

Using such heuristics, the GS take advantage of monitored slack
time of its slave processors, together with traditional RT metrics.
Such information provides a tradeoff between processor’s real-time
utilization and load balancing.

D. Slack time monitoring

Slack time monitoring is implemented using a hardware timer,
which at each 10 ms triggers an interruption to the SP pkernel. This
interruption is handled by sending a simple message to the GS with
the processor's slack time in the last 10ms.

This window monitoring is configurable at design-time and can
be adjusted to provide a tradeoff between NoC communication load
and slack time update frequency.

V. RESULTS

Results were obtained using an RTL SystemC model of the
MPSoC (9x9, with 3x3 clusters) presented in Section IILLA. The
pkernel, as well as the GS and LS schedulers, are implemented in C
language. The hardware implementation, specific for this proposal,
corresponds to the scheduler timer counter, implemented in the SPs.

A. Dynamic Real-Time Constraints Evaluation

This experiment uses synthetic RT tasks. All SPs received
initially an RT task consuming 40% of the processor utilization. At a
given moment, a second RT task (RT,) is allocated in one SP. RT,
has the behavior of the task code in Fig. 3, with two calls to the
RealTime syscall. The first one imposes 55% of processor utilization,
and the second one 90%. Fig. 6 presents the latency results for each
iteration of RT,. Three scenarios are evaluated: (i) optimal, with the
target task running alone into the system; (if) RT support; (iii)
without RT support.

2000000

Optimal
RT Support === |
Without RT Support -

1800000 [

1600000 [

1400000

1200000

1000000

15t RealTime().call

800000 [~

600000 [~

400000 [~

Latency per lteration(clock cycles)

200000 [~

0

oo -
ozk -

8

0z b
09 b
ovk

Time (ms)

Fig. 6 - Dynamic RT support evaluation.

Note in Fig. 6 that the three scenarios have the same behavior up
to the second vertical line. This vertical line corresponds to the
second ReakTime call, which request more RT guarantees. This new
behavior triggers a real-time adaptation (represented by the RT
support scenario). After the real-time adaptation the scenario with RT
support achieves exactly the same latency of the optimal scenario.
This result is explained due the task migration of target task (RT,) to
a free processor. In this evaluation, it is also possible to observe the
negligible impact of task migration over the target task latency, with
a total task migration overhead of 10,343 clock cycles.

B. Real-time Applications Evaluation

In this scenario, two real applications are used: MPEG decoder,
communication intensive, and Dynamic Time Warping (DTW),
computation intensive. The DTW application starts its execution at
the beginning of the simulation, the MPEG start at 15ms, and 3 BE
applications are inserted at 25ms, 35ms, and 45ms.

The graph of Fig. 7 represents the latency for each MPEG
iteration (frame decoding). This latency is collected at the last MPEG
task (output). As can be observed, the RT support does not achieve
the latency of the optimal scenario. This result is discussed later. In
terms of average latency, the RT support increases the latency 45.8%
in comparison to the optimal scenario. On the other hand, the RT
support scenario provides a reduction of 209.3% compared with the
scenario without RT support, demonstrating the high impact imposed
by BE application in this experiment.

Optimal —e—
‘ih BT Sl

350000

300000 -

250000 -

200000 -

150000 -

Latency (clock cycles)

100000

50000 [

0

Time (ms)

Fig. 7 - MPEG latency.

The graph presented in Fig. 8 addresses the DTW iteration
latency. The effect of the RT support for DTW application is easily
observed. The scenario with RT support can maintain the application

311

requirements even with the load of the BE applications. The average
latency increases only 1.43% comparing the RT support against the
optimal scenario. The average latency reduction comparing the RT
support against without RT is 97.7%.

Optimal
T Support 1
T Support ----m-

250000

R
Without R

200000

150000

100000

Latency (clock cycles)

50000 -

09
oL

Fig. 8 - DTW iteration latency.

As shown in Figures 7 and 8, the proposed scheduler achieved a
significant reduction in the latency of the benchmarks. The high
impact of disturbing over the MPEG application occurs because this
application is highly communicating, which allows that the
disturbing caused by BE applications can be evidenced. In the case of
DTW, that is computation intensive, the scheduler can prevent
deadline misses even in a high computation disturbing. As the scope
of the scheduler is, essentially, computation resource management, it
is expected the behavior shown in both graphs. This analysis
emphasizes the need to complement a real-time scheduler with a run-
time communication adaptation mechanism, as proposed in [10].

VL

Most of the scheduling literature for multiprocessor is essentially
theoretical or inadequate for MPSoCs. In this work, we proposed and
implemented a scheduler in an MPSoC modeled at the RTL level,
targeting large-scale systems. The scheduler is fully adaptive,
supporting dynamic task RT constraints with slack time monitoring
at the processor level. Future works include exploring the mapping
heuristics and slack time monitoring results.

CONCLUSION

ACKNOWLEDGMENTS

The Author Fernando Moraes is supported by CNPq - projects
472126/2013-0 and 302625/2012-7, and FAPERGS - project 2242-
2551/14-8.

REFERENCES

[1] Davis, R.I; Burns, A. “A survey of hard real-time scheduling for
multiprocessor systems”. ACM Comput. Surv. Article 35, 2011, 44 p.

[2] Castilhos, G.; Mandelli, M.; Madalozzo, G.; Moraes, F.G. “Distributed
Resource Management in NoC-Based MPSoCs with Dynamic Cluster
Sizes”. In: ISVLSI, 2013, pp. 153-158.

[3] Liu, JW.S. “Real-Time System”. Prentice Hall, New Jersey, 2000.

[4] Shafique, M.; Garg, S.; Henkel, J.; Marculescu, D. “The EDA
challenges in the dark silicon era”. In: DAC, 2014, pp.1-6.

[5] Park, S. “Task-I/O Co-scheduling for Pfair Real-Time Scheduler in
Embedded Multi-core Systems”. In: EUC, 2014, pp.46-51.

[6] Tafesse, B.; Raina, A.; Suseela, J.; Muthukumar, V., “Efficient
Scheduling Algorithms for MPSoC Systems”. In: ITNG, 2011, pp. 683-
688.

[71 Hwang, M.; Choi, D.; Kim, P. “Least Slack Time Rate First: New
Scheduling Algorithm for Multi-Processor Environment”. In: CISIS,
2010, pp.806-811.

[8] Mall, R. “Real-Time Systems: Theory and Practice”. Pearson; 1
edition, 2006.

[9] Mandelli, M.; Osts, L.; Sassatelli, G.; Moraes, F.G. “Trading-off
System Load and Communication in Mapping Heuristics for Improving
NoC-Based MPSoCs Reliability”. In: ICECS, 2012, pp. 544-547.

[10] Ruaro, M.; Carara, E.A.; Moraes, F.G. “Runtime Adaptive Circuit-

Switching and Flow Priority in NoC-Based MPSoCs”.
IEEE Transactions on VLSI, v.23(6), pp. 1077-1088, June 2015.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

